
Citation: Luo, Q.; Yu, M.; Yan, X.;

Zhou, Z.; Wang, C.; Liu, B. A

Geomagnetic/Odometry Integrated

Localization Method for Differential

Robot Using Real-Time Sequential

Particle Filter. Sensors 2024, 24, 2120.

https://doi.org/10.3390/s24072120

Academic Editors: Won-Sang Ra,

Shaoming He and Ivan Masmitja

Received: 5 March 2024

Revised: 23 March 2024

Accepted: 23 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Geomagnetic/Odometry Integrated Localization Method for
Differential Robot Using Real-Time Sequential Particle Filter
Qinghua Luo 1,2, Mutong Yu 1, Xiaozhen Yan 1,*, Zhiquan Zhou 1, Chenxu Wang 1 and Boyuan Liu 1

1 School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209,
China; luoqinghua081519@163.com (Q.L.); 23b905030@stu.hit.edu.cn (M.Y.); zzq@hitwh.edu.cn (Z.Z.);
wangchenxu@hit.edu.cn (C.W.); 23s130341@stu.hit.edu.cn (B.L.)

2 Shandong Institute of Shipbuilding Technology, Ltd., Weihai 264209, China
* Correspondence: yanxiaozhen@hit.edu.cn; Tel.: +86-631-5678-234; Fax: +86-631-5678-220

Abstract: Geomagnetic matching navigation is extensively utilized for localization and navigation
of autonomous robots and vehicles owing to its advantages such as low cost, wide-area coverage,
and no cumulative errors. However, due to the influence of magnetometer measurement noise,
geomagnetic localization algorithms based on single-point particle filters may encounter mismatches
during continuous operation, consequently limiting their long-range localization performance. To
address this issue, this paper proposes a real-time sequential particle filter-based geomagnetic
localization method. Firstly, this method mitigates the impact of noise during continuous operation
while ensuring real-time performance by performing real-time sequential particle filtering. Then, it
enhances the long-range positioning accuracy of the method by rectifying the trajectory shape of the
odometry through odometry calibration parameters. Finally, by performing secondary matching on
the preliminary matching results via the MAGCOM algorithm, the positioning error of the method
is further minimized. Experimental results show that the proposed method has higher positioning
accuracy compared to related algorithms, resulting in reductions of over 28.58%, 37.11%, and 0.77%
in RMSE, max error, and error at the end, respectively.

Keywords: differential robot; geomagnetic matching navigation; odometry; particle filter

1. Introduction

In autonomous robot navigation, attaining cost-effective, highly precise, and real-time
localization is imperative. A differential robot [1] is a type of autonomous robot based on
a differential drive, which means controlling the speed difference between two wheels to
achieve direction control and turning. This simple and efficient design makes differential
robots popular for various applications. Wheel odometry [2] is one of the commonly used
navigation methods for differential robots, which serves as a sensor for measuring the
displacement and direction of a moving vehicle. It uses pulse count data generated by
encoders to measure the rotation angle of wheels [3] and computes the vehicle’s motion
through established motion models. While wheel odometry presents advantages such as
affordability and real-time performance, it is susceptible to issues of error accumulation [4].
The precision of measurement can be affected by tire slippage, tire deformation, uneven
ground surfaces, and other factors. Consequently, in practical applications, the integration
of wheel odometry with other sensors is often employed to enhance the accuracy and
robustness of localization.

Geomagnetic-aided navigation (GMN) [5] is a technique that utilizes Earth’s magnetic
field information for navigation. It supports other navigation systems, such as the inertial
navigation system (INS), by correcting the provided position and orientation. This is
achieved by matching the measurement of the geomagnetic field intensity at the current
position with the geomagnetic reference map of nearby regions. Consequently, this method
enhances the navigation accuracy of robots and vehicles. Compared to other localization

Sensors 2024, 24, 2120. https://doi.org/10.3390/s24072120 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24072120
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072120?type=check_update&version=1

Sensors 2024, 24, 2120 2 of 24

and navigation methods, GMN offers advantages such as low cost, wide-area coverage, and
no cumulative errors [6,7]. As a result, it has been widely used in various fields. Recognizing
the similarities between odometry and INS regarding high short-term positioning accuracy
and the presence of cumulative errors over long distances [8], integrating GMN with wheel
odometry offers an effective means to correct the accumulated errors in odometry. This
integration facilitates long-distance, low-cost, high-precision real-time localization and
navigation. The commonly used methods for geomagnetic-assisted navigation include
geomagnetic filtering and geomagnetic matching.

Geomagnetic filtering is a real-time method for localization and navigation that an-
alyzes one data point at a time. It addresses the accumulation of positioning errors by
refining the current position provided by INS, odometry, and other systems through filter-
ing. A Kalman filter [9,10] is one of the commonly used geomagnetic filtering algorithms.
In 2014, reference [11] demonstrated the feasibility of the Sandia inertial terrain-aided navi-
gation algorithm based on the Kalman filter for geomagnetic/INS integrated navigation.
The observation of this algorithm relies on a linearized geomagnetic field model. However,
geomagnetic models exhibit highly nonlinear characteristics, and the accuracy of the al-
gorithm is affected by the linearization method. In comparison to the Kalman filter, the
particle filter [12] offers better advantages in processing nonlinear geomagnetic data due
to its good performance in addressing nonlinear and non-Gaussian estimation problems.
In particle filtering, the state of a dynamic system is approximated by a set of weighted
particles, with each particle representing a possible state and the associated weight rep-
resenting the likelihood of that state being true. In 2016, reference [13] demonstrated the
feasibility of the geomagnetic particle filtering algorithm for indoor pedestrian localization.
In 2018, the geomagnetic particle filtering algorithm was used to locate autonomous surface
vehicles, achieving better results compared to dead reckoning [14]. In 2020, Quintas et al.
compared the effects of the extended Kalman filter, unscented Kalman filter, and particle
filter in autonomous underwater vehicle navigation, demonstrating the better robustness
of the particle filter in geomagnetic navigation [15]. In 2022, Lingfeng et al. optimized the
geomagnetic particle filter using the firefly algorithm, reducing the problem of particle
impoverishment and degradation [16]. In 2023, Benjamin proposed the use of geomagnetic
particle filtering for indoor positioning of differential robots, simultaneously calibrating
the magnetometers to effectively reduce the position and orientation errors [17]. However,
such algorithms are prone to significant errors and even divergence in situations with
strong geomagnetic noise. In order to avoid this situation, in 2023, Huapeng et al. used
a particle filter for underwater positioning and introduced a distance interval between
each execution of the algorithm to reduce errors caused by magnetometer measurement
noise [18]. However, the long interval distance between the algorithm executions limits its
ability to correct angular error, leading to a decline in positioning accuracy over time due
to accumulated angular errors.

