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Abstract: Mobile robots require the ability to plan collision-free paths. This paper introduces a
wheel-foot hybrid parallel-leg walking robot based on the 6-Universal-Prismatic-Universal-Revolute
and 3-Prismatic (6UPUR + 3P) parallel mechanism model. To enhance path planning efficiency and
obstacle avoidance capabilities, an improved artificial potential field (IAPF) method is proposed. The
IAPF functions are designed to address the collision problems and issues with goals being unreachable
due to a nearby problem, local minima, and dynamic obstacle avoidance in path planning. Using this
IAPF method, we conduct path planning and simulation analysis for the wheel-foot hybrid parallel-
legged walking robot described in this paper, and compare it with the classic artificial potential field
(APF) method. The results demonstrate that the IAPF method outperforms the classic APF method in
handling obstacle-rich environments, effectively addresses collision problems, and the IAPF method
helps to obtain goals previously unreachable due to nearby obstacles, local minima, and dynamic
planning issues.

Keywords: walking robot; wheel-foot hybrid parallel-leg; artificial potential field (APF) method;
path planning

1. Introduction

Robot construction designs vary significantly based on terrain, with wheeled robots [1],
foot robots [2,3], and crawler robots [4,5] representing three commonly used structural
types, each with distinct characteristics. Wheeled systems excel in speed and stability on
flat surfaces but face challenges on uneven terrain. Foot-type robots, such as those with
parallel legs [6,7] or series legs [8,9], offer superior mobility in rugged environments, albeit
at the expense of speed and efficiency [10,11]. To address these challenges, Tang et al. [12]
introduced a foot-walking robot based on the innovative 6-UPUR + 3P parallel mechanism
model, boasting 18 degrees of freedom and enhanced adaptability across diverse terrains.
And then, to adapt to various terrains, a wheel-foot hybrid parallel-leg walking robot has
been designed to combine the strengths of wheeled and foot robots, enabling independent
mode switching.

In the realm of path planning for walking robots [13,14], the artificial potential field
(APF) method emerges as a prominent solution due to its simplicity and reliability. Orig-
inating from Khatib’s virtual force method [15], APF generates attractive and repulsive
potential fields, enabling collision-free navigation [16–18]. However, inherent limitations,
such as collision issues, unreachable goals near obstacles, local minima, and dynamic
environment obstacle avoidance, hinder its effectiveness [19–22].

To overcome these challenges, innovative solutions have emerged. Pan et al. [23]
introduced an improved APF path planning approach incorporating a rotating potential
field, effectively circumventing common local minima. Weerakoon et al. [24] and Matoui
et al. [25] addressed the local minimum problem using exponential functions and the
non-minimum speed algorithm, respectively. Yang et al. [26] proposed a novel repulsive

Sensors 2024, 24, 2178. https://doi.org/10.3390/s24072178 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072178
https://doi.org/10.3390/s24072178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3154-0590
https://doi.org/10.3390/s24072178
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072178?type=check_update&version=1


Sensors 2024, 24, 2178 2 of 24

potential function considering the relative distance to the goal, effectively mitigating
obstacles near unreachable goals. In dynamic environments, Montiel et al. [27] proposed a
parallel evolutionary APF method, while Zhu et al. [28] integrated velocity synthesis and
an enhanced APF algorithm to navigate underwater obstacles. Despite these advancements,
there is still room for improving obstacle avoidance in the path planning to make it more
efficient and straightforward.

Therefore, this paper presents an improved path planning method for a wheel-foot
hybrid parallel-leg walking robot by modifying the potential field function, enhancing
responsiveness to sensor data, and reducing computational overhead. Key contributions
include modifying the attraction potential field function to address collisions, proposing
a distance factor to mitigate unreachable goal issues, introducing a valid virtual target
point to resolve local minima, and presenting the relative velocity method for dynamic
obstacle avoidance. Utilizing an improved artificial potential field (IAPF) approach, the
robot autonomously navigates in the obstacle-rich environments, and the IAPF method
is validated through simulations and real-world testing. The paper provides a detailed
account of the robot’s design, classical APF method principles, modifications, simulation
analysis, and experimental validation.

This paper is structured as follows: Section 2 introduces the structure design of the
wheel-foot hybrid parallel-leg walking robot. Section 3 describes the principles of the
classical APF method. Section 4 presents the modified APF method to address inherent
issues in the classical APF method. Section 5 conducts simulation analysis of the modified
APF method, comparing it with the classic APF method in scenarios involving static
obstacles and moving objects. Additionally, experiments are conducted, and results are
analyzed within a controlled environment to support the proposed solution for the inherent
issues in the APF method in Section 6. Finally, conclusions are drawn in Section 7.

2. Structure Design of Wheel-Foot Hybrid Parallel-Leg Walking Robot

The structure of the wheel-foot hybrid parallel-leg walking robot comprises two main
components: wheel legs and foot legs. The virtual prototype is depicted in Figure 1a.

Sensors 2024, 24, x FOR PEER REVIEW 2 of 25 
 

 

minimum speed algorithm, respectively. Yang et al. [26] proposed a novel repulsive po-

tential function considering the relative distance to the goal, effectively mitigating obsta-

cles near unreachable goals. In dynamic environments, Montiel et al. [27] proposed a par-

allel evolutionary APF method, while Zhu et al. [28] integrated velocity synthesis and an 

enhanced APF algorithm to navigate underwater obstacles. Despite these advancements, 

there is still room for improving obstacle avoidance in the path planning to make it more 

efficient and straightforward. 

