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Abstract: With the rapid development of smart manufacturing, data-driven deep learning (DL) meth-
ods are widely used for bearing fault diagnosis. Aiming at the problem of model training crashes
when data are imbalanced and the difficulty of traditional signal analysis methods in effectively
extracting fault features, this paper proposes an intelligent fault diagnosis method of rolling bearings
based on Gramian Angular Difference Field (GADF) and Improved Dual Attention Residual Network
(IDARN). The original vibration signals are encoded as 2D-GADF feature images for network input;
the residual structures will incorporate dual attention mechanism to enhance the integration ability of
the features, while the group normalization (GN) method is introduced to overcome the bias caused
by data discrepancies; and then the model is trained to complete the classification of faults. In order
to verify the superiority of the proposed method, the data obtained from Case Western Reserve Uni-
versity (CWRU) bearing data and bearing fault experimental equipment were compared with other
popular DL methods, and the proposed model performed optimally. The method eventually achieved
an average identification accuracy of 99.2% and 97.9% on two different types of datasets, respectively.

Keywords: intelligent fault diagnosis; Gramian Angular Difference Field (GADF); improved dual
attention residual network (IDARN); imbalance data

1. Introduction

Rolling bearings are widely used in modern machinery manufacturing, which accounts
for most of the market share [1]. Rolling bearings have large working loads, large differences
in operating speeds and harsh working environments, so they are often prone to many
kinds of failures in production [2]. Obtaining information about internal faults that may
occur in bearings during operation and determining the health status of bearings through
accurate and intelligent methods is a hot topic of current research [3,4].

Currently there are two types of bearing fault diagnosis methods: one is the tradi-
tional fault signal analysis method. Ding et al. proposed a gene mutation particle swarm
optimisation variational modal decomposition (GMPSO-VMD) algorithm; this method can
effectively deal with the problem of the fault signals of early rolling bearings being weak
and difficult to extract [5]; Ye et al. used an improved empirical modal decomposition
(IEMD) method applied to bearing fault diagnosis, which has good identification of weak
noise and sudden impulses of bearing fault signals [6,7], and Wu et al. in order to accurately
separate and extract the composite fault signal features of bearings, proposed a method
combining adaptive variational modal decomposition (AVMD) and improved multivariate
universe optimisation (IMUO) algorithms parameterised with maximum correlation kurto-
sis inverse convolution (MCKD) [8]. However, these types of methods require the mastery
of advanced signal processing techniques and manual selection of sensitive features.
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Another is the data-driven deep learning based method. Table 1 summarises the
literature review related to the use of data-driven methods for reliability prediction in
different industry applications. Zhou et al. proposed a rolling bearing fault diagnosis
method based on Whale grey wolf optimization algorithm-variable modal decomposition-
support vector machine (WGWOA-VMD-SVM) [9]. Zhang et al. proposed an optimised
long short-term memory (LSTM) neural network fault diagnosis method for reliability
analysis of gearboxes [10]; Wan et al. proposed a rolling bearing fault diagnosis method
based on Spark and Improved Random Forest Algorithm [11], and Hadi et al. proposed an
AutoML method to improved bearing fault classification for predictive maintenance in in-
dustrial IoT [12]. Although these types of intelligent diagnostic methods can automatically
extract features, there are some unavoidable drawbacks; for example, extracting features
and fault classification need to be carried out independently, and the learning efficiency is
insufficient.

Table 1. Summary of literature of data-driven methods models.

Ref. Application Model Brief Description Shortage

[9] Rolling bearing WGWOA-VMD-SVM The proposed method can
extract more features.

Difficult to train samples
on a large scale.

[10] Gearboxes VMD-LSTM Solved EMD modal
overlap problem. Longer calculation time.

[11] Rolling bearing Spark-IRF

Solve the problems of slower
diagnosis speed and repeated

voting of traditional
RF algorithm.

Overfitting on some noisy
classification or regression

problems.

[12] Industrial IoT AutoML

To address the need for
bearings to effectively manage

predictive maintenance
applications.

Not effective when not
learning.

[13] Rolling bearing HPSO-CNN-LSTM For early fault diagnosis
of bearings.

Excessive convolutional
layers degrade the

network.

[14] Rotating machinery TCNN Excellent diagnostic results for
small sample data.

Need to pre-train the
model.

[15] Rolling bearing GAF-EDL For diagnosing data
under noise

Not applicable to
regression problems.

[16–19] Rolling bearing GAF + CNN To lighten the model and
extract more features.

Unstable during training
with imbalanced data.

The emergence of convolutional neural networks (CNNs) has overcome the above
drawbacks and has been favoured by many researchers. Tian et al. designed a hybrid
particle swarm optimisation (HPSO) based CNN-LSTM bearing fault diagnosis model
for early fault diagnosis [13]; Ye et al. proposed a TCNN for fault diagnosis of rotating
machinery to address the problem of model training crash with small samples [14]. Han
et al. propose a GAF-EDL method for the problem of poor model classification under noisy
samples [15]. Some researchers have also used GAF in combination with CNNs. Zhou et al.
proposed the bearing fault diagnosis method based on GAF and DenseNet, which achieved
good results [16]; Wei et al. and Cui et al. proposed fault diagnosis models combining GAF
with lightweight channel attention networks to improve classification accuracy [17,18], and
Cai et al. combined GAF with deep residual networks (ResNeXt50) in order to extract more
fault features [19].