The geomagnetic matching method reduces the errors of navigation systems such as
INS and odometry by matching the geomagnetic values and relative positions on a trajectory
with the reference map. The commonly used geomagnetic matching methods include
geomagnetic contour matching algorithms (MAGCOM) [19], iterative closest contours
point (ICCP) [20], intelligent optimization algorithms [21], and neural networks [7]. In 2018,
Xiao et al. proposed an improved ICCP algorithm that dynamically selects the appropriate
matching length and matching points [20]. In the same year, Zhuo et al. proposed a
geomagnetic vector ICCP algorithm based on searching the principle of trusted point sets,
which improves the reliability of positioning compared to scalar matching [22]. In 2020,
Chen et al. compared the applicability of MAGCOM, ICCP, and Sandia inertial magnetic
aided navigation (SIMAN) algorithms in GMN for a supersonic aircraft [23]. In the same
year, Wang et al. improved the geomagnetic matching algorithm based on particle swarm
optimization (PSO) by using redundant information from geomagnetic measurements
to constrain the particles, thus enhancing the algorithm’s noise resistance capability [24].
In 2022, Xu et al. proposed a combination of a PSO and ICCP algorithm to reduce the

Sensors 2024, 24, 2120 3 of 24

impact of initial errors on the ICCP [25]. In the same year, Jin et al. proposed an ICCP
algorithm based on three reference maps of geomagnetic field vector data and demonstrated
that using multiple reference maps in ICCP can further reduce the matching errors of
single-component ICCP [26]. In 2023, Zhuo et al. used a probabilistic neural network for
geomagnetic matching, which significantly reduced the probability of mismatch compared
to traditional algorithms. These algorithms can reduce errors caused by the noise in single-
point magnetometer measurements, but they require vehicles to move a certain distance and
obtain a data sequence before each matching process, so their real-time performance is not
strong. Moreover, most geomagnetic matching algorithms, such as ICCP and MAGCOM,
only apply rigid transformations such as translation and rotation to input trajectories [27].
When applied to geomagnetic/odometry integrated navigation, the performance is limited
due to the influence of a significant deviation between the actual trajectory and the matched
trajectory shape caused by random factors in the odometry data.

In order to address the issue of the algorithm’s sensitivity to noise and the de-
crease in accuracy over time due to accumulated errors, this paper proposes a geomag-
netic/odometry integrated localization method based on a real-time sequential particle
filter (RSPF) for differential robot navigation. The main contributions of this paper can be
summarized as follows:

(1) Considering the additional errors caused by the influence of noise when the single-
point geomagnetic particle filter algorithm operates continuously, we perform real-
time sequential particle filtering by modifying the particles from single-point to first-
in-first-out (FIFO) sequence using the data sequence from a segment of the trajectory.
The particle weights are calculated using the data from the entire sequence, reducing
the impact of measurement noise from individual points.

(2) To minimize the positioning error caused by sequence matching based on rigid
transformation when there is a substantial difference between the actual trajectory
and the odometry trajectory, we incorporate the odometry calibration parameters of a
differential robot into particles. The shape of the odometry trajectory is adjusted in
real time, making it closer to the real trajectory.

(3) To further improve the positioning accuracy, secondary matching of the matching
results through the MAGCOM algorithm is performed to reduce the positioning errors
of the sequential particle filter.

The rest of this paper is organized as follows. Section 2 describes the framework and
design process of the RSPF-based localization method. In Section 3, simulation tests are
given to verify the feasibility of the method. Section 4 proposes the experimental results
and discussion. In Section 5, our works are concluded.

2. Proposed Method

The framework of the RSPF-based localization method is shown in Figure 1. In this
section, we analyze the three components of our method, including RSPF, trajectory shape
correction using odometry calibration parameters, and matching result correction using
MAGCOM. We also describe the steps and implementation details of the method.

Sensors 2024, 24, 2120 4 of 24Sensors 2024, 24, x FOR PEER REVIEW 4 of 27

Trajectory shape correction using
odometry calibration parameters

Matching result correction using
MAGCOM

Real-time sequence particle filter

Preliminary result

Corrected result
Figure 1. The framework of the proposed method.

2.1. RSPF
The single-point-based geomagnetic particle filter has high real-time performance.

However, when the amplitude of the noise exceeds the amplitude of geomagnetic field
variations, continuous particle filtering may result in additional errors and even cause
matching failure [18], making it difficult to use for long-range positioning. To improve the
matching accuracy, prior research proposes using a particle filter based on a segment of
the path, and experimental results have demonstrated the effective improvement in local-
ization precision achieved through a path-matching-based particle filter [28]. Nonetheless,
the execution of the algorithm still requires waiting for data sequence collection, thereby
compromising the real-time performance of the particle filtering. In contrast to previous
studies, this paper shifts from single-point matching to real-time sequence matching, en-
suring real-time performance while minimizing the impact of noise.

The i-th particle of the k-th execution of the particle filter i
kp is defined as (1).

, (,)
i

i i i
k i

x
p x y S

y
 

= ∈ 
 

 (1)

where ix and iy are used to calculate the trajectory associated with the particle.

As shown in Figure 2, i
kP is the trajectory corresponding to i

kp , andQ is the tra-

jectory to be matched. R represents the real trajectory. 1
i
kP , 1Q , and 1R are the start-

ing points of i
kP , Q , and R , respectively. S is the constraint region of 1

i
kP with 1Q

as its center, and is used to prevent the position of 1
i
kP from being too far from 1Q , which

could lead to matching failure. i
kP can be calculated as (2).

Figure 1. The framework of the proposed method.

2.1. RSPF

The single-point-based geomagnetic particle filter has high real-time performance.
However, when the amplitude of the noise exceeds the amplitude of geomagnetic field
variations, continuous particle filtering may result in additional errors and even cause
matching failure [18], making it difficult to use for long-range positioning. To improve the
matching accuracy, prior research proposes using a particle filter based on a segment of the
path, and experimental results have demonstrated the effective improvement in localization
precision achieved through a path-matching-based particle filter [28]. Nonetheless, the
execution of the algorithm still requires waiting for data sequence collection, thereby
compromising the real-time performance of the particle filtering. In contrast to previous
studies, this paper shifts from single-point matching to real-time sequence matching,
ensuring real-time performance while minimizing the impact of noise.

The i-th particle of the k-th execution of the particle filter pi
k is defined as (1).

pi
k =

[
xi

yi

]
, (xi, yi) ∈ S (1)

where xi and yi are used to calculate the trajectory associated with the particle.
As shown in Figure 2, Pi

k is the trajectory corresponding to pi
k, and Q is the trajectory

to be matched. R represents the real trajectory. Pi
k1, Q1, and R1 are the starting points of Pi

k,
Q, and R, respectively. S is the constraint region of Pi

k1 with Q1 as its center, and is used
to prevent the position of Pi

k1 from being too far from Q1, which could lead to matching
failure. Pi

k can be calculated as (2).

