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Abstract: Cooperative perception in the field of connected autonomous vehicles (CAVs) aims to over-
come the inherent limitations of single-vehicle perception systems, including long-range occlusion,
low resolution, and susceptibility to weather interference. In this regard, we propose a high-precision
3D object detection V2V cooperative perception algorithm. The algorithm utilizes a voxel grid-based
statistical filter to effectively denoise point cloud data to obtain clean and reliable data. In addition,
we design a feature extraction network based on the fusion of voxels and PointPillars and encode it
to generate BEV features, which solves the spatial feature interaction problem lacking in the Point-
Pillars approach and enhances the semantic information of the extracted features. A maximum
pooling technique is used to reduce the dimensionality and generate pseudoimages, thereby skipping
complex 3D convolutional computation. To facilitate effective feature fusion, we design a feature
level-based crossvehicle feature fusion module. Experimental validation is conducted using the
OPV2V dataset to assess vehicle coperception performance and compare it with existing mainstream
coperception algorithms. Ablation experiments are also carried out to confirm the contributions of
this approach. Experimental results show that our architecture achieves lightweighting with a higher
average precision (AP) than other existing models.

Keywords: cooperative perception; 3D object detection; feature extraction; crossvehicle feature fusion

1. Introduction

The quest for accurate collaborative sensing solutions arises from the critical need
to overcome the limitations encountered by single vehicle sensing systems, including
challenges such as long-range occlusion and sparse sensor observations. In recent years,
remarkable strides have been made in the areas of robotic sensing technologies and machine
learning methods [1–3]. These advancements have notably bolstered the reliability of
perception systems, with instances such as LiDAR point clouds [4–7] and the integration of
multisensor data [8–10], thus showcasing exceptional performance within the domain of
vehicle perception.

In the ever-evolving landscape of sensing technologies, high-precision sensing al-
gorithms, despite recent advances, continue to grapple with formidable challenges [11].
LiDAR technology, known for its attributes such as light independence, precise spatial infor-
mation, and resilience to occlusion [12,13], has become integral for autonomous navigation
vehicles, thereby relying on its point cloud scanning to perceive their surroundings.

However, the accuracy of light detection and radar ranging, which are commonly
used for acquiring the point cloud data of a scene containing the target, is often influenced
by various factors. These factors include the platform and sensor accuracy, environmental
interference, the reflective properties of the target, and the complexity of the target scene.
Consequently, the accuracy of downstream vehicle perception algorithm models is reduced.
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Therefore, filtering and denoising the point cloud data (PCD) before feature extraction
becomes an essential and crucial step in vehicle perception [14–16].

Furthermore, the development of multivehicle cooperative sensing algorithms poses
significant challenges, particularly in the extraction of semantic features from sparse and
voluminous unstructured data. Additionally, effectively processing, sharing, and fusing
the feature information obtained from multivehicle sensing is a key issue in cooperative
driving. Addressing these challenges is of paramount importance in the realization of
a dependable vehicle cooperative system. Hence, in the realm of point cloud denoising,
numerous filters have been devised by researchers to eliminate noisy data. These include
the statistical filter [17], voxel filter [18], and radius filter [19]. However, these filters suffer
from severe information loss, high computational complexity, and parameter dependence.
In addition, existing 3D target detection algorithms mainly use mesh-based point cloud
feature extraction methods, which can be broadly categorized into 3D voxel-based and
2D column-based methods. These methodologies adopt the traditional “encoder–neck”
detection architecture [20–28]. Voxel-based methods [20,21,25,27,28] commonly involve
segmenting the input point cloud into a regular 3D voxel mesh and establishing a geometric
representation across various levels through an encoder utilizing sparse 3D convolutions.
Following the encoder, the integration of multiscale features occurs through the neck
module of a conventional 2D convolutional neural network (CNN) prior to the input
entering the detection head. Conversely, voxel-based methods [22–24,26] involve the
transformation of a 3D point cloud into a 2D pseudoimage within the BEV (bird’s-eye view)
plane. Subsequently, these methods construct the neck network directly on a 2D CNN-based
feature pyramid network (FPN) to facilitate the fusion of multiscale features. While voxel-
based methods demonstrate strong detection performance, the challenge lies in effectively
aggregating multiscale features with varying resolutions within the BEV space, which
is primarily due to the constraints posed by 3D sparse convolutions within the encoder.
On the contrary, the utilization of lightweight encoders for column feature learning in
voxel-based methods often leads to reduced accuracy compared to voxel-based approaches.
Moreover, the detection performance is further constrained by the combination of small-
sized pseudoimages and the substantial size of the initial columns. These limitations hinder
the overall effectiveness of the detection process. Against the aforementioned analysis,
this paper takes point cloud data as the starting point and designs a point cloud filtering
method, thereby aiming to improve the accuracy and reliability of the point cloud data.
Meanwhile, we analyze the voxel and PointPillars methods in depth to solve the problem
of lack of spatial feature interaction in the PointPillars-based feature extraction method.
In addition, we have built a crossvehicle feature fusion module to capture the spatial
relationships between features, which enables high-accuracy cooperative perception for 3D
objective detection. Our main contributions are summarized as follows:

1. A voxel grid-based statistical filter (voxel grid filter) is introduced in the preprocessing
stage to improve the cleanness and reliability of the PCD.