Although current neural networks can achieve a decent level of classification, there
are still some problems with the above methods:

1. Most methods preprocess the original signals before inputting them into the network
for model training; this may filter out some important features and limit the extraction
of features by the network.
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2. In the traditional neural network structure, more features are extracted by stacking
the layers of the network, but the network degradation phenomenon occurs and the
features are not sufficiently extracted.

3. Many methods use equivalent data distributions (equal number of samples for each
fault class) to train the model; whereas in real plants often the data distribution is
uneven, and the model may breakdown under imbalanced data.

In order to solve the above problems, this paper proposes an intelligent diagnosis of
rolling bearings based on Gramian Angular Difference Field and Improved Dual Attention
Residual Network, and the main contributions are as follows:

1. The vibration signals were converted into images using the GADF method, so that
the fault features were fully represented in the images; both retaining the timing infor-
mation and enhancing the features to improve the network’s recognition capability.

2. The residual structure introduced into the GN was used as the network body, which
solves the network degradation problem and reduces the bias caused by the differ-
ence in the distribution of training samples. Meanwhile, Dual-Attention mechanism
was introduced to enhance feature integration and make full use of channels and
deep information.

3. The effects of different sets of GNs and different attentional mechanisms introduced
on the model were verified on the CWRU bearing dataset.

4. Small samples of imbalanced data were divided on the bearing fault experimental
equipment and compared with current advanced fault diagnostic models, and the
proposed method achieved the best diagnostic results in several datasets with different
data distributions.

The structure of this paper is as follows. Section 2 describes the specific principles of
the relevant contents. Section 3 details the proposed IDARN fault diagnosis model and
the specific diagnosis process. Section 4 outlines the experimental analyses to verify the
validity of the proposed model by using data collected from popular bearing datasets and
faulty bearing experimental equipment. Section 5 presents the conclusions.

2. Related Work

This chapter provides an overview of the related methods of use. The specific imple-
mentation of GADF is presented in Section 2.1, the structure of the residual network and
the specific computational process of the GN method are described in Section 2.2, and the
implementation of the two attention mechanisms is explored in Section 2.3.

2.1. Gramian Angular Difference Field (GADF)

Gramian Angular Difference Field is a coding method that converts one-dimensional
time series into two-dimensional images [20]; using it as preprocessing of vibration signals
allows the network to efficiently identify vibration signals. Assuming the existence of a
one-dimensional time series X = {x1, x2, . . ., xn}, the GADF coding process can be divided
into the following steps, some notations used in this paper are illustrated in Table 2.

Step 1: The X is normalised to fall in the interval [0, 1], determined by the follow-
ing equation:

→
x i =

xi − min(X)

max(X)− min(X)
(1)

Step 2: Transform the scaled sequence data into polar coordinate system. Think of the
numerical values as the angle cosines and the timestamps as the radius, representing in
polar coordinates the rescaled time series X, determined by the following equation:{

φi = arccos
(→

x i

) (
0 ≤ →

x i ≤ 1
)

ri =
ti
N (ti ∈ N)

(2)
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Step 3: For the polar coordinate system φ that stores the time information, it can
be encoded into the geometric structure of the matrices by calculating the trigonometric
difference of each polar coordinate in the system, defined as:

GADF =
[
sin

(
φi − φj

)]
(3)

=
(√

I − X2
)′
·X − X′·

√
I − X2 (4)

Table 2. Commonly used notations.

Notations Descriptions

X One-dimensional time series
φ Polar coordinates of the angle cosine
ti Timestamp
N Constant factor
I Row vector
x Input data

H(x) Residual mapping function
F(x) Constant mapping function
M The size of the batch
H The height of the feature matrices
W The width of the feature matrices
C The number of channels
G Groups of the channels

µG(x) Mean deviation for each group
σG(x) Standard deviation for each group

γ Scale parameter
β Conversion parameter
xij Feature matrices under the channels i and j
t Global aggregated features
ω Weight assigned to each channel
σ Sigmoid function
D 1D convolution operation

|·|odd The closest odd number to the variable
b and λ Constants

S; The number of neurons on each channel
xi Different neuron
α The neuron for the input feature of each channel

wα and bα The weights and bias values
η Constant taken as 1 × 10−4

Q The number of sampling points
Fq The sampling frequency
R The rotational speed of the bearing

The differences in vibration signals are mainly on different time scales, which contain
their own unique fault features. Figure 1 illustrates the coding process. When the one-
dimensional signal has dramatic amplitude, the image corresponds to the appearance of
obvious cross lines, and the larger the amplitude the more obvious the cross. GADF coding
both retains the timing information and achieves the feature enhancement, which is helpful
for the feature extraction of the network.
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2.2. Network and Methodology Introduction
2.2.1. Residual Neural Networks

In traditional convolutional neural networks, with the number of network layers,
stacked models will have the problem of gradient disappearance or explosion. Residual
neural networks emerged to solve this problem and have been widely used in image
processing [21]; the structure is as shown in Figure 2, and determined by Equation (5).

H(x) = F(x) + x (5)
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The residual structure can pass the features from the bottom layers of the network
to the top layers directly through shortcuts, just ensuring that the input vector x and the
residual mapping function F(x) have the same size. With the residual structure stacks,
not only the depth of the convolutional layers is increased, but the network degradation
problem is solved and the stability of the model is improved.