Therefore, this paper presents an improved path planning method for a wheel-foot 

hybrid parallel-leg walking robot by modifying the potential field function, enhancing 

responsiveness to sensor data, and reducing computational overhead. Key contributions 

include modifying the attraction potential field function to address collisions, proposing 

a distance factor to mitigate unreachable goal issues, introducing a valid virtual target 

point to resolve local minima, and presenting the relative velocity method for dynamic 

obstacle avoidance. Utilizing an improved artificial potential field (IAPF) approach, the 

robot autonomously navigates in the obstacle-rich environments, and the IAPF method is 

validated through simulations and real-world testing. The paper provides a detailed ac-

count of the robot’s design, classical APF method principles, modifications, simulation 

analysis, and experimental validation. 

This paper is structured as follows: Section 2 introduces the structure design of the 

wheel-foot hybrid parallel-leg walking robot. Section 3 describes the principles of the clas-

sical APF method. Section 4 presents the modified APF method to address inherent issues 

in the classical APF method. Section 5 conducts simulation analysis of the modified APF 

method, comparing it with the classic APF method in scenarios involving static obstacles 

and moving objects. Additionally, experiments are conducted, and results are analyzed 

within a controlled environment to support the proposed solution for the inherent issues 

in the APF method in Section 6. Finally, conclusions are drawn in Section 7. 

2. Structure Design of Wheel-Foot Hybrid Parallel-Leg Walking Robot 

The structure of the wheel-foot hybrid parallel-leg walking robot comprises two main 

components: wheel legs and foot legs. The virtual prototype is depicted in Figure 1a. 

 

Figure 1. Virtual prototype of wheel-foot hybrid parallel-leg walking robot. (a) wheel-foot hybrid 

parallel-leg walking robot structure. (b) Foot-leg structure. (c) Single-foot end-branch leg struc-

ture. 

The foot-leg structure shown in Figure1b is designed based on a six-degree-of-free-

dom mechanism, similar to the Stewart platform structure [29,30], and incorporates three 

auxiliary leg mechanisms. It includes six primary electric cylinder branch chains and three 

auxiliary electric cylinder branch chains. The upper end of each main electric cylinder 

branch chain is connected to the upper platform through a universal joint, while the lower 

end is hinged to the leg-fixing plate via a universal joint seat with bearings. This configu-

ration results in a six-degree-of-freedom structure with a single-chain UPUR distribution. 

The three leg-fixing plates are integrated through the foot arch frame. Additionally, the 

auxiliary electric cylinder is firmly connected to the foot’s leg-fixing plate, with the push 

Figure 1. Virtual prototype of wheel-foot hybrid parallel-leg walking robot. (a) wheel-foot hybrid
parallel-leg walking robot structure. (b) Foot-leg structure. (c) Single-foot end-branch leg structure.

The foot-leg structure shown in Figure 1b is designed based on a six-degree-of-freedom
mechanism, similar to the Stewart platform structure [29,30], and incorporates three aux-
iliary leg mechanisms. It includes six primary electric cylinder branch chains and three
auxiliary electric cylinder branch chains. The upper end of each main electric cylinder
branch chain is connected to the upper platform through a universal joint, while the lower
end is hinged to the leg-fixing plate via a universal joint seat with bearings. This configu-
ration results in a six-degree-of-freedom structure with a single-chain UPUR distribution.
The three leg-fixing plates are integrated through the foot arch frame. Additionally, the
auxiliary electric cylinder is firmly connected to the foot’s leg-fixing plate, with the push
rod end linked to the foot plate of the auxiliary leg that makes contact with the ground.
This design enhances the robot’s Z-direction workspace and its structural adaptability in
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unstructured environments. A representation of the single-foot end-branch leg structure is
presented in Figure 1c.

The wheel legs consist of two drive wheels and one guiding wheel, as shown in
Figure 2. Their structures are identical to the foot legs, except for the shape of the arch
connection frame. Both the wheel and foot legs share the same upper platform, and are
referred to as the “hip joint”. These legs are distributed at 180-degree intervals and are
perpendicular to the upper platform. The guiding wheel mechanism includes a servo
motor, an encoder, a transmission device, and a universal wheel, enabling precise steering
control of the universal wheel.
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Figure 2. Wheel-leg structure design.

When facing different rugged terrain environments, the wheel control of the wheeled
leg locks, and the extension mechanism of the auxiliary leg, can make the wheel of the
wheeled leg come into point contact with the ground alternately with the foot of the leg,
thereby achieving efficient adaptive walking. For example, when encountering rough and
uneven terrain, the foot-leg can utilize its flexibility and stability to assist the wheeled leg
in overcoming obstacles. The adjustable extension of the auxiliary leg allows for flexible
variations in steps on different terrains, ensuring stable walking of the robot in various
complex terrains.

On the other hand, on smooth walking surfaces, the robot can fully utilize the char-
acteristics of wheeled locomotion to achieve rapid and stable wheeled walking. Through
reasonable control strategies, the wheeled leg can quickly adapt to flat ground conditions
and advance at a higher speed. Therefore, the synergy between the wheeled leg and the leg
enables the robot to flexibly adapt to different terrain environments and achieve efficient
walking. Moreover, the extension mechanism of the auxiliary leg, when perceiving small
obstacles through sensors such as radar, can directly lift the leg by raising the robot’s
body, instead of using avoidance to bypass obstacles. A simulated illustration of the walk-
ing performance of a wheel-leg hybrid parallel-leg walking robot in undulating terrain
environments is shown in Figure 3.
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Figure 3. Simulated illustration of the walking performance of a wheel-leg hybrid parallel-leg walking
robot in undulating terrain environments.