2. We present a feature extraction network structure for voxel point column fusion
to solve the problem of the lack of spatial feature interaction in the point column-
based feature extraction method, and we use maximum pooling to replace the feature
splicing operation in the voxel-based method to realize the dimensionality reduction
of the features and to generate a pseudoimage for the subsequent processing of
pseudoimage features using a 2D CNN.

3. We establish a cooperative perceptual feature fusion module to construct a feature
compression and feature sharing network, and we introduce residual blocks to reduce
the loss of information during network transmission. In addition, based on max and
mean dimensionality reduction operators, we propose an adaptive feature fusion
module to better capture spatial relationships between features, thus improving the
accuracy of the model.

Our HP3D-V2V algorithm model was trained and validated on the OPV2V dataset in
the default CARLA Towns and Culver City scenarios. First, we validated the superiority of
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laser radar point cloud collaborative perception over single-vehicle perception. Secondly,
our algorithm achieved a higher AP compared to mainstream collaborative perception
models. Finally, we conducted ablation experiments on the improved model proposed in
this paper to validate its effectiveness.

The structure of this paper is organized as follows. In Section 2, we present a com-
prehensive analysis of the fusion strategy for cooperative perception. Section 3 describes
our approach, including point cloud denoising, feature extraction, and fusion techniques.
In Section 4, we provide insights into the dataset used, describe the experimental implemen-
tation details, and compare the results of our proposed method with the baseline approach.
Finally, this paper is concluded in Section 5.

2. Related Works

The utilization of a point cloud vehicle-to-vehicle collaborative sensing pipeline in-
volves encoding the raw point cloud data and subsequently decoding the features generated
by the encoder to obtain the final sensing result. Existing collaborative approaches can be
broadly categorized into three main types.

2.1. Early Collaboration

Early collaboration occurs in the input space where raw perceptual data is shared
among vehicles. This approach involves aggregating the perceptual measurements from
all vehicles to contribute to a comprehensive perspective. Consequently, each vehicle can
process and perceive its surroundings based on a holistic view, as depicted in Figure 1a.
In [29], Arnold proposed a cooperative 3D object detection approach using single-mode
sensors, which integrates information from spatially diverse sensors distributed throughout
the environment to alleviate the limitations of individual sensors. Meanwhile, Ref. [30]
estimated the uncertainty of cooperative object detection for CAVs and introduced a
novel method called Double-M quantization, which is capable of capturing epistemic
uncertainties. Although early collaborative models have been shown to effectively address
occlusion and limitations in single-vehicle perception, the sharing of raw sensor data
requires extensive communication and is susceptible to network congestion due to large
data payloads, thus limiting its practical applicability in many scenarios.

Figure 1. Diagram of the three types of collaboration strategies. (a) Precoordinated vehicle feature
fusion process. (b) Midphase feature fusion process of the cooperative vehicle. (c) Late feature fusion
process of the cooperative vehicle.
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2.2. Intermediate Collaboration

Intermediate collaboration takes place in the intermediate feature space, where each
individual agent transmits intermediate features generated based on predictive models.
These features are then fused, and each agent decodes the fused features to generate per-
ceptual results, as illustrated in Figure 1b. In essence, the representative information can be
compressed into these features. Intermediate collaboration offers a more efficient commu-
nication bandwidth compared to early collaboration, and it has been shown to enhance
perception compared to late collaboration. F-Cooper [31] proposed a feature-level fusion
scheme that utilizes the maximum value in overlapping regions to represent intermediate
features. The makers of Opv2v [32] constructed a comprehensive benchmarking framework
and introduced a novel focused intermediate fusion pipeline for aggregating information
from multiple connected vehicles. The makers of V2VNet [33] employed graph neural
networks to aggregate shared neural features for joint detection and prediction. The makers
of V2X-ViT [34] explored the use of window attention and heterogeneous self-attention to
achieve vehicle-to-everything cooperation in visual transformers, thus designing a hetero-
geneous multiagent attention module (HMSA) and a multiscale window attention module
(MSwin) for heterogeneous V2X perception. The makers of V2VFormer [35] adopted a
transformer-based collaborative approach that dynamically performs semantic interac-
tion based on positional correlation, thus serving as a lightweight plug-and-play module.
The makers of CORE [36] enabled efficient reconstruction of observations through a com-
pressor, a lightweight attentional collaboration component, and a reconstruction module,
thereby providing clear and effective oversight for improving the efficiency of percep-
tion tasks. However, the intermediate cooperative perception approach faces two major
challenges. Firstly, it involves selecting the most beneficial and compact features from
the original measurements for transmission. Secondly, it aims to maximize the fusion of
features from other vehicles to enhance the perceptual capabilities of each vehicle.