Pi
k = Q +

[
xi

yi

]
(2)

To improve the matching effectiveness, we calculate the particle weights using the X
and Z components of the magnetic field vector along with the scalar value F, which repre-
sents the magnitude of the geomagnetic field vector. Due to the fact that the Y component
can be calculated through X, Z, and F, ignoring the Y component has little effect on the fea-
ture dimension used for positioning. In addition, the calculation of geomagnetic three-axis
vector data requires the attitude information of the vehicle [19], but the measurement of
attitude sensors inevitably comes with noise, so the accuracy of geomagnetic vector data
is often lower than that of scalar data. Therefore, we choose to ignore the Y component.

Sensors 2024, 24, 2120 5 of 24

Based on the particle weight formula proposed in reference [18], we define the weight of pi
k

as (3).

wi
k = wi

k−1
1√
2π

exp(−

ND
∑

j=1
(Fj

real − Fj
mes)

2
+ λ(X j

real − X j
mes)

2
+ λ(Zj

real − Zj
mes)

2

τND
) (3)

where wi
k is the weight of pi

k; ND represents the length of the trajectory; Fj
real , X j

real , and

Zj
real , respectively, represent the scalar and X and Z component values of the geomagnetic

field at the j-th position on the reference maps; Fj
mes, X j

mes, and Zj
mes, respectively, represent

the measurement values of scalar and X and Z components; τ is a constant selected based
on the variance of measurement errors to prevent the error magnitude from being too
large. Due to the influence of attitude sensor errors, the accuracy of the three-axis vector
component measurements of the geomagnetic field is often lower than that of the scalar.
Therefore, λ is needed to adjust the weight of vector components.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 27

Figure 2. Sequential geomagnetic particle filter.

i
i
k i

x
P Q

y
 

= +  
 

 (2)

To improve the matching effectiveness, we calculate the particle weights using the X
and Z components of the magnetic field vector along with the scalar value F, which rep-
resents the magnitude of the geomagnetic field vector. Due to the fact that the Y compo-
nent can be calculated through X, Z, and F, ignoring the Y component has little effect on
the feature dimension used for positioning. In addition, the calculation of geomagnetic
three-axis vector data requires the attitude information of the vehicle [19], but the meas-
urement of attitude sensors inevitably comes with noise, so the accuracy of geomagnetic
vector data is often lower than that of scalar data. Therefore, we choose to ignore the Y
component. Based on the particle weight formula proposed in reference [18], we define
the weight of i

kp as (3).

2 2 2

1
1

() () ()
1 exp()
2

DN
j j j j j j
real mes real mes real mes

ji i
k k

D

F F X X Z Z
w w

N

λ λ

τπ
=

−

− + − + −
= −



(3)

where i
kw is the weight of i

kp ; DN represents the length of the trajectory; j
realF , j

realX ,

and j
realZ , respectively, represent the scalar and X and Z component values of the geo-

magnetic field at the j-th position on the reference maps; j
mesF , j

mesX , and j
mesZ , respec-

tively, represent the measurement values of scalar and X and Z components; τ is a con-
stant selected based on the variance of measurement errors to prevent the error magnitude
from being too large. Due to the influence of attitude sensor errors, the accuracy of the
three-axis vector component measurements of the geomagnetic field is often lower than
that of the scalar. Therefore, λ is needed to adjust the weight of vector components.

After calculating the weights of all particles, the weights are normalized using (4).



1

i
i k
k N

i
k

i

ww
w

=

=


(4)

Then, the particles are resampled using the method described in reference [15]. The
result of the particle filter kp is calculated as (5).

Figure 2. Sequential geomagnetic particle filter.

After calculating the weights of all particles, the weights are normalized using (4).

ŵi
k =

wi
k

N
∑

i=1
wi

k

(4)

Then, the particles are resampled using the method described in reference [15]. The
result of the particle filter pk is calculated as (5).

pk =
N

∑
i=1

pi
kwi

k
T

(5)

where T refers to matrix transpose. It can be seen from (3) that the weight of each particle
is affected by the geomagnetic measurement values on a segment of trajectory, mitigating
the effect of measurement noise of individual points. However, similar to geomagnetic
matching algorithms, sequential particle filtering also requires the processing of data
sequences collected over a period of time, which can impact real-time performance. In
the field of gravity-aided navigation, some related studies have proposed the utilization
of FIFO sequences to store a segment of data, enabling the implementation of real-time
ICCP algorithms [29,30]. This kind of algorithm achieves real-time sequence matching,
greatly improving the real-time performance. Inspired by these studies, this paper applies
FIFO sequences to geomagnetic particle filtering. Before the algorithm is executed, a pre-
collected data sequence of length ND is needed. Afterward, each time a new data point is
obtained, the pre-stored data sequence is updated to generate particles and achieve real-

Sensors 2024, 24, 2120 6 of 24

time sequential particle filtering. As shown in Figure 3, assuming it is the k-th execution of
the particle filter, the last ND points of the data to be matched are formed into data sequence
Dk, and the trajectory Pi

k, which corresponds to the i-th particle pi
k, is generated based on it.

After one execution of the particle filter, the k-th point Qk is removed from the sequence
and a new data point Qk+ND is added to form a new sequence Dk+1 for the next filtering.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 27

1

N
i i T

k k k
i

p p w
=

= (5)

where T refers to matrix transpose. It can be seen from (3) that the weight of each particle
is affected by the geomagnetic measurement values on a segment of trajectory, mitigating
the effect of measurement noise of individual points. However, similar to geomagnetic
matching algorithms, sequential particle filtering also requires the processing of data se-
quences collected over a period of time, which can impact real-time performance. In the
field of gravity-aided navigation, some related studies have proposed the utilization of
FIFO sequences to store a segment of data, enabling the implementation of real-time ICCP
algorithms [29,30]. This kind of algorithm achieves real-time sequence matching, greatly
improving the real-time performance. Inspired by these studies, this paper applies FIFO
sequences to geomagnetic particle filtering. Before the algorithm is executed, a pre-col-
lected data sequence of length DN is needed. Afterward, each time a new data point is
obtained, the pre-stored data sequence is updated to generate particles and achieve real-
time sequential particle filtering. As shown in Figure 3, assuming it is the k-th execution
of the particle filter, the last DN points of the data to be matched are formed into data

sequence kD , and the trajectory i
kP , which corresponds to the i-th particle i

kp , is gener-

ated based on it. After one execution of the particle filter, the k-th point kQ is removed

from the sequence and a new data point
Dk NQ + is added to form a new sequence 1kD +

for the next filtering.