3. Classic APF Principles Method

To address the obstacle avoidance for the walking robot, the APF method is employed.
The APF method allows an object to navigate within gravitational and repulsive fields
and reach a target point [31–35]. The gravitational potential field function (PFF) Uatt(X)
generated by the target point to robot’s current position can be expressed as:

Uatt(X) =
1
2

kaxρ2(X, Xg) (1)

where kax represents the positive proportional gain factor of the gravitational PFF Uatt(X),
X = [x y]T denotes the present position vector of the robot, Xg = [xg yg]T represents the
target point’s position vector, and ρ(X, Xg) signifies the Euclidean distance between the
target point position Xg and the robot’s present position X.

Based on Equation (1), the gravitational function Fatt(X) can be derived using the
negative gradient potential field method and is given as:

Fatt(X) = −∇Uatt(X) = −kax(X)ρ(X,Xg) (2)

In the classic APF method, the repulsion PFF Urep(X) caused by obstacles in the robot’s
current position is defined as:

Urep(X) =

 1
2 krx

(
1

ρ(X,Xobs)
− 1

ρ0

)2
ρ(X, Xobs) ≤ ρ0

0 ρ(X, Xobs) > ρ0

(3)

where krx is the proportional gain factor of the repulsion PFF Urep(X), Xobs = [xobs yobs]T

represents the obstacle’s position vector, ρ0 denotes the maximum influence scope of the
obstacle, and ρ(X, Xobs) represents the Euclidean distance between the robot and the
obstacle.

Using Equation (3), the repulsion function Frep(X) can be derivated through the nega-
tive gradient potential field method, and is expressed as:

Frep(X) = −∇Urep(X) =

{
krx

(
1

ρ(X,Xobs)
− 1

ρ0

)
1

ρ2(X,Xobs)
∂ρ(X,Xobs)

∂X , if ρ(X, Xobs) ≤ ρ0

0, if ρ(X, Xobs) > ρ0
(4)

where ∂ρ(X,Xobs)
∂X =

[
∂ρ(X,Xobs)

∂x
∂ρ(X,Xobs)

∂y

]T
.
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Consequently, in the classic APF environment [36,37], the potential resultant force
acting on the robot is given by:

U(X) = Uatt(X) + Urep(X) (5)

Fsum(X) = −∇U(X) = Fatt(X) + Frep(X) (6)

The repulsion forces generated by Obstacle1 and Obstacle2 on the robot are Frep1 and
Frep2 respectively, as depicted in Figure 4. The target point G exerts an attractive force
on the robot, guiding it toward the point’s direction. As shown in Equation (7), the total
resultant force Fsum, which combines the repulsive resultant force Frep and the attractive
resultant force Fatt, is the actual force determining the robot’s motion direction for the
obstacle avoidance.

Fsum(X) = Fatt(X) + Frep1(X) + Frep2(X) (7)
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When the robot operates in an environment with n obstacles, the potential resultant
force acting on the robot should be adapted as:

Fsum(X) = Fatt(X) +
n

∑
i=1

Frepi(X) (8)

where, Frepi(X) represents the repulsive force exerted by the ith (i = 1, 2, . . ., n) obstacle on
the robot.

However, the classical APF method has some limitations, including issues with achiev-
ing the goal and encountering local minima. Regarding the goal being unreachable, when
an obstacle is near the target point, and the target point falls within the influence range
of the repulsive potential field generated by the obstacle, the gravitational potential field
weakens as the distance between the robot and the target point increases. Simultaneously,
the effect of the repulsive potential field intensifies, resulting in a constant repulsive force.
Consequently, the resultant force’s direction cannot point toward the target point, trapping
the robot within a certain range of the target point and preventing it from reaching it.
Concerning local minima, when both the repulsive and gravitational forces on the robot
are zero, the combined force is also zero. Even when these forces are non-zero but in
equilibrium, the robot can be considered trapped in a local minimum.

4. The Proposed Method
4.1. Set the Thresholds to Solve the Collision Problem

To tackle potential collisions caused by excessive gravitational force, we enhance the
gravitational PFF by introducing a distance threshold, denoted as d0. When the distance
between the robot and the target point exceeds d0, the attraction force remains at a stable
value. However, if the robot’s distance to the target point falls below d0, the attraction force



Sensors 2024, 24, 2178 6 of 24

is calculated using the gravitational PFF from the classic APF. The corresponding attraction
PFF is given by:

Uatt(X) =

{
1
2 kaxρ2(X, Xg) ρ(X, Xg) ≤ d0

d0kaxρ(X, Xg)− 1
2 kaxd0

2 ρ(X, Xg) > d0
(9)

Accordingly, the attraction force function is expressed as:

Fatt(X) = −∇Uatt(X) =

{
−kaxρ(X, Xg) ρ(X, Xg) ≤ d0

−d0kax ρ(X, Xg) > d0
(10)

4.2. Introduce Distance Factor to Solve Goal Unreachable Problem Caused by Obstacles near
the Target

The goal unreachable problem arises when the resultant potential field value is non-
zero due to the combined effect of the repulsive potential fields from the obstacles and
gravitational potential fields from the target point. As the robot approaches the target point,
the gravitational potential field gradually weakens. If the repulsive potential field exhibits
a similar trend, the robot can smoothly reach the target point. To address this, we introduce
a distance factor, which incorporates the real-time distance between the target point and
the robot into the classic repulsion PFF to dynamically influence the repulsion potential
field. The improved repulsion PFF is given by:

Urep(X) =

{
1
2 krx

(
1

ρ(X,Xobs)
− 1

ρ0

)
ρn(X, Xg) ρ(X, Xobs) ≤ ρ0

0 ρ(X, Xobs) > ρ0
(11)

where n is any positive real number.
From Figure 5, it can be observed that the repulsion force exerted by the obstacle on

the robot can be broken down into Frep3, pointing away from the obstacle, and Frep4, aiming
at the target. Consequently, the repulsion function Frep can be expressed as:

Frep(X) = −∇Urep(X) =

{
Frep3(X) + Frep4(X) ρ(X, Xobs) ≤ ρ0

0 ρ(X, Xobs) > ρ0
(12)

where Frep3(X) = krx

(
1

ρ(X,Xobs)
− 1

ρ0

)
1

ρ2(X,Xobs)
ρn(X, Xg)

∂(X,Xobs)
∂X , Frep4(X) =

− n
2 krx

(
1

ρ2(X,Xobs)
− 1

ρ0

)2
ρn−1(X, Xg)

∂(X,Xg)
∂X .
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Where, ∂(X,Xobs)
∂X is the unit direction vector pointing to the robot from the obstacle.

This vector indicates that the direction of Frep3(X) goes from the robot to the target point;
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∂(X,Xg)
∂X represents the unit direction vector pointing towards the target point, indicating

that the direction of Frep4(X) points from the obstacle to the robot.
Due to the influence of the distance factor, as the robot approaches the target point,

the repulsion force from nearby obstacles decreases. This reduction effectively addresses
the problem of the robot being unable to reach the goal when obstacles are nearby during
path planning.

4.3. Set Virtual Target Points to Address the Local Minima Issue

In the artificial potential field method, the total force acting on the robot can be
expressed as the sum of attraction and repulsion forces, as shown in Equation (6). To find
the analytical expression for zero net force, we need to equate the total force to zero. That is

Fsum(X) = Fatt(X) + Frep(X) = 0 (13)

We assumed that the expressions for attraction Fatt(X) can be represented using a
Gaussian function and repulsion forces Frep(X) can be represented using an inverse distance
function, as shown in Equations (14) and (15).

Fatt(X) = katt · e−
(X−Xg)2

2σ2 · (Xg − X) (14)

Frep(X) =

{
krep · 1

ρ(X,Xobs)
· (X−Xobs)

ρ(X,Xobs)
(i f ρ(X, Xobs) < d0)

0 (otherwise)
(15)

where, katt is the gain coefficient for attraction, Xg is the position of the target point, and σ

is the variance of the Gaussian function. krep is the gain coefficient for the repulsion, Xobs
is the current position of the obstacle, ρ(X, Xobs) is the distance between the robot and the
obstacle, and d0 is the safe distance.

Combining Equations (13)–(15), then there is

Katt·e−
(X−Xg)2

2σ2 ·(Xg − X) + krep·
1

ρ(X, Xobs)
· (X − Xobs)

ρ(X, Xobs)
= 0 (16)

This equation represents the balance between attraction and repulsion forces in the
artificial potential field method, which will lead to the robot trap in a local mimima point,
and result in a failure of the path planning. And Equation (16) can be utilized to determine
the position where the robot is in equilibrium.

When the robot becomes trapped in a local minima point, the resulting force acting
on the robot becomes nearly zero, or the robot exhibits small oscillations within a limited
range [38]. The conditions for the robot getting stuck in a local minima are as shown in
Equation (17): { ∣∣∣∣Fatt(i)− Frep(i)

∣∣∣∣≤ ∆ f
||Pi − Pi−2|| ≤ ∆p

(17)

where Fatt(i) and Frep(i) represent the magnitudes of the attraction force and repulsive forces
acting on the robot due to the potential field at step i, respectively. Pi and Pi−2 denote the
robot’s location coordinates at step i and step i − 2, respectively, and ∆f and ∆p are small
positive real numbers.

If the robot, when assuming a certain position, satisfies any condition in Equation (17),
it becomes trapped in a local minima due to a state of balance. Only when this balance
is disrupted can the robot escape from the local minima areas. Changing the direction
angle of either the repulsive or attraction force acting on the robot results in a change in the
direction of the resultant force. This change guides the robot to move in the new direction
of the resultant force, allowing it to escape the local minima area. Therefore, a virtual target
point is placed near the local minima area. The gravitational potential field originating
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from this virtual target point disrupts the robot’s balance state in the local minima area and
determines the robot’s direction.

To calculate the angle φ between the line connecting the target point and the robot’s
current position and the horizontal line, the virtual target point’s location is determined
according to Equation (18).[

Pvirtual_x
Pvirtual_y

]
=

[
x
y

]
+ ρ

(
X, Xg

)[cos(ϕ + angleadd)
sin(ϕ + angleadd)

]
(18)

where Pvirtual_x and Pvirtual_y are the coordinates of the virtual target point, x and y are the
robot’s current position coordinates, ρ(X, Xg) is the distance between the robot’s present
location and the target point, and angleadd is the angle increment. However, in situations
involving multiple obstacles within the robot’s path planning environment, the virtual
target point’s position can be determined using the obstacle connection method to overcome
the influence of local minima, as illustrated in Figure 6.
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Figure 6. Force diagram of robot after virtual target point generation.

Nevertheless, accurately selecting the appropriate angleadd can be challenging, and
an inaccurate choice can prevent the robot from escaping the local minima area when
using the virtual target point method. Therefore, it may require multiple calculations,
significantly increasing the robot’s path planning time and potentially causing the robot to
deviate from the target point or collide with obstacles due to multiple virtual target point
selections. Moreover, when the robot encounters a complex obstacle environment, such
as U-shaped or C-shaped obstacles, traditional methods may fail to plan a viable path. To
address these challenges, this paper introduces a symmetrical dynamic virtual target point
method, which offers adaptable solutions for various obstacle environments. The specific
implementation steps are as follows:

Step 1: Assume that the robot’s detection range forms a circular area with a radius
denoted as R0 (R0 > ρ0). When the robot enters a local minimum area, as determined by
Equation (13), immediately connect a line between the robot’s current position and the
positions of the obstacles within the robot’s detection range. Then, eliminate the positions
and count of obstacles exerted within a distance less than ρ0, as these obstacles exert
repulsive forces on the robot.