2.3. Late Collaboration

The postcollaborative approach, which involves sending detection outputs and fus-
ing received suggestions into consistent predictions, operates in the output space, such
as bounding boxes in 3D target detection. This enables the fusion of perceptual results
generated by individual agents, as depicted in Figure 1c. The makers of UMC [37] utilized
multiresolution technology to enhance the communication, collaboration, and reconstruc-
tion processes, thereby incorporating a novel trainable multiresolution and selective region
mechanism in communication and integrating multiresolution collaborative features in
reconstruction. In addition, Ref. [38] investigated the temporal and spatial alignment of
shared detection objects, thereby proposing to utilize nonpredictive sender states for trans-
formations in order to ignore the motion compensation of the sender. However, the late
collaboration approach has certain limitations. Firstly, it is highly sensitive to the localiza-
tion errors of the agent, which can arise from incomplete local observations and result in
significant estimation errors and noise. Secondly, the late collaboration approach heavily
relies on the sensor data of a single vehicle and functions optimally only when all agents
share their sensing results, thus limiting its direct applicability.

3. HP3D-V2V Algorithm

This paper proposes a high-precision 3D target detection algorithm for vehicle-to-
vehicle cooperative perception, thus building upon the OPV2V framework, and the overall
structure is shown in Figure 2. The algorithm processes point cloud data through six steps:

1. Filtering the input point cloud data to enhance its quality.
2. Utilizing voxel column fusion to perform feature coding on the filtered point cloud,

thus resulting in a pseudoimage representation known as the pillar feature net-
work (PFN).

3. Extracting multiscale features from the PFN using a feature pyramid network (FPN),
thereby enabling the extraction of intermediate features.
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4. Performing intervehicle data sharing, where the intermediate feature map of the
cooperative autonomous cehicle (CAV) is projected onto the self-vehicle coordinates.

5. Conducting intervehicle feature fusion to generate a combined feature map that
integrates information from multiple vehicles.

6. Performing 3D object detection to output a bird’s-eye view (BEV) representation of
the detected 3D targets.

Figure 2. Proposed algorithm architecture for high-precision 3D target detection vehicle-to-vehicle
cooperative perception.

3.1. Point Cloud Denoising

Given the complexity of the environment in vehicle perception tasks, LiDAR point
cloud data (PCD) usually has a large amount of nonvehicle noises, such as ground noise,
wall point noise, and sensor noise. To effectively eliminate these noises, this paper proposes
a voxel grid-based statistical filter scheme. The specific steps are as follows: First, the origi-
nal point cloud data are voxelized, and a KD tree is constructed for each voxel to improve
the efficiency of the nearest neighbor search. Grid-based principal component analysis
(GPCA) is then employed to compute normal vectors, which serve as salient features.
An unsupervised method is utilized for the rough segmentation of noise based on these
computed normal vectors. To further enhance the denoising effect, this paper introduces
a k-nearest neighbor (KNN)-based correction scheme. This scheme determines whether
each point should be retained by calculating the average distance to its k-nearest neighbors
and comparing it with a preset threshold. Figure 3 illustrates this process. By employ-
ing these techniques, the proposed method effectively addresses the issue of nonvehicle
noises in LiDAR point cloud data, thereby leading to improved denoising results. Firstly,
the three-bit point cloud information is divided into an equally spaced voxel grid, and a
KD tree is built for each voxel to facilitate the KNN search. Assume that the input point
cloud data are S ∈ Rn×3, which contain three-dimensional space with ranges D, H, and W,
along the Z, Y, and X axes, respectively. Accordingly, each voxel size is defined as vD, vH ,
and vW , and the dimensions of the 3D voxel grid are obtained as D′ = D/vD, H′ = H/vH ,
and W ′ = W/vW , respectively.

Figure 3. 3D LiDAR point cloud denoising flow chart.
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Secondly, the PCD are downscaled using GPCA. The covariance matrix of the input
point cloud data S is decomposed using singular value decomposition (SVD) to obtain
the corresponding feature vectors. The first two feature vectors are chosen to form the
dimension reduction matrix for input S.

Sq = S∆T . (1)

The dimension reduction matrix ∆T ∈ R3×2 transforms the 3D point set S into the
2D point set Sq = xi, yi, i = 1, ..., n. After dimension reduction, the obtained 2D data are
meshed with l meshes. The resolutions along the x and y directions are denoted by bx and
by, respectively. {

bx = xmax−xmin
l

by = ymax−ymin
l

(2)

{
hxi = round((xi − xmin)/bx)
hyi = round((yi − ymin)/by)

(3)

where each point has a code (hxi, hyi) restricted to the range 1 to l as follows:

h =

{
1, h = 0
l, h > l

(4)

The number of points (i, j) projected onto the grid using GPCA is denoted by kij.
To partition the point cloud into two parts, a threshold parameter kδ is defined as in the
following equation:

xij ∈
{

S f , kij < kδ

Sw, kij ≥ kδ
(5)

where xij denotes the points (i, j) in the grid, S f is the set of vehicle information points
containing ground noise and sensor noise, and Sw is the set of wall point noise points,
mainly defined for vertical structures such as trees, walls, and obstacles. S f is used as an
input to the subsequent algorithms, which utilize an unsupervised approach to coarsely
segment the point cloud based on the computed normal vectors.