Figure 3. Real-time sequential particle filter based on FIFO.

2.2. Trajectory Shape Correction Using Odometry Calibration Parameters
The data obtained from the differential wheel odometer is severely affected by ran-

dom factors, resulting in a substantial difference between the actual trajectory and the
odometry trajectory, as shown in Figure 4. Due to the rigid transformation of geomagnetic
sequence matching algorithms, such as ICCP and MAGCOM, the matching performance
is limited when applied to odometry trajectory matching. As shown in Figure 5, O rep-
resents the odometry trajectory, R represents the real trajectory, and P represents the
matching result. Due to the significant difference in shape between O and R , P and
R are difficult to overlap, resulting in positioning errors. Therefore, the particles gener-
ated by RSPF are not rigid transformations of O , but trajectories with modified shapes.

Figure 3. Real-time sequential particle filter based on FIFO.

2.2. Trajectory Shape Correction Using Odometry Calibration Parameters

The data obtained from the differential wheel odometer is severely affected by random
factors, resulting in a substantial difference between the actual trajectory and the odometry
trajectory, as shown in Figure 4. Due to the rigid transformation of geomagnetic sequence
matching algorithms, such as ICCP and MAGCOM, the matching performance is limited
when applied to odometry trajectory matching. As shown in Figure 5, O represents the
odometry trajectory, R represents the real trajectory, and P represents the matching result.
Due to the significant difference in shape between O and R, P and R are difficult to overlap,
resulting in positioning errors. Therefore, the particles generated by RSPF are not rigid
transformations of O, but trajectories with modified shapes.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 27

Figure 4. Comparison between real trajectory and odometry trajectory.

Figure 5. Rigid transformation result.

The motion principle of differential robots is based on a differential drive, which
means controlling the speed difference between two wheels to achieve direction control
and turning. As shown in Figure 6, the motion of a differentially steered robot can be
approximated as a circular motion in a short period. CO is the center of the circular mo-

tion, r is the distance from CO to the center of two driven wheels, d is the distance
from the driven wheel to the center of the two wheels, θ is the orientation of the robot at
the previous moment, dθ is the angle increment during this period, ds is the displace-
ment of the robot during this period, Lr and Rr are the radii of the left and right wheels,

and Lω and Rω are the angular velocities of the left and right wheels.

Figure 4. Comparison between real trajectory and odometry trajectory.

The motion principle of differential robots is based on a differential drive, which
means controlling the speed difference between two wheels to achieve direction control
and turning. As shown in Figure 6, the motion of a differentially steered robot can be
approximated as a circular motion in a short period. OC is the center of the circular motion,
r is the distance from OC to the center of two driven wheels, d is the distance from the
driven wheel to the center of the two wheels, θ is the orientation of the robot at the previous
moment, dθ is the angle increment during this period, ds is the displacement of the robot

Sensors 2024, 24, 2120 7 of 24

during this period, rL and rR are the radii of the left and right wheels, and ωL and ωR are
the angular velocities of the left and right wheels.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 27

Figure 4. Comparison between real trajectory and odometry trajectory.

Figure 5. Rigid transformation result.

The motion principle of differential robots is based on a differential drive, which
means controlling the speed difference between two wheels to achieve direction control
and turning. As shown in Figure 6, the motion of a differentially steered robot can be
approximated as a circular motion in a short period. CO is the center of the circular mo-

tion, r is the distance from CO to the center of two driven wheels, d is the distance
from the driven wheel to the center of the two wheels, θ is the orientation of the robot at
the previous moment, dθ is the angle increment during this period, ds is the displace-
ment of the robot during this period, Lr and Rr are the radii of the left and right wheels,

and Lω and Rω are the angular velocities of the left and right wheels.

Figure 5. Rigid transformation result.
Sensors 2024, 24, x FOR PEER REVIEW 8 of 27

Figure 6. The motion of differential robots.

The motion model of the differential wheeled robot is as follows:

L L Lv rω= (6)

R R Rv r ω= (7)

2
L Rv vv += (8)

2
R Lv v
d

ω −= (9)

where Lv and Rv represent the linear velocities of the left and right wheels; v repre-
sents the robot’s velocity at the current moment; and ω represents the robot’s angular
velocity at the current moment.

The position of the robot can be calculated as follows:

2 2

2 2

L R
L

L R R

r r
vdt dtds

r rd dt dt
d d

ω

θ ω ω

 
         = =          −     

 
 

 (10)

cos()
=

sin()
new old

new old

x x d
ds

y y d
θ θ
θ θ

+     
+     +    

 (11)

where dt is the sampling interval; (oldx , oldy) is the position of the robot at the previous

moment; and (newx , newy) is the position of the robot at the current moment.

In practical applications, the parameters d , Lr , and Rr may have some differences
from the specifications provided by the robot manufacturer, and therefore require pre-
calibration before use [1]. The accuracy of calibration is influenced by a calibration algo-
rithm and the data being used and is one of the main causes of odometry trajectory errors.
Adjusting the above parameters appropriately can affect the shape of the trajectory and
reduce errors. The influence of the changes in different parameters on the trajectory shape
is shown in Figure 7.

Figure 6. The motion of differential robots.

The motion model of the differential wheeled robot is as follows:

vL = rLωL (6)

vR = rRωR (7)

v =
vL + vR

2
(8)

ω =
vR − vL

2d
(9)

where vL and vR represent the linear velocities of the left and right wheels; v represents the
robot’s velocity at the current moment; and ω represents the robot’s angular velocity at the
current moment.

The position of the robot can be calculated as follows:[
ds
dθ

]
=

[∫
vdt∫
ωdt

]
=

[rL
2

rR
2

− rL
2d

rR
2d

][∫
ωLdt∫
ωRdt

]
(10)

[
xnew
ynew

]
=

[
xold
yold

]
+ ds

[
cos(θ + dθ)
sin(θ + dθ)

]
(11)

where dt is the sampling interval; (xold, yold) is the position of the robot at the previous
moment; and (xnew, ynew) is the position of the robot at the current moment.

Sensors 2024, 24, 2120 8 of 24

In practical applications, the parameters d, rL, and rR may have some differences from
the specifications provided by the robot manufacturer, and therefore require pre-calibration
before use [1]. The accuracy of calibration is influenced by a calibration algorithm and the
data being used and is one of the main causes of odometry trajectory errors. Adjusting the
above parameters appropriately can affect the shape of the trajectory and reduce errors.
The influence of the changes in different parameters on the trajectory shape is shown in
Figure 7.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 27

(a) d (b) Lr (c) Rr

Figure 7. The influence of different odometry calibration parameters. (a) Trajectories generated by

different values of d . (b) Trajectories generated by different values of Lr . (c) Trajectories generated

by different values of Rr .