2.2.2. Group Normalization Method (GN)

Residual network involves multiple layers of superposition, and the data distribution
of the network can be affected by changes in parameters. Therefore, normalisation methods
can be used to adjust the data distribution and effectively reduce the impact of data
changes. In recent years, batch normalisation (BN) has been proposed to perform global
normalisation in order to improve the training speed of neural networks. It is now widely
used in fault diagnosis to improve the performance of networks.

Although BN is widely used, it is very sensitive to batch size. The calculated mean
and variance are insufficient to represent the entire data distribution and may lead to poor
diagnostic performance when used with small batches. Therefore, this paper introduced a
new normalisation method, the GN method, to replace the BN method and eliminate the
small batch effect.
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In GN, it is assumed that the given input is X = {x1, x2, . . ., xM}, X ∈ RM×H×W×C, GN
first divides the channel into G groups and then solves for the mean and standard deviation
of each group, which can be defined as:

µG(x) =
1(

C
G

)
HW

(g+1)C
G

∑
C= gC

G

H

∑
h=1

W

∑
w=1

xmchw (6)

σG(x) =

√√√√√√ 1(
C
G

)
HW

(g+1)C
G

∑
c= gC

G

H

∑
h=1

W

∑
w=1

(
xmchw − umg(x)

)2
+ ε (7)

Then, the function representing GN is:

xmchw =
xmchw − uG√

σ2
G

(8)

ymchw = γxmchw + β (9)

The BN method relies on the mean and variance of the data to obtain the desired
performance. When the dataset changes, the mean and variance change with it, resulting in
inconsistency between the training and validation stages. However, GN relies on dividing
the channels into different groups and normalise the data in each group to fit the different
distribution forms of each group. Therefore, the feature matrices of the training and
validation sets are accepted by each convolutional layer after GN, which guarantees a good
classification ability from imbalanced similarly distributed data.

2.3. Attention Mechanisms

In residual networks, stacked convolutional layers can capture lots of feature data,
but these data may contain excessively repetitive information, causing some performance
loss. For this reason, this paper introduces two attention mechanisms to refine the feature
information layer by layer from the channel dimension to the spatial dimension, which
makes the network more attentive to the fault features of the image data [22,23].

2.3.1. Channel Attention Mechanism

ECA is a streamlined channel attention mechanism that has been widely used in image
processing. The complexity of the model is reduced by local cross-channel information
interaction without dimensionality reduction; it can add weights to the features of different
channels so that the network can better attention to the weights of different features, which
helps in feature extraction. Figure 3 shows the ECA structure.
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Firstly, the input data are subjected to Global Average Pooling (GAP) which is deter-
mined by the following equation:

t =
1

H × W

H,W

∑
i=1, j=1

xij (10)

Secondly, feature interaction between channels is achieved by 1D convolution of
Equation (11); where the size of the 1D convolution kernel k is determined by Equation (12):

ω = σ(Dk(t)) (11)

k = Ψ(C) =
∣∣∣∣ log2(C)

λ
+

b
λ

∣∣∣∣
odd

(12)

Finally, features with different weights are obtained after performing dot product
operation of input data with channel weights. Therefore, ECA allows the integration of
features in the channel dimension, making the residual network more effective in extracting
fault features.

2.3.2. Spatial Attention Mechanism

SimAM is a parameter-free spatial attention mechanism. It accurately calculates
the similarity metric between features by adaptively learning and utilising the similarity
information between targets so that the weights of different features can be determined;
this allows more attention to be paid to different features in images and classified. The
structure is shown in Figure 4.
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It designs an energy function for calculating the attention weights, which can be
defined as:

eα =
1

S − 1

S−1

∑
i=1

[−1 − (wαxi + bα)]
2 + [1 − (wαα + bα)]

2 + ηw2
α (13)

The importance of different features can be derived from the calculation of the energy
function to achieve an enhancement effect on different classes of weak features; therefore,
SimAM can focus further on the features after channel attention refinement.

3. Model Structure and Fault Diagnosis Process

This chapter gives an overview of the model structure of the Improved Dual Attention
Residual Network and the specific process used for bearing fault diagnosis.

3.1. IDARN Model Structure

In this section, the IDARN method for rolling bearing fault diagnosis is proposed,
which is generally divided into improved residual layer, FC fully connected layer and Soft-
max classification layer. The specific model structure is shown in Figure 5; the parameters
are shown in Table 3.
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The IDARN model adopts 34-layer residual structure as the backbone, and introduced
the channel and spatial attention mechanisms to extract and refine the features layer by layer
from the channel to the spatial dimension; meanwhile, the GN method is also introduced
in the residual layers to adapt to the different distribution forms of each set of data. In this
way, the network has excellent ability to identify and classify different weak fault features,
and effectively reduces the computational errors brought by different data distributions.
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Table 3. IDARN model parameters.