Step 2: When the number of obstacles within a distance less than ρ0 is less than 2,
meaning that only a single obstacle affects the robot (as shown in Figure 7), the robot, the
obstacle and the target point are collinear. Draw a circle centered on the obstacle with a
radius denoted as S (S < ρ0), where S represents the minimum safe collision distance from
the obstacle. Draw two tangent lines from the robot’s center to this circle. Since the angle
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between the two tangents and the line connecting the robot and the current obstacle are
equal, either side can be chosen as the direction of movement.
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Assuming that the distance between the robot and the tangent point T is Drob_t, the
virtual target point’s location is determined by extending the tangent line from tangent
point T by a length of Drob_t. The virtual target point generates an attractive force in
the direction of the tangent, disrupting the situation where the resultant force is zero. It
continuously adjusts as the robot escapes and always maintains symmetry with the robot’s
position relative to tangent point T, providing dynamic guidance.

When the robot moves beyond the obstacle’s influence area or no obstacles block the
path between the robot and the virtual target point, the original target point is once again
selected as the virtual target point.

Step 3: When the number of obstacles within a distance less than ρ0 is greater than
or equal to two, multiple obstacles exert repulsive forces on the robot. In such cases, it
can be concluded that the robot is trapped. Without external guidance, the robot will
oscillate continuously and remain trapped. Therefore, an obstacle array Xobs is established,
connecting all obstacles to the robot and sorting them based on the angle between the
connection and the x-axis. After sorting, the obstacle closest to the robot becomes the Xom
benchmark. Obstacles on both sides of the robot are searched and assessed. If the distance
to adjacent obstacles is less than 2ρ0, indicating that the robot cannot pass through the
obstacle group, these obstacles are added to Xobs. The search continues until the distance
from the first member Xos or the last member Xow in Xobs is greater than 2ρ0, at which point
the search stops on that side. At this stage, the obstacles in the array Xobs are those that
create the minimum trap for the robot. Subsequently, the members in Xobs are constantly
updated. Whenever the robot enters the influence range of a new obstacle, it determines
whether to add it to the end of Xobs, based on the aforementioned rules. The original target
point is then obscured, and the virtual target point is set. The method mirrors that of
Step 2, creating two tangents from the robot to the circle with a minimum safe anti-collision
distance between the robot and Xow, and selecting the tangent point T direction to ensure it
is free of obstacles. The symmetry position Xxg of the robot in the T direction, which is the
position of the virtual target point, is determined. Xxg also adjusts dynamically with the
robot’s motion, and its attractive force guides the robot out of the local minima trap until
the robot leaves its influence area or no obstacles obstruct the path between the robot and
the virtual target point. At this point, the initially set origin of the path planning becomes
the virtual target point once again.

The flowchart illustrating the symmetric dynamic virtual target method for escaping
local minima is shown in Figure 8. By introducing the symmetrical dynamic virtual target
method to the IAPF approach, the robot can select the virtual target position with greater
accuracy. It can also choose virtual target points in different modes, depending on the
obstacle environment, greatly enhancing the algorithm’s flexibility.
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4.4. Introduce Velocity Factor and Acceleration Factor

To enhance the robot’s real-time tracking of dynamic target points, it is imperative to
consider the relative velocity and relative acceleration between the robot and the dynamic
target point [39,40]. Consequently, the gravitational PFF is refined in the presence of
dynamic target points:

Uatt(X, V, a) = Uatt(X) + Uatt(V) + Uatt(a) (19)

Uatt(V) =
1
2

kav|V − Vg|2 (20)

Uatt(a) =
1
2

kaa|a − ag|2 (21)

where kav and kaa denote positive proportional gain factors of the gravitational potential
field between the robot and the relative velocity and relative acceleration of the dynamic
target point, respectively, Vg = [vgx vgy]T and ag = [agx agy]T represent the dynamic target
point’s velocity and acceleration vectors, respectively, V = [vx vy]T and a = [ax ay]T represent
the robot’s velocity and acceleration vectors, respectively.

Combining Equations (9) and (10) with Equations (19)–(21), the improved gravitational
function is expressed as follows:

Fatt(X, V, a) = −∇Uatt(X, V, a) =



−kax

∣∣∣X − Xg

∣∣∣+ 1
2 kav

∣∣∣V − Vg

∣∣∣+ 1
2 kaa

∣∣∣a − ag

∣∣∣,∣∣X − Xg
∣∣≤ d0 and

∣∣Vg
∣∣ ̸= 0

−kax
∣∣X − Xg

∣∣, ∣∣X − Xg
∣∣≤ d0 and

∣∣Vg
∣∣= 0

−d0kax +
1
2 kav

∣∣∣V − Vg

∣∣∣+ 1
2 kaa

∣∣∣a − ag

∣∣∣,∣∣X − Xg
∣∣> d0 and

∣∣Vg
∣∣ ̸= 0

−d0kax,
∣∣X − Xg

∣∣> d0 and
∣∣Vg

∣∣= 0

(22)

where |X − Xg| = ρ(X, Xg).
Furthermore, enhancements are made to the repulsion PFF, leading to the following

formulations:
Urep(X, V, a) = Urep(X) + Urep(V) + Urep(a) (23)
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Urep(V) =
1
2

krv|V − Vobs| (24)