This paper adds parameters d , Lr , and Rr into the particles, allowing the trajectory
shape of each particle to be adjusted. By employing geomagnetic particle filtering, the
method generates results that closely resemble the real trajectory. The calculation of the
particle i

kp can be modified as (12).

i
L
i
R

i i
k

i

i

r
r

p d
x
y

 
 
 
 =
 
 
  

 (12)

where i
Lr , i

Rr , and id are used to adjust the shape of the trajectory i
kP corresponding

to the particle i
kp , and ix and iy are used to add an overall offset to i

kP .

Trajectory i
kP is shown in Figure 8. i

kjP is the j-th point on the trajectory. Assuming

that θ is the initial orientation of the robot at the starting point of the trajectory, the cal-
culation of the orientation of the robot at i

kjP is as (13).

Figure 8. Trajectory shape correction.

1

, 0

()
, 0

2

j

i i
R Rj L Lj

j j i

j

r r dt
j

d

θ θ

ω ω
θ θ −

= =

 −

= + >


 (13)

Figure 7. The influence of different odometry calibration parameters. (a) Trajectories generated by
different values of d. (b) Trajectories generated by different values of rL. (c) Trajectories generated by
different values of rR.

This paper adds parameters d, rL, and rR into the particles, allowing the trajectory
shape of each particle to be adjusted. By employing geomagnetic particle filtering, the
method generates results that closely resemble the real trajectory. The calculation of the
particle pi

k can be modified as (12).

pi
k =


ri

L
ri

R
di

xi

yi

 (12)

where ri
L, ri

R, and di are used to adjust the shape of the trajectory Pi
k corresponding to the

particle pi
k, and xi and yi are used to add an overall offset to Pi

k.
Trajectory Pi

k is shown in Figure 8. Pi
kj is the j-th point on the trajectory. Assuming that

θ is the initial orientation of the robot at the starting point of the trajectory, the calculation
of the orientation of the robot at Pi

kj is as (13).

Sensors 2024, 24, x FOR PEER REVIEW 9 of 27

(a) d (b) Lr (c) Rr

Figure 7. The influence of different odometry calibration parameters. (a) Trajectories generated by

different values of d . (b) Trajectories generated by different values of Lr . (c) Trajectories generated

by different values of Rr .

This paper adds parameters d , Lr , and Rr into the particles, allowing the trajectory
shape of each particle to be adjusted. By employing geomagnetic particle filtering, the
method generates results that closely resemble the real trajectory. The calculation of the
particle i

kp can be modified as (12).

i
L
i
R

i i
k

i

i

r
r

p d
x
y

 
 
 
 =
 
 
  

 (12)

where i
Lr , i

Rr , and id are used to adjust the shape of the trajectory i
kP corresponding

to the particle i
kp , and ix and iy are used to add an overall offset to i

kP .

Trajectory i
kP is shown in Figure 8. i

kjP is the j-th point on the trajectory. Assuming

that θ is the initial orientation of the robot at the starting point of the trajectory, the cal-
culation of the orientation of the robot at i

kjP is as (13).

Figure 8. Trajectory shape correction.

1

, 0

()
, 0

2

j

i i
R Rj L Lj

j j i

j

r r dt
j

d

θ θ

ω ω
θ θ −

= =

 −

= + >


 (13)

Figure 8. Trajectory shape correction.

{
θj = θ, j = 0

θj = θj−1 +
∫
(ri

RωRj−ri
LωLj)dt

2di , j > 0
(13)

Sensors 2024, 24, 2120 9 of 24

where θj is the orientation of the robot at Pi
kj, θj−1 represents the orientation at the previous

point, and ωLj and ωRj are the angular velocities of the left and right wheels corresponding
to Pi

kj.

Pi
kj can be calculated as (14).


Pi

kj = O1 +

[
xi

yi

]
, j = 0

Pi
kj = Pi

kj−1 +
∫
(ri

LωLj+ri
RωRj)dt

2

[
cos(θj)
sin(θj)

]
, j > 0

(14)

where Pi
kj−1 is the previous point on Pi

k and O1 is the starting point of the odometry
trajectory O.

Before performing particle filtering, it is necessary to pre-calibrate parameters rL, rR
and d of the odometer using a set of data to minimize the differences between the odometer
trajectory and the actual trajectory. The pre-calibrated parameters are denoted as rL

′, rR
′,

and d′, which are used to generate odometer trajectories. In the process of particle filtering,
it is necessary to limit the range of each particle to reduce the possibility of particle filter
divergence. The range of ri

L is (rL
′-µrL , rL

′+µrL), the range of ri
R is (rR

′-µrR , rR
′+µrR), and

the range of di is (d′-µd, d′+µd).

2.3. Matching Result Correction Using MAGCOM

As shown in Figure 8, due to the imperfect match between Pi
k and the real trajectory,

there may be position errors in the positioning results. Meanwhile, the method may
encounter matching failures in areas with a high noise impact on the geomagnetic data.
Therefore, a subsequent correction of the matched results is needed. The MAGCOM
algorithm works by performing a translational transformation on the trajectory to be
matched, iterating over nearby grid points, and using mean square difference (MSD) to
obtain the position with the lowest error in terms of geomagnetic field intensity. This
algorithm exhibits fast computation, but it is highly influenced by the similarity of the
trajectory shapes. Given that RSPF can effectively reduce trajectory shape errors, we choose
to use MAGCOM as the method for correcting matching results. After executing RSPF for
a certain distance, we use MAGCOM to perform secondary matching on the preliminary
matching results.

During the execution of MAGCOM, the search points that may serve as matching
results are commonly selected as A1 × B1 grid points on the geomagnetic reference map
near the trajectory to be matched. Since the position error may be smaller than the grid
length L1, this paper divides grids in the search area into sub-grids of length L2. The data
of the sub-grid points are obtained through bilinear interpolation. The search points are
selected as the nearest A2 × B2 sub-grid points to the starting point of the trajectory to be
matched. As shown in Figure 9, O is the trajectory composed of the last M points in the
particle filter matching result sequence Rs, and R is the corresponding true trajectory. Pi

is the i-th search trajectory of MAGCOM. Considering the noise impact of geomagnetic
vector data, the MSD calculation is as follows:

ei
MSD =

1
M

M

∑
j=1

(Fj
i − Fj

mes)
2
+ γ(X j

i − X j
mes)

2
+ γ(Zj

i − Zj
mes)

2
(15)

where ei
MSD is the MSD of Pi; Fj

i , X j
i , and Zj

i , respectively, represent the scalar and X and Z
component values of the geomagnetic field at the j-th position of Pi on the reference maps;
Fj

mes, X j
mes, and Zj

mes, respectively, represent the measurement values of the scalar and X
and Z components. γ is a constant used to adjust the weight of vector components due to
the lower accuracy of the geomagnetic field vector component measurements than that of
the scalar.