Disposition Output Dimension Layer Design

Input 224 × 224 × 3 ——
Conv 112 × 112 × 64 7 × 7 × 64, s = 2

Max pool 56 × 56 × 64 3 × 3, s = 2

GN-ECA-1 56 × 56 × 64

[
3 × 3 × 64
3 × 3 × 64

]
× 3

GN-ECA-2 28 × 28 × 128

[
3 × 3 × 128
3 × 3 × 128

]
× 4

GN-ECA-3 14 × 14 × 256

[
3 × 3 × 256
3 × 3 × 256

]
× 6

GN-SimAM 7 × 7 × 512

[
3 × 3 × 512
3 × 3 × 512

]
× 3

Avg pool 1 × 1 × 512 7 × 7, s = 1
FC 1 × 1 × 1000 ——

Softmax 10 ——

3.2. Fault Diagnosis Process

Figure 6 demonstrates the general process of rolling bearing diagnosis based on GADF
and Improved Dual Attention Residual Network. It can be divided into the following steps:

Step 1: The original signals collected from the bearing failure experimental equipment
were converted into two-dimensional images after GADF encoding, and the corresponding
data sets were divided.

Step 2: Set the network parameters and input the divided datasets into improved dual
attention residual network for training.

Step 3: The influence of the different number of GN groups on the model was verified
in several datasets, then divided and compared with other attentional mechanisms.

Step 4: Comparison of existing popular CNN models on the small-sample unbalanced
datasets was performed to validate the superiority of the proposed method.
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4. Experimental Analysis

In this chapter, data obtained from CWRU bearing data and the bearing failure experi-
mental equipment were used to evaluate the effectiveness of the diagnostic methods. All
network models were trained in Pytorch framework using Python 3.8 programming with
Intel Core i5-7300 CPU@2.5 GHz and GTX1050(4G) under Windows 10.

4.1. Case 1: CWRU Bearing Dataset Analysis
4.1.1. Data Processing

The experimental setup is shown in Figure 7. Taking the drive-end bearing SKF-6205
as example, the experimenter set different failure diameters of damage to the outer ring
(@3, @6, @12), inner ring, and rolling body of the bearing respectively. Acceleration sensors
were installed on the drive end bearing housing to collect fault signals with a sampling
frequency of 12 kHz. In this paper, a load of 0.75 kw was selected, and the corresponding
rotational speed of the motor was 1772 r/min.

Three different damage diameters of the inner ring, outer ring (@6), and rolling body
types were selected as the failure data samples, and one health state data sample was
also selected, which was divided into ten categories, and the different failure types were
recorded as “IF”, “OF (@6)”, “RE”, and “NO”. It is worth noting that DatasetB/C/D were
imbalanced datasets, simulating the missing data in real working conditions; DatasetA
can be regarded as a balanced dataset in the ideal state. To avoid the effects of chance, the
400 data points in each category were randomly assigned in a ratio of 9:1 for training and
validation. For the imbalanced data, 100/200/300 GADF data were randomly selected



Sensors 2024, 24, 2156 10 of 24

from the measured signal segments; again, these were randomly assigned in a 9:1 ratio, and
the validity of the proposed model classification was verified using the datasets in Table 4.
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Table 4. Division of the datasets.

Condition FD/(in) Label DatasetA DatasetB DatasetC DatasetD Train/Val

NO 0 0 400 400 400 400

0.007 1 400 100 300 200

IF 0.014 2 400 100 300 200

0.021 3 400 100 300 200

0.007 4 400 200 100 300 9/1

RE 0.014 5 400 200 100 300

0.021 6 400 200 100 300

0.007 7 400 300 200 100

OF (@6) 0.014 8 400 300 200 100

0.021 9 400 300 200 100

4.1.2. Data Preprocessing and Network Training Settings

The data points were collected using a sliding window for translational sliding on the
one-dimensional data while generating GADF-encoded images. To ensure that each image
contains sampling points for one week of bearing rotation, the size of the sliding window
was calculated using the following equation.

Q =
60 × Fq

R
(14)

From the above equation, the bearing samples approximately 400 data points per
revolution; therefore, the sliding window size was set to 400 to sample with the smallest
sliding window.

In order to ensure data utilisation and signal integrity, data enhancement was used
to expand the data. The data enhancement method used in this paper was to overlap the
samples of the original one-dimensional sequences by taking a sliding window with a step
size of 200 for overlap sampling. Since each input sequence was obtained in a single fault
state, the enhanced samples have the same fault labels as the original sequence.

Finally, considering the effect of hardware devices, the sliding window was panned
once to generate a 300 × 300 GADF coded image. Figure 8 shows the fault images of
different categories, each of which has obvious features that can be used for fault classifica-
tion. Figure 9 shows the vibration images of different bearings under different faults. The
network training parameters were shown in Table 5.
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0.014in; (f) IR-0.014in; (g) OF-0.014in; (h) RE-0.021in; (i) IF-0.021in; (j) OF-0.021in.

Table 5. Network training parameters.

Pre-Processing Method Batch Size Loss Function Optimizer Learn Rate

Random Horizon Filp

Random Resize Crop 8 Crossentropy
Loss Adam 0.0001

Normalize

4.1.3. Analysis of Different Methods

The BN and GN methods were introduced for comparison under four datasets to
highlight the superiority of the GN method. The number of groups in GN has an impact
on the performance of the model, so different numbers of groups for the GN method were
considered in this experiment. Each training iteration was 120 rounds and the training
parameters are shown in Table 5. Figure 10 and Table 6 show the results of comparing the
two methods with four datasets. For further analysis, DatasetA was taken as an example,
and the corresponding training curves are shown in Figure 11.
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Table 6. Accuracy of different normalisation methods.