Urep(a) =
1
2

kra|a − aobs| (25)

where krv and kra represent the positive proportional gain factors of the repulsion potential
field corresponding to the relative velocity and relative acceleration between the robot
and the dynamic obstacle, respectively. Notably, Vobs = [vobsx vobsy]T and aobs = [aobsx aobsy]T

denote the velocity and acceleration vectors of the dynamic obstacle.
By combining Equations (11) and (12) with Equations (23)–(25), the improved repulsion

function can be derived:

Frep(X, V, a) = −∇Urep(X, V, a) =


Frep3(X) + Frep4(X) + 1

2 krvEro +
1
2 kraEro,

|X − Xobs|≤ ρ0 and|Vobs|̸= 0
Frep3(X) + Frep4(X),

|X − Xobs|≤ ρ0 and|Vobs|= 0
0, |X − Xobs|≤ ρ0

(26)

where, |X − Xobs| = ρ(X, Xobs), and Ero represent the unit direction vector pointing from
the robot to the dynamic obstacle.

5. Simulation Analysis of the IAPF Algorithm

To evaluate the effectiveness of the IAPF method presented in this paper, we establish
a local path planning environment in MATLAB 2020a for comparison with the classic APF
method. Finally, we perform a quantitative analysis of simulation data. The key parame-
ters used in the simulation are primarily derived from test and simulation environment
considerations, with the main parameter settings being detailed in Table 1.

Table 1. Main parameter settings.

Main Parameters Value

Influence area of obstacle ρ0 (m) 2
Coefficient kax, kav, kaa 200
Coefficient krx, krv, kra 1000

Distance threshold d0 (m) 2
positive exponent n 2

Robot detection range R0 (m) 2.5
Minimum safe collision distance S (m) 1

Robot body radius r (m) 0.5
Robot velocity Vrob (m/s) 0.2

Dynamic goal velocity Vgd (m/s) 0.1
Dynamic obstacle velocity Vod (m/s) 0.1

∆f 0.02
∆P 0.01

According to the parameters in Table 1, the simulation results for collision, goal
unreachability, local minima, and dynamic planning are compared and analyzed, using
both the classic APF method and the proposed IAPF method.

5.1. Simulation of Collision Problems

In addressing the collision problem, we present the distance threshold, d0, which
effectively reduces the likelihood of collision resulting from excessive gravitational forces
generated by obstacles when the robot is distant from the target point. The simulation
results are depicted in Figures 8 and 9.
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Figure 9. Simulation of classic APF collision problem. Figure 9. Simulation of classic APF collision problem.

As shown in Figure 9, when the target point is far away, the classic APF algorithm
enters the minimum safe collision range of the obstacle when encountering a nearby
obstacle, due to the significant gravitational pull. Although the target point is eventually
reached in the simulation environment, it collides with the obstacle in the real environment.
In contrast, due to the presence of the distance threshold, the IAPF method circumvents the
minimum collision range of obstacles, as demonstrated in Figure 10, effectively preventing
collisions.
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5.2. Simulation of Goal Unreachable Problem

To address the goal unreachability problem, we introduce a distance factor to dynami-
cally adjust the magnitude of the repulsion force, which is based on the distance between
the robot and the target point. The simulation results for the goal unreachability problem
obtained using the APF and IAPF algorithms are illustrated in Figures 11 and 12.
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As depicted in Figure 11, the classic APF method is ineffective in environments where
multiple obstacles are close to the target point. In such cases, the influence of gravity is
significantly less than the repulsion generated by multiple obstacles, rendering the robot
unable to approach the obstacles. In contrast, Figure 12 demonstrates that the IAPF method
can dynamically adjust the repulsion force’s magnitude based on the robot’s distance from
the target point, ultimately enabling the robot to reach its goal and thereby resolving the
goal unreachability issue.

5.3. Simulation of Local Minima Problem

The simulation results for the local minima problem are presented in Figures 13
and 14. In scenarios where the obstacle, target point, and robot are aligned, resulting in
a resultant force of 0 on the robot, it becomes trapped in a local minima, as shown in
Figure 13. Conversely, as demonstrated in Figure 14, the IAPF method overcomes this
issue by generating virtual target points through a symmetrical and dynamic virtual goal
method, effectively addressing the problem of three-point collinearity and escaping local
minima points.
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Figure 14. IAPF method to escape from three-point collinearity.

Complex obstacle environments, such as U-shaped obstacles, often consist of multiple
connected obstacles that form an impassable trap area for robots, making it challenging
to escape. As illustrated in Figure 15, under the classic APF method, the robot becomes
ensnared within a U-shaped obstacle area. Because the repulsion and gravity from multiple
obstacles continually balance each other, the robot experiences oscillations and remains
trapped. In contrast, Figure 16 demonstrates that, by introducing the symmetrical dynamic
virtual goal method, the IAPF method shields the role of the original target point when
the robot is trapped in a local minima area. The dynamically changing symmetrical virtual
target point generates gravitational forces that guide the robot out of the local minima,
enabling it to reach the target point smoothly. The method inherits the advantages of
the artificial potential field approach, overcomes the oscillation problem, and reduces the
probability of falling into local minima. Simulations of robot motion planning were con-
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ducted using MATLAB under different gravitational and repulsive forces, demonstrating
the effectiveness of the proposed approach.
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5.4. Simulation of Dynamic Planning

As depicted in Figures 17 and 18, both the classic APF and the IAPF method prove
effective in pursuing dynamic target points and avoiding dynamic obstacles. However, the
IAPF method, by introducing speed and acceleration factors, offers greater flexibility in
dynamically avoiding obstacles.
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Figure 18. IAPF method to pursue dynamic targets and avoid dynamic obstacles.