Sensors 2024, 24, 2120 10 of 24

Sensors 2024, 24, x FOR PEER REVIEW 11 of 27

2 2 2

1

1 () () ()
M

i j j j j j j
MSD i mes i mes i mes

j
e F F X X Z Z

M
γ γ

=

= − + − + − (15)

where i
MSDe is the MSD of iP ; j

iF , j
iX , and j

iZ , respectively, represent the scalar

and X and Z component values of the geomagnetic field at the j-th position of iP on the
reference maps; j

mesF , j
mesX , and j

mesZ , respectively, represent the measurement values
of the scalar and X and Z components. γ is a constant used to adjust the weight of vector
components due to the lower accuracy of the geomagnetic field vector component meas-
urements than that of the scalar.

To ensure the real-time performance of the method, we only replace the endpoint of

sR with the endpoint of the result of MAGCOM after each correction. When executing

RSPF next time, an offset will be added to all positions in data sequence kD . The offset
can be calculated as (16).

_ _

'
'
k k

k k

D D
s last MAG last

D D

x x
R P

y y
   

= +   
      


 (16)

where _s lastR is the endpoint of sR ; _MAG lastP is the endpoint of the result of

MAGCOM; (
kD

x ,
kD

y) represents the position coordinates in kD ; and ('
kD

x , '
kD

y) is
the position coordinates with added offset.

Figure 9. Matching result correction.

2.4. Method Steps
The method proposed in this paper utilizes RSPF to effectively reduce the impact of

magnetometer measurement noise. By incorporating odometry calibration parameters
into particles, the trajectory shapes can be adjusted in real time to avoid errors caused by
rigid transformation. Finally, MAGCOM is used to perform secondary matching on the
preliminary matching results, further improving the positioning accuracy. The method
flowchart is shown in Figure 10, and the method includes the following steps:
(1) If a stop command is received, navigation is considered finished. Otherwise, step two

is performed.
(2) Obtain new geomagnetic and odometry data, combine them into one data point, and

add the data point to data sequence kD . If the length of kD reaches DN , set 1i =
, 1m = , 1k = and perform the third step. Otherwise, repeat the second step.

(3) If i N< , perform the third step. Otherwise, the sixth step is performed.
(4) Initialize particle i

kp and calculate trajectory i
kP .

Figure 9. Matching result correction.

To ensure the real-time performance of the method, we only replace the endpoint of
Rs with the endpoint of the result of MAGCOM after each correction. When executing
RSPF next time, an offset will be added to all positions in data sequence Dk. The offset can
be calculated as (16). [

x′Dk
y′Dk

]
=

[
xDk
yDk

]
+

→
Rs_lastPMAG_last (16)

where Rs_last is the endpoint of Rs; PMAG_last is the endpoint of the result of MAGCOM; (xDk ,
yDk) represents the position coordinates in Dk; and (x′Dk , y′Dk

) is the position coordinates
with added offset.

2.4. Method Steps

The method proposed in this paper utilizes RSPF to effectively reduce the impact of
magnetometer measurement noise. By incorporating odometry calibration parameters
into particles, the trajectory shapes can be adjusted in real time to avoid errors caused by
rigid transformation. Finally, MAGCOM is used to perform secondary matching on the
preliminary matching results, further improving the positioning accuracy. The method
flowchart is shown in Figure 10, and the method includes the following steps:

(1) If a stop command is received, navigation is considered finished. Otherwise, step two
is performed.

(2) Obtain new geomagnetic and odometry data, combine them into one data point, and
add the data point to data sequence Dk. If the length of Dk reaches ND, set i = 1,
m = 1, k = 1 and perform the third step. Otherwise, repeat the second step.

(3) If i < N, perform the third step. Otherwise, the sixth step is performed.
(4) Initialize particle pi

k and calculate trajectory Pi
k.

(5) Calculate particle weight wi
k and set i = i + 1. Then, go back to the third step.

(6) Normalize the particle weights and perform resampling. Then, calculate the particle
filter result pk.

(7) Calculate result trajectory Pk based on pk. Save the endpoint of Pk as the preliminary
matching result in result sequence Rs. Then, set i = 1, m = m + 1.

(8) If m < M, perform the 10th step. Otherwise, the ninth step is performed.
(9) The last M points are combined into a sequence and used to perform MAGCOM

matching. Then, replace Rs_last with PMAG_last.
(10) Add offset to all positions in Dk. Then, set m = 1.
(11) Remove the starting point of Dk. Set k = k + 1. Go back to the first step.

Sensors 2024, 24, 2120 11 of 24

Sensors 2024, 24, x FOR PEER REVIEW 12 of 27

(5) Calculate particle weight i
kw and set 1i i= + . Then, go back to the third step.

(6) Normalize the particle weights and perform resampling. Then, calculate the particle
filter result kp .

(7) Calculate result trajectory kP based on kp . Save the endpoint of kP as the prelim-

inary matching result in result sequence sR . Then, set 1i = , 1m m= + .
(8) If m M< , perform the 10th step. Otherwise, the ninth step is performed.
(9) The last M points are combined into a sequence and used to perform MAGCOM

matching. Then, replace _s lastR with _MAG lastP .

(10) Add offset to all positions in kD . Then, set 1m = .

(11) Remove the starting point of kD . Set 1k k= + . Go back to the first step.

Input new
data

Length of Dk equals
 to ND？

Y

N

Add data to data
sequence Dk

Initialize ith
particle pki

i=1,m=1,k=1

i<N?

Calculate weight of
pki

Y

Calculate result of
particle filter pk

Calculate the
trajectory Pk

corresponding to pk

Save the endpoint of
Pk to result sequence

Rs

i=i+1

m<M?

i=1,m=m+1

Delete starting point
of Dk

Y

Execute MAGCOM with the
last M points of Rs

Replace Rs_last with the
endpoint of PMAG_last

m=1

N

Start

Navigation
finish?

Stop

Y

N

Particle resampling
and weight

normalization

k=k+1

Add offset to Dk

Figure 10. The flowchart of the RSPF-based localization method.

3. Simulation
In this section, the feasibility and localization performance of the RSPF-based locali-

zation method is evaluated through simulation. We first establish a simulation environ-
ment. Then, we analyze the feasibility of the method by measuring the influence of differ-
ent parameter settings on the method’s performance. Finally, we conduct comparative
experiments to compare the localization performance and accuracy of the algorithm and
related algorithms.