Dataset/Method BN/(%) GN-4/(%) GN-8/(%) GN-16/(%)

DatasetA 99.3 99.3 99.5 99

DatasetB 98.1 98.8 99.1 98.6

DatasetC 97.5 98.1 98.6 98.6

DatasetD 98.6 99.1 99.5 99.1
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As can be seen from the Figure 10, the introduced GN method was better than the BN
method and achieved the optimal classification accuracy under the four datasets. As shown
in Figure 11b, the training loss of the GN method was lower than BN. More importantly,
the GN method can overcome the bias caused by data discrepancy, while the BN method
cannot, and thus the GN had to perform better under the four datasets.

In order to verify the superiority of the dual attention mechanism for feature extraction,
the channel (CARN) or spatial (SARN) attention methods were compared under the same
GN method. Each dataset was trained for 120 rounds, and the comparison results are shown
in Figure 12 and Table 7. From these results, it can be concluded that the dual attention
mechanism was able to focus on more features and achieve the highest classification
accuracy under the four datasets.
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Table 7. Accuracy of different attention methods.

Dataset/Method CARN/(%) SARN/(%) DARN/(%)

DatasetA 99.5 99.3 99.5

DatasetB 98.6 98.8 99.1

DatasetC 98.6 98.1 98.6

DatasetD 99.1 99.2 99.5

4.1.4. Comparison with Related Models (CWRU Failure Data)

In recent years, many researchers have also used GAF in combination with other
DL models for fault diagnosis. To demonstrate the superiority of combining GADF with
IDARN, we compared the methods of references [15–19] with the proposed method, using
the same GADF processing, input to different models for training. To ensure each model
converged sufficiently, each model was iterated 150 times, taking DatasetA and DatasetB
(one balanced and one imbalanced data) as examples, Figure 13 illustrates the training
performance curves for the different methods.

As can be seen from Figure 13a, all models on DatasetA were relatively stable when
trained and gradually converge. In the first 20 rounds of training, the training accuracy of
proposed model was not as good as that of DenseNet; whereas after 20 rounds of training,
the two models were almost equal and the stability of fluctuation was better than that of the
other four models. From Figure 13b, it can be seen that the training loss of the present model
was lowest at 10–100 rounds of training, and at 100–150 rounds it was similar to CAnet and
DenseNet, but in general the proposed model can achieve the lowest training loss.

As can be seen from Figure 13c,d, all models were trained with significantly higher
fluctuations for imbalanced data than for balanced data, and the training loss was slightly
higher relative to the balanced dataset. This can also reflect the impact of the amount of
data on model training in deep learning, but for the proposed method, a good training
result can still be achieved on imbalanced datasets, with a steady convergence.

Evaluation indicators are standards for judging the performance of diagnostic algorithms
and are important in data analysis. In the field of deep learning fault diagnosis, Accuracy (Ac),
Precision (Pr), Recall (Re), and F1 score are all standards for judging the performance of the
model, and the expressions are as in Equations (15)–(18). In order to analyse the advantages
and shortcomings of each model, Table 8 shows the classification accuracy on the four datasets,
Tables 9–12 shows the different indicators for the different models in DatasetA/B/C/D. For a
more comprehensive analysis, we also refer to the training time.

Ac =
TP + TN

TP + FP + TN + FN
(15)



Sensors 2024, 24, 2156 14 of 24

Pr =
TP

TP + FP
(16)

Re =
TP

TP + FN
(17)

F1 =
2 × Pr × Re

Pr + Re
(18)

where: TP and TN are the number of correct predictions in i categories; FP and FN are the
number of incorrect predictions in i categories.
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Table 8. Comparative accuracy in validation set.

Method/Dataset DatasetA/(%) DatasetB/(%) DatasetC/(%) DatasetD/(%)

GADF-EDL [15] 99 98.6 98.2 98.2

GADF-DenseNet [16] 99.5 98.2 98.6 99.1

GADF-FcaNet [17] 99.3 98.2 98.2 98.6

GADF-CAnet [18] 99 98.6 97.7 98.2

GADF-ResNeXt50 [19] 98.5 97.7 98.2 98.6

GADF-IDARN 99.5 99.1 98.6 99.5

Table 9. Comparative indicators in DatasetA.

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

GADF-EDL 0.9894 0.9902 0.9898 106 s

GADF-DenseNet 0.9952 0.9950 0.9951 145 s

GADF-FcaNet 0.9926 0.9925 0.9925 108 s
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Table 9. Cont.

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

GADF-CAnet 0.9904 0.9900 0.9901 111 s

GADF-ResNeXt50 0.9856 0.9850 0.9853 266 s

GADF-IDARN 0.9950 0.9950 0.9950 96 s

Table 10. Comparative indicators in DatasetB.

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

GADF-EDL 0.9887 0.9817 0.9852 62 s

GADF-DenseNet 0.9714 0.9867 0.9790 94 s

GADF-FcaNet 0.9714 0.9800 0.9757 63 s

GADF-CAnet 0.9853 0.9824 0.9838 83 s

GADF-ResNeXt50 0.9733 0.9733 0.9733 146 s

GADF-IDARN 0.9920 0.9833 0.9876 54 s

Table 11. Comparative indicators in DatasetC.

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

GADF-EDL 0.9853 0.9750 0.9801 62 s

GADF-DenseNet 0.9885 0.9817 0.9851 94 s

GADF-FcaNet 0.9809 0.9850 0.9829 63 s

GADF-CAnet 0.9747 0.9703 0.9725 83 s

GADF-ResNeXt50 0.9818 0.9800 0.9809 146 s

GADF-IDARN 0.9871 0.9883 0.9877 54 s

Table 12. Comparative indicators in DatasetD.