To efficiently extract feature information from the point cloud, we first construct the
KD tree of S f to locate the K nearest neighbors Pi for each point in the tree. Next, we
compute the minimum sum of distances between a plane and its nearest neighbors and
extract the normal vector of the plane as the feature for the corresponding point. By utilizing
PCA, the normal vector of the PCD can be swiftly derived as follows:

For each of the K sets of nearest neighbors, the mean and deviation errors are computed.

µj =
1
k

k

∑
j=1

xj (6)

x̃j = xj − µj (7)

where µj represents the mean of the nearest neighbor, while xj denotes the difference in
distance between the point and the mean µj. The corresponding deviation matrix C is
defined as follows:

C = [x̃1, x̃2, ..., x̃k] (8)

An SVD decomposition of the CCT will be obtained as follows:

UΣVT = CCT (9)

The normal vector of the corresponding point vi is determined by the eigenvector
associated with the smallest eigenvalue in U. Employing an unsupervised approach,
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the point cloud is roughly segmented into vehicular and nonvehicular regions based on the
computed normal vector.

Given that the point set S f may contain ground noise and sensor noise, the thresh-
old angle between normal vectors serves as a critical metric for segmentation denoising.
The primary steps for denoising S f are outlined as follows. Begin by selecting a random
point vi from the initial dataset Ω. Then, compare the angle between the normal vectors of
vi and all other points vj as follows:

θ =
vi · vj

‖vi‖ ×
∥∥vj

∥∥ (10)

Specify a threshold δ. If the angle of a vj is less than δ, classify vj as belonging to the
same category as vi. Utilize the remaining points as the updated initial dataset Ω, thereby
iterating this process until all noise points are successfully eliminated.

The described process is highly effective, thus utilizing the inclusion angle of the
normal vector as a key indicator. However, in complex traffic scenarios, this approach may
introduce errors. To minimize such errors, a further correction method based on k-nearest
neighbors (KNN) is employed. For each point Pi in the point cloud data S f , the proximity
of each point in S f is evaluated by calculating its average distance to its nearest neighbor
using the KNN method, which can be expressed as follows:

AvgDist(i) =
1
K ∑K

j=1 Dist(Pi, Pj) (11)

where AvgDist(i) denotes the average distance between the ith point and its K nearest
neighbors, Pi denotes the coordinates of the ith point, and Dist(Pi, Pj) denotes the Euclidean
distance between points Pi and its nearest neighbor Pj.

The calculated average distance, denoted as AvgDist, is then compared to a predefined
threshold. If AvgDist is found to be below the threshold, the corresponding point is
identified as a noise point and should be filtered out. Conversely, if AvgDist exceeds
the threshold, the point is considered to be valid and is retained in the denoised point
cloud. By implementing these steps, the proposed method effectively removes noise
from the LiDAR point cloud, thereby leading to improved accuracy and reliability in
vehicle perception.

3.2. Feature Learning Network

To address challenges related to occlusion and scale variation, bird’s-eye view (BEV)
methods have gained popularity for 3D object detection. Two commonly employed tech-
niques for projecting the point cloud onto the BEV plane are voxelization and pillarization.
The voxelization method involves extracting features through 3D convolution across the
height (H), width (W), and depth (D) dimensions, with D representing the height dimen-
sion and C denoting the feature channel. Following downsampling, the resulting features
are reshaped into BEV features of size (H′, W ′, D′ × C′). This process allows for capturing
volumetric information and maintaining feature resolution across all dimensions.

While voxelization methods excel at preserving fine-grained features, they often rely
on computationally intensive 3D convolutions. On the other hand, pillar methods [39] offer
higher computational efficiency by simplifying the point cloud feature extraction process.
However, they suffer from information loss in the height dimension. When neighboring
points are assigned to different columns in 3D space, these points only contribute to the
feature extraction within their respective columns. As a result, the feature correlation
between these points is overlooked, which hampers the extraction of local features from
the point cloud. To address these issues, we construct voxel pillars on voxel feature maps
and encode them to generate BEV features, thereby addressing the issue of spatial feature
interaction lacking in PointPillars [22] methods and enhancing the semantic information
of extracted features. Additionally, we employ a max pooling instead of the feature
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concatenation operations used in VoxelNet [28], thus resulting in more compact BEV
feature maps and avoiding two-dimensional convolution operations on invalid feature
channels. The specific improvements are illustrated in Figure 4, which provides a visual
representation of the changes made to enhance the feature extraction process.

Figure 4. Comparison of feature extraction strategies.