Figure 10. The flowchart of the RSPF-based localization method.

3. Simulation

In this section, the feasibility and localization performance of the RSPF-based localiza-
tion method is evaluated through simulation. We first establish a simulation environment.
Then, we analyze the feasibility of the method by measuring the influence of different
parameter settings on the method’s performance. Finally, we conduct comparative experi-
ments to compare the localization performance and accuracy of the algorithm and related
algorithms.

3.1. Simulation Setup

In this section, we introduce the setup of our simulation, including the simulation
platform, the construction of the simulation environment, the evaluation metrics, and the
related method used for comparison.

3.1.1. Simulation Platform

The configuration of the simulation platform used in this paper is shown in Table 1.

Sensors 2024, 24, 2120 12 of 24

Table 1. Main configuration of the PC.

Components Specifications

CPU Intel(R) i7-10870H @ 2.20GHz
RAM 16 GB

Operating System Windows 10 (64-bit)

Simulation Software Unity 2019.3.3f1,
PyCharm Community Edition 2023.2.1

3.1.2. Simulation Environment Construction

This paper built a simulation environment based on the differential robot motion
model in Section 2.2, as shown in Figure 11. The simulation area is limited to 10 m × 10 m.
The maximum linear speed of the left and right wheels of the robot is 2 m/s, and the acceler-
ation is 1 m/s2. The parameters used for the reference trajectory are set to
rL = 120 mm, rR = 120 mm, and d = 250 mm. By manually controlling the robot’s
movement within the area, simulated reference trajectories and odometry trajectories are
generated. The sampling interval is 0.25 s, and the total number of data points in the
trajectory is 200–300.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 27

3.1. Simulation Setup
In this section, we introduce the setup of our simulation, including the simulation

platform, the construction of the simulation environment, the evaluation metrics, and the
related method used for comparison.

3.1.1. Simulation Platform
The configuration of the simulation platform used in this paper is shown in Table 1.

Table 1. Main configuration of the PC.

Components Specifications
CPU Intel(R) i7-10870H @ 2.20GHz
RAM 16 GB

Operating System Windows 10 (64-bit)

Simulation Software
Unity 2019.3.3f1,

PyCharm Community Edition 2023.2.1

3.1.2. Simulation Environment Construction
This paper built a simulation environment based on the differential robot motion

model in Section 2.2, as shown in Figure 11. The simulation area is limited to 10m 10m ×
. The maximum linear speed of the left and right wheels of the robot is 2 m/s , and the
acceleration is 21 m/s . The parameters used for the reference trajectory are set to

12 m 0mLr = , 12 m 0mRr = , and 250mm d = . By manually controlling the robot’s
movement within the area, simulated reference trajectories and odometry trajectories are
generated. The sampling interval is 0.25 s, and the total number of data points in the tra-
jectory is 200–300.

Figure 11. Robot motion simulation.

We use three simulated geomagnetic reference maps generated through the addition
of multiple random sine signals and mean filtering, including the X and Z components of
the vector data and scalar data, as shown in Figure 12. The geomagnetic map is divided
into 60 60× grids, and the maximum geomagnetic intensity differences between the X,
Z, and scalar reference maps are 19,172.20 nT, 9999.99 nT, and 15,718.47 nT, respectively.
The geomagnetic values corresponding to each position on the simulated trajectories are
obtained by bilinear interpolation of the grid points of the reference map.

Figure 11. Robot motion simulation.

We use three simulated geomagnetic reference maps generated through the addition
of multiple random sine signals and mean filtering, including the X and Z components of
the vector data and scalar data, as shown in Figure 12. The geomagnetic map is divided
into 60 × 60 grids, and the maximum geomagnetic intensity differences between the X,
Z, and scalar reference maps are 19,172.20 nT, 9999.99 nT, and 15,718.47 nT, respectively.
The geomagnetic values corresponding to each position on the simulated trajectories are
obtained by bilinear interpolation of the grid points of the reference map.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 27

(a) X (b) Z (c) Scalar

Figure 12. Simulated geomagnetic reference maps. (a) Reference map of the X component. (b) Ref-
erence map of the Z component. (c) Reference map of the scalar.

3.1.3. Reference Methods
This paper combines a real-time ICCP with a vector ICCP [25] and designs a real-

time vector ICCP as a comparative method. The vector ICCP performs ICCP using three
magnetic reference maps to reduce errors caused by single component matching. Addi-
tionally, this paper selects an adaptive fission particle filter (AFPF) [18] as a comparison.
This method uses adaptive particle fission and sampling to reduce particle degradation
and impoverishment, and it inserts a distance interval during each execution of the parti-
cle filter to lower the influence of noise. Furthermore, this article also compares single-
point-based geomagnetic particle filters.

3.1.4. Evaluation Metrics
For evaluating the positioning accuracy of the method, we use root mean square error

(RMSE), max error, and error at the end as evaluation metrics, which are calculated as
follows:

 2 2

1

1 () ()
sR

RMSE m m m m
ms

e x x y y
R =

= − + − (17)

 2 2max(() ())max m m m me x x y y= − + − (18)

 2 2() ()
s s s send R R R Re x x y y= − + − (19)

where RMSEe , maxe , and ende represent the values of RMSE, max error, and error at the

end, respectively; sR represents the length of the matching result sequence; (mx , my)

denotes the m-th positioning result; (mx , my) denotes the m-th reference position; (
sR

x ,


sR

y) represents the endpoint position of the positioning result; and (
sR

x ,
sR

y) represents
the endpoint position of the reference trajectory.

For the execution efficiency evaluation, we use the average processing time for 100
data points to evaluate the execution efficiency, which is calculated as (20).

100 100 /
sR st t R= (20)

where 100t is the average processing time for 100 data points and
sR
t is the total pro-

cessing time for all points.

Figure 12. Simulated geomagnetic reference maps. (a) Reference map of the X component.
(b) Reference map of the Z component. (c) Reference map of the scalar.

Sensors 2024, 24, 2120 13 of 24

3.1.3. Reference Methods

This paper combines a real-time ICCP with a vector ICCP [25] and designs a real-time
vector ICCP as a comparative method. The vector ICCP performs ICCP using three mag-
netic reference maps to reduce errors caused by single component matching. Additionally,
this paper selects an adaptive fission particle filter (AFPF) [18] as a comparison. This
method uses adaptive particle fission and sampling to reduce particle degradation and
impoverishment, and it inserts a distance interval during each execution of the particle filter
to lower the influence of noise. Furthermore, this article also compares single-point-based
geomagnetic particle filters.