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

GADF-EDL 0.9847 0.9809 0.9828 62 s

GADF-DenseNet 0.9909 0.9933 0.9921 94 s

GADF-FcaNet 0.9887 0.9803 0.9845 63 s

GADF-CAnet 0.9853 0.9824 0.9838 83 s

GADF-ResNeXt50 0.9885 0.9824 0.9854 146 s

GADF-IDARN 0.9968 0.9967 0.9967 54 s

From Table 9, on the balanced dataset, it can be seen that the proposed method
was slightly lower than DenseNet in the three indicators, which was due to the fact that
DenseNet uses a deeper network (121 layers, while the proposed method is 34 layers) to
extract features resulting in a better classification of a particular label than the proposed
model, but its training time was not as good as that of the proposed model. The other
comparative methods were lower than the proposed model in all the indicators.

From Tables 10–12, on the imbalanced datasets, it can be seen that the proposed method
has slightly lower Re on DatasetB and Pr on DatasetC than DenseNet, and outperforms the
other methods on DatasetD for all indicators. Combining all the indicators, the proposed
method has clear advantages in terms of imbalanced data.
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4.1.5. Analysis of Results Compared with Different Methods

In recent years, many researchers have focused on fault diagnosis of balanced datasets.
In order to further prove the superiority of the IDARN method, this section was compared
with some commonly used methods. The comparison results were shown in Table 13.
The proposed method achieves the highest classification accuracy of 99.5% with balanced
datasets. Compared with references [25–29], the IDARN method identifies more fault types
and substantially improves the classification accuracy.

Table 13. Comparative results.

Method Classification Category Accuracy (%)

1D-CNN [25] 6 93.2
CNNEPDNN [26] 10 97.85

LSTM-1DCNN [27] 10 98.46
MTF-ResNet [28] 10 98.52

ResNet-LSTM [29] 10 98.95
IDARN 10 99.5

4.1.6. Visualisation and Analysis

Figure 14 showed the classification confusion matrix of the IDARN model under the
four datasets. The y label in the confusion matrix represents the predicted label, the x label
represents the true label, and the numbers on the diagonal represent the overlap between
the true label and the predicted label. Using the validation set of different datasets as
an example, a specific categorisation of each fault can be derived. It can be seen that in
DatasetA label 6 and label 8 had the lowest accuracy; in DatasetB/C label 2 and label 8 had
the lowest accuracy; and in DatasetD only label 5 had the lowest accuracy. Some labels
had misclassification because there may be similar features between samples, but overall
IDARN had good classification performance.
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In order to demonstrate the classification effect of this model more intuitively, several
datasets were visualised and analysed using the t-SNE method, as shown in Figure 15. In
the left half of each subfigure is the original feature distribution of the training set for each
dataset, and the right half is the classification result of the fully connected layer after the
training set of each dataset has been trained by IDARN. As can be seen from the figures, the
original cluttered features distribution of the dataset becomes uniformly clustered through
this training method, and there was almost no substantial overlap between each category.
As such, the method had good classification effect on the balanced/unbalanced data of
rolling bearings.
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4.2. Case 2: Data Analysis of Variable Speed Bearing Fault Experimental Equipment
4.2.1. Data Collection and Segmentation

The experimental data were obtained from the bearing fault experimental equipment
(QPZZ-II), as shown in Figure 16a. According to the practical application, an acceleration
sensor was placed on the bearing housing to collect the vibration data of the bearing. In the
experiment, the sampling time of the sensor was set to 15 s each time, and the sampling
rate was 20480 S/s. Depending on the designed fault scenes, these data were labelled as
“Normal (NO)”, “Inner Ring Fault (IF)”, “Outer Ring Fault (OF)”, and “Rolling Element
Failure (RE)”, and the different bearing states were shown in Figure 16b.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 15. t-SNE. (a) DatasetA; (b) DatasetB; (c) DatasetC; (d) DatasetD. 

4.2. Case 2: Data Analysis of Variable Speed Bearing Fault Experimental Equipment 
4.2.1. Data Collection and Segmentation 

The experimental data were obtained from the bearing fault experimental equipment 
(QPZZ-II), as shown in Figure 16a. According to the practical application, an acceleration 
sensor was placed on the bearing housing to collect the vibration data of the bearing. In 
the experiment, the sampling time of the sensor was set to 15 s each time, and the sampling 
rate was 20480 S/s. Depending on the designed fault scenes, these data were labelled as 
“Normal (NO)”, “Inner Ring Fault (IF)”, “Outer Ring Fault (OF)”, and “Rolling Element 
Failure (RE)”, and the different bearing states were shown in Figure 16b. 

Type of bearings in the experiment: HRB-1205ATN self-aligning ball bearings, the 
number of rolling elements: 12 (single row). Bearing size: outer diameter is 52 mm, inner 
diameter is 25 mm, inner ring diameter is 33.3 mm, width is 15 mm. 

Generation and shape of bearing defects: (1) Failure of the inner ring: processing by 
wire-cut method until the inner ring breaks (width about 1 mm) (Figure 16(b-II)). (2) Fail-
ure of the outer ring: a groove with a width of 1 mm and a depth of about 1 mm is ma-
chined inside the outer ring of the bearing by wire-cutting method (Figure 16(b-III)). (3) 
Roller body failure: randomly removed two adjacent balls (Figure 16(b-IV)). 