First, the point cloud is voxelized, and the 3D index of each point is calculated to con-
vert the point level features to voxel level features with dimensions (H, W, D, C). The voxel
level features are extracted using a voxel feature encoding (VFE) module. This module con-
sists of fully connected layers, maximum pooling, and point-by-point splicing operations;
the details are shown in Figure 5. The input point cloud is converted into voxel-level fea-
tures by applying multiple VFE modules and performing element-level maximum pooling
operations. In addition, voxels of different sizes can be used as input and fed into the VFE
modules to obtain pseudoimage features of different sizes.

The features are extracted by the VFE module to obtain a tensor of dimension (H′, W ′, D′, C′).
Then, column construction is performed on the output voxel feature map, and the voxel
features within the column are encoded and pooled by combining two dimensions (D× C)
for the scattering operation to obtain a tensor with the feature volume of (H′, W ′, D′ × C′),
where D′ × C′ denotes the number of feature channels after dimensionality reduction. Fi-
nally, the 3D features after the pillar are reorganized through the Scatter module used in the
literature [22] and assigned to the corresponding pseudoimage pixel positions according
to their spatial locations to form a pseudoimage in the form of (H′, W ′, D′ × C′′), which is
done in order to avoid the subsequent computation of complex 3D convolution.

By integrating the advantages of voxelization and pillarization, our novel approach
seeks to overcome the drawbacks associated with each method individually. This hybrid
strategy enables a more effective transformation of point clouds into BEV features, thus
facilitating improved object detection and localization in 3D perception tasks.

Figure 5. Structure of the voxel feature extraction network.
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3.3. Backbone

In this paper, a feature pyramid network based on standard convolutional and trans-
posed convolutional layers is proposed for the “near-dense and far-sparse” characteristics
of vehicle LiDAR point cloud data, as shown in Figure 6. The backbone of the network
consists of three key components: a top-down network, a transposed convolutional net-
work that performs upsampling, and a feature aggregation network with different layers.
The top-down network learns features at a smaller resolution, thus passing information
through a top-down path for more global features. The transposed convolutional network
performs an upsampling operation to restore the feature map size to the original size.
A different layers feature aggregation network is used to fuse features from different layers
to obtain a more global and semantic feature representation.

Figure 6. Feature pyramid backbone network with multibranch target detection head structure.

We opt for the direct concatenation method to aggregate feature maps from different
layers based on several considerations. Firstly, this approach maintains information in-
tegrity between feature maps of varying layers, thereby mitigating information loss and
enhancing feature expression capability. Secondly, the direct concatenation method boasts
low computational complexity, thereby requiring no additional computational operations
and enhancing both the training and inference speeds of the network. Lastly, this method
simplifies the network structure, thereby reducing complexity and the risk of overfitting.

Convolutional operations in a network can be described by a series of blocks, Block(S, L, F),
each consisting of multiple 3× 3 2D convolutional layers with the same number of output
channels. Specifically, each block consists of L 3× 3 convolutional layers with F output
channels, and each layer is appended with BatchNorm normalization and a ReLU activa-
tion function after the convolution operation. The size of the input pseudoimage can be
varied by adjusting parameters such as the step size S, padding, and convolution kernel
size. The final output features are the concatenation of all the features from different step
sizes. Compared with upsampling methods such as bilinear interpolation and bicubic
interpolation, the convolution kernel parameters of transposed convolution can be updated
and adjusted using backpropagation during the training phase of the model, thus making
the sampling parameters more reasonable.

3.4. Multivehicle Information Fusion Pipeline

In this paper, we propose an intermediate fusion pipeline for the problems of prefusion
bandwidth consumption, postfusion localization error sensitivity, and information inter-
action delay in vehicle-to-vehicle cooperative sensing, as shown in Figure 2. The method
aims to effectively control bandwidth consumption and capture the interactions between
the features of the neighboring connected vehicles in order to improve the sensing accuracy,
and the core modules are as follows.
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3.4.1. Data Sharing and Feature Extraction

In this module, each cooperative autonomous vehicle (CAV) broadcasts its own relative
attitude and external information to construct a spatial directed graph, where each node
represents a cooperative autonomous vehicle (CAV) within the communication range,
and the edges denote the communication channels between the nodes. Subsequently,
each CAV projects its own point cloud data onto the autonomous (Ego) vehicle’s LiDAR
coordinate system and performs feature extraction based on the projected point cloud data.
By designing the feature extraction in Section 3.2, the CAV is able to extract distinguishable
and information-rich features from the point cloud data.

3.4.2. Feature Compression and Sharing

We introduce an encoder–decoder architecture tailored for the compression and de-
compression of shared feature information. During the compression stage, we employ
the variational image compression algorithm, as proposed by Ball et al. [40], to efficiently
compress features. Using a convolutional network, we compress the middle layer feature
representation and subsequently apply quantization and lossless encoding techniques by
utilizing entropy coding. In the decompression phase, the compressed information under-
goes decoding via multiple inverse convolutional layers [41]. This process reconstructs
the original feature representation, which is then transmitted to the feature aggregation
module. Consequently, our approach minimizes communication overhead while ensuring
efficient feature transfer. This facilitates the provision of accurate and informative features
to each vehicle, thereby enhancing perception and decision-making capabilities.