A comparison of the data for both algorithms is provided in Table 2, revealing that
the IAPF method enables the robot to pursue the dynamic target point more quickly and
with a shorter path. Table 2 presents quantitative data indicators (including time, path
length, reduction rates of path length, and running time) for analyzing path planning using
the two proposed algorithms. Compared to the classical APF, the IAPF method reduces
the path length by 31.25% and the running time by 29.22%, demonstrating improved path
search efficiency when dealing with dynamic environments.
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Table 2. Comparison of simulation results of two algorithms.

Pursuing Dynamic Goal and Avoiding Dynamic Obstacles

Classic APF Method IAPF Method

time (s) 3.49 2.47
path length (m) 22.40 15.40

path length reduction rate (%) 31.25
Run time reduction rate (%) 29.22

The simulation results suggest that the improved artificial potential field method
exhibits advantages (such as heightened accuracy, flexibility, stability, and energy efficiency)
when addressing collision, unreachable target, local minima, and dynamic planning issues.

(1) Enhanced Path Precision. By introducing distance factors and virtual target points,
the method accurately depicts the spatial relationship between the robot and obstacles,
refining path planning and bolstering its accuracy.

(2) Reduced Local Optima Risks. Setting distance thresholds for the robot and target
point, along with incorporating virtual target points, velocity factors, and acceleration
factors, enhances the robot’s obstacle avoidance capabilities. This enables more effective
obstacle navigation and flexible avoidance of local optima, thereby improving the method’s
global optimization within path planning and increasing the likelihood of identifying the
global optimal path.

(3) Enhanced Robotic Adaptability. The inclusion of distance factors, virtual target
points, velocity factors, and acceleration factors enables the enhanced artificial potential
field method to adapt more flexibly across diverse environments and tasks. This height-
ened adaptability facilitates superior accommodation of complex scenarios and dynamic
environments, ultimately enhancing the robot’s adaptive capabilities.

(4) Reduced Path Length and Time. Through refined path planning and enhanced
obstacle avoidance capabilities, the improved artificial potential field method effectively
generates shorter and more efficient paths. Consequently, operational time and energy
consumption are minimized, prolonging operational duration.

6. Experiment Verification

To validate the correctness of the proposed IAPF path planning method applied to
the motion simulation results of the wheel-foot hybrid parallel-leg walking robot, an
experimental prototype was constructed, as shown in Figure 19. The Stm32f103 serves as
the core processor, and wireless transceiver modules enable communication with the host
computer. The effectiveness of the IAPF method in real-time path planning for the robot
was verified by designing an obstacle-filled environment.
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6.1. Hardware System Construction

The robot path planning algorithm is executed on a computer, serving as the upper
computer control platform for the robot. The computer processes information from laser
radar sensors, ultra-wideband (UWB) positioning devices, and control commands, convert-
ing this information into position and posture changes for the robot. The control signal for
the wheel-foot hybrid parallel-leg walking robot is then calculated through kinematics and
sent to the STM32 main control board, enabling real-time motion control of the robot.

The UWB positioning device uses four base stations as the reference coordinate system
for positioning. It regards the center of these four base stations as the coordinate system’s
origin and takes the tag as a fixed or moving point within this coordinate system. This
device can provide real-time position information relative to the coordinate center. To facili-
tate the measurement of the robot’s actual position during experiments, three positioning
base stations are fixed at the corners of the outdoor experimental obstacle environment,
creating a virtual coordinate environment. Additionally, a label is affixed to the center of the
robot platform to continuously measure the robot’s position coordinates within the obstacle
environment. This information is recorded to assist in real-time algorithm calculations and
viewing of experimental results.

6.2. Establishment of Experimental Environment

The robot’s upper platform measures approximately 1 m × 1 m. As a result, the exper-
imental obstacle environment is configured as a rectangular area measuring 15.5 m × 25 m,
as illustrated in Figure 20.
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Figure 20. Obstacles environment and positioning base station.

Three UWB positioning base stations are strategically placed at three corners of the
obstacle area. Base station A serves as the primary station, and is connected to a PC for real-
time communication with the robot controller. Base stations B and C assist base station A in
creating a two-dimensional positioning environment. In this environment, base station A
serves as the origin, AB forms the X-axis, and AC forms the Y-axis. The coordinate system’s
starting point is established as (10 m, 0 m), while the ending point is set at (5 m, 21 m).
The obstacle environment includes cars and randomly placed commodities. Tag0 is used
for real-time robot positioning and is fixed at the center of the robot’s upper platform, as
depicted in Figure 21.
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Figure 21. Robot in the experiment.

6.3. Experiment Verification Based on IAPF Algorithm

The robot commences from the starting point at coordinates (10 m, 0 m), moving at a
speed of 0.5 m/s. The algorithm’s sampling time is set to 0.1 s, with an obstacle influence
radius of 2 m and a minimum safe collision distance of 1 m. As shown in Figure 22, when
confronted with a static obstacle, the robot effectively changes its path to avoid the obstacle.
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Figure 22. Robot avoids static obstacles. (a) Encounters the static obstacle. (b) Changes the moving
direcction. (c) Avoids the static obstacle.