Bearing operating conditions: Temperature of 20 °C and speed range of 75–1500 rpm 
(500/1000/1500 rpm in the experiment, respectively). No load, lubricant soaked, then 1/2 
grease applied. 

 
Figure 16. Bearing fault experimental equipment. (a) Experimental equipment (QPZZ-II); (b) Different
states of the bearings: (I) Normal; (II) Failure of the inner ring; (III) Failure of the outer ring; (IV)
Roller body failure.

Type of bearings in the experiment: HRB-1205ATN self-aligning ball bearings, the
number of rolling elements: 12 (single row). Bearing size: outer diameter is 52 mm, inner
diameter is 25 mm, inner ring diameter is 33.3 mm, width is 15 mm.

Generation and shape of bearing defects: (1) Failure of the inner ring: processing by
wire-cut method until the inner ring breaks (width about 1 mm) (Figure 16(b-II)). (2) Failure
of the outer ring: a groove with a width of 1 mm and a depth of about 1 mm is machined
inside the outer ring of the bearing by wire-cutting method (Figure 16(b-III)). (3) Roller
body failure: randomly removed two adjacent balls (Figure 16(b-IV)).
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Bearing operating conditions: Temperature of 20 ◦C and speed range of 75–1500 rpm
(500/1000/1500 rpm in the experiment, respectively). No load, lubricant soaked, then 1/2
grease applied.

According to Equation (14), the smallest sliding window was taken for sampling.
Different faults with different rotational speeds were used to divide the corresponding
datasets; considering the imbalanced fault samples and fewer samples in practice, the
imbalanced datasets with small samples were divided. For the imbalanced data, to avoid
the effects of chance, 100/150/200 GADF data were randomly selected from the measured
signal segments; again, these were randomly assigned in a 9:1 ratio as shown in Table 14.
The corresponding GADF coded images generated were shown in Figure 17.

Table 14. Data division.

Condition Rpm Label Dataset1 Dataset2 Dataset3 Train/Val

NO 1000 0 250 250 250

500 1 100 150 200

IF 1000 2 100 150 200

1500 3 100 150 200

500 4 150 100 150 9/1

OF 1000 5 150 100 150

1500 6 150 100 150

500 7 200 200 100

RE 1000 8 200 200 100

1500 9 200 200 100
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4.2.2. Comparative Experimental Analysis

In this section, IDARN used a grouping form of G = 8. Several popular fault diagnosis
methods were compared under three datasets to highlight the superiority of the present
method. Liang et al. proposed a 2DCNN approach applied to fault diagnosis of rotating
machinery [30]; Wu et al. proposed a VGG16 approach for fault diagnosis of high-voltage
DC transmission lines [31]; Wang et al. proposed the MTF-CNN for fault diagnosis of
rolling bearings [32], and Gu et al. used MobileNet-v3 network for automatic fault detection
of variable speed bearings [33]. Each method was trained for 200 rounds each time, and all
the experiments were trained 3 times to avoid the effect of randomness. The experimental
results are shown in Figure 18 and Table 15. It can be seen that the recognition accuracies of
MobileNet-v3 and 2DCNN under the three datasets were 72.2% and 85.5%, respectively,
which was an obvious change that can reflect the superiority of the method.
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number of iterations. 
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Table 15. Accuracy of different methods.

Dataset/Method Mobilenet-v3/% 2DCNN/% VGG16/% MTF-CNN/% IDARN/%

Dataset1 71.9 85.6 94.6 97 98.8

Dataset2 74 87.2 92.8 96.4 98.1

Dataset3 70.7 83.8 93.4 94 96.9

Taking Dataset1 as an example, the corresponding training performance curves were
shown in Figure 19. It can be seen that the two training performances of IDARN were
better than other advanced CNN models. It is worth noting that the Mobilenet-v3 model
cannot achieve good classification results after 200 iterations, and more iterations were
needed; the rest of the models all converge stably.
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The different indicators on the three datasets are shown in Tables 16–18. As can be seen
from the table, although several other models had shorter training times, other indicators
were not as good as the proposed model. This is due to the fact that their inherent shallow
structure does not allow for better extraction of image features. Therefore, IDARN can
identify more fault features and achieve the best classification results with a limited number
of iterations.

Table 16. Comparative indicators of popular CNN models in Dataset1.

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

Mobilenet-v3 0.7293 0.7175 0.7233 17 s

2DCNN 0.8493 0.8300 0.8395 35 s

VGG16 0.9414 0.9093 0.9251 26 s
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Table 16. Cont.

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

MTF-CNN 0.9684 0.9726 0.9704 57 s

IDARN 0.9904 0.9800 0.9852 37 s

Table 17. Comparative indicators of popular CNN models in Dataset2.

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

Mobilenet-v3 0.7526 0.7367 0.7446 17 s

2DCNN 0.8633 0.8468 0.8550 35 s

VGG16 0.9307 0.9169 0.9237 26 s

MTF-CNN 0.9749 0.9603 0.9675 57 s

IDARN 0.9833 0.9800 0.9816 37 s

Table 18. Comparative indicators of popular CNN models in Dataset3.