3.4.3. Crossvehicle Feature Fusion (CVFF)

The CVFF module integrates compressed features from various vehicles to derive
global perceptual information. To fuse feature maps, commonly employed intuitive di-
mensionality reduction operators such as max [31] or mean are utilized. These operators,
involving max pooling and average pooling operations on the channel axes, respectively,
generate fused feature maps denoted as Ff usion ∈ R1×C×H×W . In this paper, we amalga-
mated the two methods to flexibly utilize the spatial features, as depicted in Figure 7. This
method executes adaptive feature fusion based on the spatial features derived from both
maximum pooling and average pooling. Initially, the input feature map F ∈ Rn×C×H×W

is decomposed to produce Fmax ∈ R1×C×H×W and Favg ∈ R1×C×H×W , thus representing
the outcomes of maximum pooling and average pooling, respectively. These two feature
maps are concatenated to form a 4D tensor Fspatial ∈ R2×C×H×W , thereby encapsulating
both types of spatial information from the original concatenated intermediate feature maps.
Subsequently, a 3D convolution with a ReLU activation function is employed to selectively
downscale the features, thereby yielding Ff usion ∈ R2×C×H×W . This spatially adaptive
feature fusion approach facilitates dynamic utilization of the spatial features based on the
specific task, thus downsizing them while preserving key information. Consequently, this
methodology better captures the spatial relationships between features.

Figure 7. Crossvehicle feature fusion networks for intermediate feature.



Sensors 2024, 24, 2170 11 of 18

3.5. Loss Functions

Similar to other point column-based approaches in the literature, the proposed 3D
target detection network utilizes the same localization loss function as proposed in [28],
thereby using the SmoothL1 function [42] to compute the position loss as follows:

Lloc =
Na

∑
i

Lreg(δi, ti) (12)

Lreg(δi, ti) = ∑
j∈{x,y,z,l,w,h}

Lsm(δij − tij)

+ ∑
j∈{θ}

Lsm(sin(δij − tij))
(13)

Lsm(x) =
{

0.5x2, i f |x| < 1,
|x| − 0.5, x < −1∪ x > 1

(14)

where Na is a constant representing the total number of anchor frames, and δiand ti are
the predicted and true values of the vehicle target, respectively, both of which include
seven dimensions (x, y, z, w, l, h, θ). For the categorization branch of the detection output,
focus loss is used to deal with the unbalanced target category loss of positive and negative
samples, as in shown in the following equation:

Lclc = −αa(1− pa)
γ log(pa) (15)

Pa is the category probability: the closer Pa is to 1 means the higher the probability that
the current target is a vehicle; the hyperparameter α is a balancing factor used to balance the
proportion of positive and negative samples. This paper sets α to 0.25; γ is the difficult and
easy samples adjustment factor, which is designed to make the model pay more attention
to difficult-to-classify samples and wrongly classified samples, and this paper sets the γ
value to 2.

In summary, the total loss is expressed as follows:

Ltotal =
1

Npos
(β1Lloc + β2Lclc) (16)

where Npos denotes the number of positive anchor frames, and the loss weights β1 and β2
are 1.0 and 2.0, respectively.

4. Experiments

Our proposed algorithm was evaluated using the OpenV2V (ICRA2022) public dataset.
The dataset setup and partitioning details are explained in Section 4.1, while the imple-
mentation specifics and evaluation metrics are outlined in Section 4.2. To assess the
performance of our algorithm, in Section 4.3, our proposed HP3D-V2V algorithm compares
the benchmark model with the mainstream algorithm. Additionally, we conducted ablation
experiments in Section 4.4 to systematically evaluate the effectiveness of the proposed
HP3D-V2V algorithm presented in this paper.

4.1. Dataset and Split

OPV2V stands as the premier large-scale open dataset designed for V2V (vehicle-
to-vehicle) communication awareness [32]. This dataset comprises aggregated sensor
data gathered from numerous interconnected self-driving vehicles, thereby encompassing
73 scenarios, six road types, and nine cities. The data collection was executed through
the utilization of OpenCDA’s cooperative driving cosimulation framework [43] and the
CARLA simulator [44]. Each scene within the dataset spans a duration of 16.4 s and
involves a 64-channel LiDAR capture producing 1.3 million points per second. We used
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2189/631/947 frames for training/validation/testing, respectively, to ensure the feasibility
on limited equipment.

4.2. Implementation Details
4.2.1. Device Information

In this experiment, the network model was built using the PyTorch framework and
deployed on an Intel(R) i7-11800H CPU (Santa Clara, CA, USA) and RTX 3080 GPU
(NVIDIA, Santa Clara, CA, USA) for parameter training and result validation. In addition,
the Open3D tool was used to visualize the point cloud and draw 3D target frames for the
vehicle objects.