In order to further verify the dynamic performance of the IAPF algorithm used, Tag1
is placed on a pedestrian with a speed of 0.3 m/s, which moves back and forth along a
fixed path to simulate the impact of dynamic obstacles on the robot. As shown in Figure 23,
when facing a pedestrian obstacle coming from the side, the robot made a turn around in
due time and successfully avoided the moving pedestrians.
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Figure 23. Robot avoids the moving pedestrians. (a) Moves and avoids the obstacles. (b) Encounters a
moving pedestrian. (c) Avoids moving pedestrian.
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To validate the efficacy of the IAPF algorithm in addressing obstacles characterized
by a U-shaped obstacle configuration, a U-shaped obstacle zone is instituted. This zone
is circumscribed by both vertical plates and columns, as depicted in Figure 24a. The
designated target point lies directly behind this U-shaped obstacle region. As illustrated
in Figure 24b, in the absence of a preprocessing obstacle environment mechanism, the
robot becomes ensnared within the confines of the U-shaped obstacle zone. Conversely, as
shown in Figure 24c, by virtue of path planning employing the IAPF algorithm, the robot
adeptly negotiates the U-shaped obstacle terrain and successfully extricates itself from the
U-shaped snare.
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6.4. Analysis of Experiment Results

Real-time data pertaining to obstacles is collected via a two-dimensional (2D) laser
radar bearing the Delta-1A nomenclature. This data is subsequently employed to generate
a 2D discrete dotted obstacle environment image. The compiled obstacle coordinates are
then input into Matlab to produce an illustration of the obstacle environment, as presented
in Figure 25. Throughout the course of the experiment, the UWB positioning devices are
enlisted to gather real-time positional data for Tag 0 and Tag 1. This data is then wirelessly
transmitted to the upper PC. When compared with the obstacle data accrued via the 2D
laser radar, the experimental outcomes for both the classical APF algorithm and the IAPF
algorithm can be derived, as portrayed in Figure 26.
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Figure 26. Obstacle avoidance in experiment. (a) Obstacles environment with robot acquired by 2D
laser radar. (b) Static obstacle avoidance experiment. (c) Dynamic obstacle avoidance experiment.
(d) U-Shaped obstacle area escape experiment.

Figure 26a visually represents the intended trajectory traced by the IAPF algorithm
expounded in this paper, which is denoted by the blue path. The red trajectory signifies
the planned course executed by the classical APF algorithm. The yellow path traces
the trajectory of dynamic obstacles emulating pedestrians. Figure 26b–d correspond to
numerical indices 1, 2, and 3 in Figure 26a. In the context of extensive spatial separation
from the target location, as evinced in Figure 26b, the IAPF algorithm is obviously better
than APF in collision avoidance. Although the path planned by APF algorithm can avoid
dynamic obstacles confronted by the robot (see Figure 26c), it collides with static obstacles,
and the trajectory planned by the IAPF algorithm makes the robot successfully avoid
dynamic and static obstacles. Finally, in the face of U-shaped obstacles, as elucidated in
Figure 26d, the APF algorithm causes the robot to become trapped and unable to escape; in
contrast, the path planned by the IAPF algorithm enables the robot to successfully escape
from the U-shaped area and reach the destination.

The empirical findings conclusively validate the prototype’s ability to effectively
circumvent static obstacles, dynamic obstacles, and U-shaped obstacles. These results, in
conjunction with the simulation outcomes, further underscore the soundness and viability
of the IAPF methodology in the context of collision avoidance, dynamic obstacle evasion,
and extrication from U-shaped obstacle regions.

To further scrutinize the algorithm’s robustness and stability, under the stipulation
of uniform algorithm parameters and consistent starting and ending points within the
experimental arena, we conducted experiments involving 10 distinct obstacle environments.
These environments were fashioned by varying factors such as the quantity, dimensions,
and arrangement of static obstacles, as well as the speed and direction of dynamic obstacles.
We collected data on the robot’s operational time and path length across these 10 scenarios,
as illustrated in Figure 27. The figure distinctly indicates that different configurations of
obstacle environments do exert a discernible influence on the algorithm’s computation time
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and path length outcomes. The 90% success rate in path planning, to a considerable extent,
attests to the enhanced algorithm’s robustness.
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Figure 27. Running time and path length of robots in different obstacle environments.

This research endeavors to enhance the parameters governing gravitational and re-
pulsive forces within the framework of the classical APF algorithm. Nonetheless, it is
imperative to acknowledge that the IAPF algorithm, by virtue of its intrinsic nature as a
local path planning algorithm, inherits certain limitations similar to those encountered
in conventional artificial potential field methods. Particularly when faced with intricate
environmental contexts, instances of path planning failures may ensue.

7. Conclusions and Future Works

The present study introduces the design of a wheel-foot hybrid parallel-leg walking
robot. In response to the inherent challenges associated with the classic APF methodology,
an array of ameliorative approaches are posited for the robot’s path planning. The IAPF
methodology is exhaustively simulated and scrutinized, affording a basis for comparative
analysis vis-à-vis the classical APF methodology. The simulation outcomes substantiate
the capacity of the IAPF methodology to mitigate issues concerning collision avoidance,
unreachable targets, local minima, and dynamic planning insufficiencies. In tandem with
these computational simulations, empirical experiments are conducted, wherein measured
data is fitted to theoretical predictions, further underscoring the soundness and feasibility
of the proposed theoretical model.

However, it is important to recognize that the IAPF algorithm may exhibit limited
planning capabilities when confronted with more intricate obstacle scenarios. Consequently,
future research endeavors may explore the combination of intelligent algorithms, such as
ant colony algorithms, particle swarm algorithms, A* algorithms, and the like, to engender
a hybrid algorithmic framework. Moreover, efforts may be directed toward enhancing
the robot’s real-time path planning capabilities in complex environments by harnessing
SLAM-based terrain construction technology.
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