Method Pr (Avg) Re (Avg) F1 Train Time/Epoch

Mobilenet-v3 0.7149 0.7056 0.7102 17 s

2DCNN 0.8267 0.8347 0.8307 35 s

VGG16 0.9252 0.9336 0.9294 26 s

MTF-CNN 0.9537 0.9430 0.9483 57 s

IDARN 0.9733 0.9700 0.9716 37 s

4.2.3. Comparison with Related Models (QPZZ-II Bearing Failure Data)

In order to further compare the advantages and disadvantages of different models,
take Dataset2 as an example. Comparing the literature [15–19] under the same training
conditions, the training performance curves are shown in Figure 20. Tables 19–21 shows
several indicators corresponding to each model.
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From Figure 20a, it can be seen that the accuracy of DenseNet was higher than the
proposed model in the initial stage of training, and the proposed model was higher than
the other models when the training reached 40–50 rounds, and after 60 rounds of training
the two models, DenseNet and IDARN were almost equal. It is worth noting that the other
models occasionally jumped around during the overall training process and were not as
stable as the proposed model.

From Figure 20b, it can be seen that the EDL model had the highest loss, while the loss
of IDARN in the first 50 rounds of training was significantly lower than the other models,
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and the training loss of IDARN was slightly lower than that of DenseNet at iterations
50–200 rounds. This was due to the deeper structure of DenseNet, but overall, the average
loss was essentially equal to that of the proposed model.

Table 19. Comparative Indicators of related models in Dataset1.

Method Accuracy (%) Pr (Avg) Re (Avg) F1 Train Time/Epoch

GADF-EDL 97.7 0.9756 0.9700 0.9728 45 s

GADF-DenseNet 98.1 0.9816 0.9749 0.9782 53 s

GADF-FcaNet 97 0.9747 0.9667 0.9707 44 s

GADF-CAnet 96.9 0.9696 0.9567 0.9631 48 s

GADF-
ResNeXt50 95.6 0.9633 0.9566 0.9599 107 s

GADF-IDARN 98.8 0.9904 0.9800 0.9852 37 s

Table 20. Comparative Indicators of related models in Dataset2.

Method Accuracy (%) Pr (Avg) Re (Avg) F1 Train Time/Epoch

GADF-EDL 96.3 0.9605 0.9493 0.9549 45 s

GADF-DenseNet 98.1 0.9826 0.9733 0.9779 53 s

GADF-FcaNet 95.6 0.9449 0.9383 0.9416 44 s

GADF-CAnet 97.5 0.9707 0.9660 0.9683 48 s

GADF-
ResNeXt50 95 0.9507 0.9220 0.9361 107 s

GADF-IDARN 98.1 0.9833 0.9800 0.9816 37 s

Table 21. Comparative Indicators of related models in Dataset3.

Method Accuracy (%) Pr (Avg) Re (Avg) F1 Train Time/Epoch

GADF-EDL 93.1 0.9409 0.9403 0.9406 45 s

GADF-DenseNet 95.6 0.9665 0.9650 0.9657 53 s

GADF-FcaNet 94.4 0.9538 0.9550 0.9544 44 s

GADF-CAnet 95.6 0.9652 0.9650 0.9651 48 s

GADF-
ResNeXt50 92.5 0.9252 0.9393 0.9322 107 s

GADF-IDARN 96.9 0.9733 0.9700 0.9716 37 s

As can be seen from Tables 19–21, DenseNet and IDARN achieved the highest accuracy
on Dataset2, while IDARN had the shortest training time. Comparing all the indicators on
the three datasets, the model proposed in this paper still outperforms the other models,
therefore IDARN has good robustness under small sample imbalanced data.

4.2.4. Visualisation and Analysis of Results

Figure 21 shows the confusion matrices of the proposed method under the three
datasets. It can be seen that label 1 and label 2 have the lowest accuracy under the three
datasets and the rest of the labels achieve full classification. Figure 22 shows the results
obtained by the proposed method after t-SNE clustering under the three datasets; it can
be seen that there was no confounding between the different categories and the faults
were classified well. Therefore, IDARN can be used for fault classification of small sample
imbalanced data.
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5. Conclusions

To address the problems of deep network models degradation and the collapse of
model training when the data distribution is imbalanced; this paper proposes an intelligent
diagnosis of rolling bearings based on Gramian Angular Difference Field and Improved
Dual Attention Residual Network, and mainly draws the following conclusions:

1. Using GADF to convert one-dimensional signals into two-dimensional images pre-
serves the correlation of the time series and enhances the shock signature; which is
more beneficial for the network’s identification of fault features.

2. The residual structure introduced into the GN is used as the body of the network,
which solves the network degradation problem and reduces the bias caused by the
difference in the distribution of the training samples; meanwhile, the dual-attention
mechanism introduced can enhance the integration ability of the features.
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3. The effects of different normalisation methods and different attention mechanisms
on the model were validated on the CWRU bearing dataset. An average recognition
accuracy of 99.2% was achieved with the four datasets divided.

4. An average identification accuracy of 97.9% was obtained on small samples of imbal-
anced data divided on the bearing fault experimental equipment.

Although the GADF-IDARN method can obtain good fault diagnosis performance,
this method is trained from scratch and therefore the present method requires a longer
training cycle compared to other shallow neural network methods. In further work,
transfer learning methods can be utilised for fault diagnosis tasks to reduce training time.
In addition, the GADF-IDARN methodology should also be utilised to perform on a wider
range of datasets.
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