4.2.2. Metrics

We used the common settings in [25,28] to train the model by selecting LiDAR points
as regions of interest along the X, Y, and Z axes, respectively, in the following ranges:
(−140.8 m, 140.8 m), (−40 m, 40 m), and (−3 m, 1 m). We set the broadcasting range
between the Cavs to 70 m. In training, we used matching thresholds of 0.6 and 0.45 for
positive and negative samples, respectively. The matching IoUs between the bounding box
and anchor points were calculated according to their nearest horizontal rectangles in the
BEV. The length, width, and height of the anchor box used to detect the Cavs were 3.9 m,
1.6 m, and 1.56 m, respectively, the range of rotation angles of the anchor box was [0, 90],
and the number of anchor boxes was two. The average precision (AP) at crossunion (IoU)
thresholds of 0.5 and 0.7 was used to evaluate the different models.

4.2.3. Model Details

We used a 3D voxel mesh to represent the 3D world in a binary representation, and we
assigned a positive label to each voxel if it contained point cloud data. The voxel size was
set to [0.4, 0.4, 0.4], and each voxel contained at most 32 points. The maximum number of
voxels in the training set was 32,000. The VFE section was normalized and used absolute
coordinates, and the number of output channels was 64. The number of output features
in the PointPillars Scatter section was 64. The backbone section consisted of three layers,
with their respective number of layers, steps, and channels being [3, 5, 8], [2, 2, 2], and [64,
128, 256]. The upsampling step was [1, 2, 4], and the number of channels in the upsampling
module was [128, 128, 128]. Finally, for each pillar, the model predicted the classification
labels using a classification header and predicted the classification labels using a regression
header that predicted the seven degrees of freedom parameters of its nearest box.

4.2.4. Training

We trained for 30 epochs using the Adam optimizer to update the model parameters.
The batch size, learning rate, and weight decay were 2, 0.002, and 0.001, respectively,
with a momentum range of [0.85, 0.95]. We used a multistep learning rate scheduler to
dynamically adjust the learning rate, with a step size set to [20, 30] and a decay rate of 0.1.
In the inference phase, we filtered out low-confidence bounding boxes by a threshold of 0.3.
The IoU threshold for nonmaximum suppression (NMS) was 0.2.

4.2.5. Data Augmentation

We applied three data augmentation methods: random flip, random rotation, and ran-
dom scaling. The random flip method flips along the x axis, the random rotate method
rotates in the world coordinate system in a given angular range of [−π/4, π/4], and the
random scaling method scales in a scale range of [0.95, 1.05]. The enhanced visualization
is shown in Figure 8. In addition, some objects were randomly selected from the training
data and injected into the training samples.
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Figure 8. Data enhancement visualization results, where the green box is the ground truth. (a) shows
the original data visualization, (b) shows the flipped visualization image, (c) shows the rotated
visualization image, and (d) shows the scaled visualization image.

4.3. Comparison Experiments
4.3.1. Results

The performance of our proposed high-precision intermediate fusion collaborative
sensing algorithm was assessed using the OPV2V dataset, and the corresponding results
are presented in Table 1. To establish a comprehensive comparison, we evaluated our
model against various fusion approaches, including the baseline model [32] that encom-
passes no fusion, early fusion, and late fusion. Additionally, we compared the proposed
model with mainstream algorithms for collaborative perception based on intermediate
collaboration [4,31–33].

Table 1. Comparison of the AP values and model size for different methods.

Method
Default Towns Culver City

Model Size (Mb)
AP@0.5 AP@0.7 AP@0.5 AP@0.7

No Fusion 49.1 38.3 40.6 26.7 18.2
Early Fusion 52.3 40.6 42.5 35.3 20.0
Late Fusion 59.6 42.5 49.4 39.7 19.5
F-Cooper [31] 61.7 49.8 53.7 44.5 35.3
Who2com [4] 62.0 50.5 54.1 44.2 37.4
AttFuse [32] 62.8 50.8 54.0 46.3 34.3
V2VNet [33] 63.3 51.6 54.5 45.8 36.8
HP3D-V2V (Ours) 67.4 56.5 58.8 50.5 35.0

We evaluated the performance of our model on the Default Towns and Culver City test
sets of OPV2V, as shown in Figure 9. By examining Figure 9a,b, it is evident that both the
AttFuse and V2VNet models exhibited confusion in handling bushes and structures, thus
misclassifying them as vehicles. This confusion may stem from the visual similarity between
these objects and vehicles, particularly in blurry or occluded conditions. Furthermore,
through the areas labeled in the figure, we can also clearly observe that in terms of long-
distance detection, the AttFuse model and the V2VNet model failed to adequately capture
the detail information, and there were cases of missed vehicle detection.

By examining the prediction results in the labeled box section of the figure, our model
was shown to demonstrate effective discrimination, thereby successfully avoiding the
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misidentification of shrubs and structures as carriers. Moreover, it exhibited enhanced
accuracy when dealing with long-range vehicles returning to the bounding box. Regardless
of occluded or distant vehicles, our model leverages the assistance of other CAVs to perceive
occluded objects and achieve superior overall perception results.

Figure 9. Comparison chart of detection results between mainstream models based on intermediate
fusion and the proposed intermediate fusion model. (a) shows the detection results of the AttFuse
model for Default Towns and Culver City. (b) shows the detection results of the V2VNet model.
(c) shows the detection results of the proposed detection method.

4.3.2. Discussion

From Table 1, it is evident that the collaborative perception model outperformed
single-vehicle perception without fusion. Additionally, models based on intermediate
fusion performed better than those utilizing early or late fusion. Our HP3D-V2V algorithm
demonstrated high-precision detection on the OPV2V dataset, thereby achieving approx-
imately or exceeding an 8.0% AP@0.7 on the CARLA Towns and Culver City datasets.
Both the mainstream models and our proposed HP3D-V2V exhibited commendable detec-
tion performance on the dataset; however, our model showed a performance increase of
10.1% and 8.3% in AP@0.7 on the CARLA Towns and Culver City datasets, respectively.
The experimental results validate that our point cloud denoising method enhances the
model’s adaptability to the environment, thus reducing false positive detections in blurry
or occluded scenes. Additionally, the feature extraction network and CVFF module demon-
strated significant advantages, thus performing better in three-dimensional bounding box
regression, particularly in long-distance detection.

4.4. Ablation Studies

In order to evaluate the validity of our proposed model, we selected the representative
methods SECOND and PointPillars, which are voxel-based and point pillar-based in the
baseline model, to perform ablation experiments with our proposed three improved points,
and the evaluation results are shown in Table 2.
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During the point cloud preprocessing stage, we introduced a voxel mesh-based statis-
tical filter to obtain more reliable point features, which resulted in an 8.9% improvement
in detection accuracy in 3D AP@0.7. As depicted in Figure 10b, this approach effectively
mitigated the issue of misidentifying shrub structures as vehicles. To address the limitations
of spatial feature interaction in PointPillars-based feature extraction methods while pre-
serving finer-grained features, we utilized a voxel point pillar fusion (VPCF) scheme in the
feature extraction phase. By examining Figure 10c, we can observe that the incorporation
of the VPCF module significantly reduced the number of missed vehicles at long range.
This improved the accuracy by 6.1% and 10.5% in AP@0.5 and AP@0.7, respectively. Note
that the SENCOND method was not tested here, since the output of our feature extraction
module is in the form of three-dimensional features. Finally, our proposed CVFF exceled at
capturing representative features through feature interaction, thereby leading to a notable
improvement in the AP, as demonstrated in Figure 10d. Moreover, our model exhibited
enhanced accuracy in vehicle regression bounding box estimation.

Figure 10. Schematic diagram of ablation experiment. (a) shows the detection results of the bench-
mark method of this paper in Default Towns. (b) shows the detection results after adding the point
cloud denoising method, as described in Section 3.1. (c) shows the detection results after adding the
feature extraction method of voxel point column fusion, as described in Section 3.2. (d) shows the
detection results after adding the crossvehicle feature fusion module, as described in Section 3.4.

Table 2. Evaluation results of ablation experiments.

Method
Default Towns Culver City

AP@0.5 AP@0.7 AP@0.5 AP@0.7

Baseline SECOND 60.4 48.7 55.3 45.1
PointPillar 61.5 49.2 54.5 44.4

+Denoising SECOND 61.7 49.6 56.0 45.8
PointPillar 63.1 54.5 55.3 46.4

+VFE_VP SECOND – – – –
PointPillar 65.5 55.0 56.7 47.5

+CVFF SECOND 64.3 53.1 56.1 47.2
PointPillar 67.4 56.5 58.8 50.5

5. Conclusions

In this paper, we investigated cooperative perception utilizing LiDAR point cloud
data and proposed a method for high-precision 3D object detection in V2V scenarios,
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thereby aiming to overcome the challenges presented by complex road conditions that
hinder detection accuracy. Initially, to ensure the reliability of the data for the feature
extraction module, we devised a voxel grid-based statistical filter to denoise the point
cloud. Subsequently, we designed a feature extraction module based on voxel and point
column fusion to enhance the semantic information of the spatial feature interaction and
feature extraction. Furthermore, we established an intermediate fusion approach for
adaptively integrating spatial features across vehicles. Comparative evaluations against
various mainstream cooperative perception algorithms demonstrate the superior detection
accuracy achieved by our proposed algorithm. Furthermore, the efficacy of the proposed
denoising method, VFE_VP, and CVFF modules has been further substantiated through
ablation experiments.

To advance the efficiency and accuracy of autonomous driving and intelligent trans-
portation systems, our future endeavors will explore multimodal fusion strategies and
diverse point coding or detection networks to enhance overall system performance.
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