3.1.4. Evaluation Metrics

For evaluating the positioning accuracy of the method, we use root mean square error
(RMSE), max error, and error at the end as evaluation metrics, which are calculated as
follows:

eRMSE =

√√√√ 1
Rs

Rs

∑
m=1

(xm − x̂m)
2 + (ym − ŷm)

2 (17)

emax = max(
√
(xm − x̂m)

2 + (ym − ŷm)
2) (18)

eend =

√
(xRs − ˆxRs)

2 + (yRs − ˆyRs)
2 (19)

where eRMSE, emax, and eend represent the values of RMSE, max error, and error at the end,
respectively; Rs represents the length of the matching result sequence; (x̂m, ŷm) denotes the
m-th positioning result; (xm, ym) denotes the m-th reference position; (ˆxRs , ˆyRs) represents
the endpoint position of the positioning result; and (xRs , yRs) represents the endpoint
position of the reference trajectory.

For the execution efficiency evaluation, we use the average processing time for 100
data points to evaluate the execution efficiency, which is calculated as (20).

t100 = 100tRs /Rs (20)

where t100 is the average processing time for 100 data points and tRs is the total processing
time for all points.

3.2. Feasibility Evaluation

The feasibility of the method was evaluated. We first use the average RMSE to analyze
the influence of different sequence lengths (ND) on the robustness of the trajectory shape
differences and noise effects. Then, we evaluate the execution efficiency under different
ND using the average processing time for 100 data points.

The other parameter settings for the method are as follows. The particle numbers
N is set to 300. The range limit of the parameter is set to µrL = 30 mm, µrR = 30 mm,
and µd = 50 mm to allow particles to cover the correct results, as much as possible, when
the true calibration error of the odometer is unknown. The radius of S is set to 10 mm.
The MAGCOM matching trajectory length M is 30. The length of the sub-grid is set to
L2 = 0.05L1 and the search scope is 10 × 10 sub-grids. The weight constants are set to
τ = 100, λ = 0.5, and γ = 0.5.

3.2.1. Robustness Evaluation

In order to evaluate the robustness of the difference in trajectory shape, this paper
selected 100 trajectories and conducted three sets of comparative experiments with different
pre-calibrated parameters (rL

′, rR
′ and d′). The parameter selection is shown in Table 2. The

greater the difference between the pre-calibrated parameters and rL, rR, and d, the greater
the difference in trajectory shapes. Gaussian noise with a mean of zero is added to the

Sensors 2024, 24, 2120 14 of 24

data. The noise standard deviation for the X and Z component data is 50 nT, and the noise
standard deviation for the scalar data is 100 nT.

Table 2. Pre-calibrated parameters.

Shape rL
’/mm rR

’/mm d’/mm

1 120 120 500
2 119 120 500
3 118 120 500
4 117 120 500
5 120 120 495
6 120 120 490
7 120 120 485

The results are shown in Figure 13. It can be seen from the figure that when the value
of ND is small, the difference in trajectory shape has a significant impact on the positioning
effect. The larger the trajectory difference, the greater the positioning error. As the value of
ND increases, the positioning error decreases. When ND reaches 10, the downward trend
of all curves becomes flat. At this point, we believe that the method has strong robustness
on trajectory shape difference.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 27

Figure 13. Average RMSE under different trajectory shapes.

To evaluate the robustness of the impact of noise, this paper selected 100 trajectories
and conducted three sets of comparative experiments using data with different levels of
Gaussian noise. The noise levels differ in terms of their standard deviations, with a mean
of zero. The noise standard deviation for the X and Z component data is denoted as vσ ,
and the noise standard deviation for the scalar data is denoted as σ . As mentioned in
Section 2.1, due to the influence of measurement errors from the attitude sensors, the noise
in the magnetic vector components is generally greater than the noise in the magnetic
scalar. Therefore, we set = 2vσ σ . The selection of standard deviation is shown in Table
3 The pre-calibrated parameters used for generating the odometry trajectory are set to
'Lr = 118 mm, 'Rr = 120 mm, and 'd = 495 mm.

The results are shown in Figure 14. It can be seen from the figure that as the value of

DN increases, the positioning error decreases. The decreasing trend of the errors be-

comes flat when DN reaches seven. After this point, the positioning effect does not im-
prove significantly. At this point, we believe that the method has strong robustness on the
impact of noise.

Table 3. Noise standard deviations.

Magnetic Noise σ /nT vσ /nT

1 0 0
2 50 100
3 100 200
4 150 300
5 200 400

Figure 13. Average RMSE under different trajectory shapes.

To evaluate the robustness of the impact of noise, this paper selected 100 trajectories
and conducted three sets of comparative experiments using data with different levels of
Gaussian noise. The noise levels differ in terms of their standard deviations, with a mean
of zero. The noise standard deviation for the X and Z component data is denoted as σv,
and the noise standard deviation for the scalar data is denoted as σ. As mentioned in
Section 2.1, due to the influence of measurement errors from the attitude sensors, the noise
in the magnetic vector components is generally greater than the noise in the magnetic scalar.
Therefore, we set σv = 2σ. The selection of standard deviation is shown in Table 3 The pre-
calibrated parameters used for generating the odometry trajectory are set to rL

′ = 118 mm,
rR

′ = 120 mm, and d′ = 495 mm.
The results are shown in Figure 14. It can be seen from the figure that as the value of

ND increases, the positioning error decreases. The decreasing trend of the errors becomes
flat when ND reaches seven. After this point, the positioning effect does not improve
significantly. At this point, we believe that the method has strong robustness on the impact
of noise.

Sensors 2024, 24, 2120 15 of 24

Table 3. Noise standard deviations.

Magnetic Noise σ/nT σv/nT

1 0 0
2 50 100
3 100 200
4 150 300
5 200 400

Sensors 2024, 24, x FOR PEER REVIEW 17 of 27

Figure 14. Simulation results under different noises.

3.2.2. Efficiency Evaluation

To measure the execution efficiency, we use the average 100t taken from the afore-
mentioned simulations.

The results are shown in Figure 15. From the figure, it can be seen that the increase
in DN leads to an increase in computation time. For every increase of one in the value

of DN , the average 100t approximately increases by 0.60 s. Considering the robustness
and execution efficiency of the method, we choose DN = 8 as the optimal parameter.

Figure 15. Average simulation time.

3.3. Performance Evaluation
Based on the optimal parameters in Section 3.2, we evaluate the performance of the

RSPF-based localization method through comparative experiments with related algo-
rithms.

The parameter settings for the methods used in this simulation are as follows. For the
real-time ICCP, the sequence length is 10, with a maximum iteration count of 20 and an
iteration termination threshold of 100 mm. For the single-point particle filter, the particle
number is 300, with a maximum initial distance for particle positions set at 800 mm. For
AFPF, the particle number is 300, with an interval for each execution set at 1200 mm and
a maximum initial distance for particle positions set at 800 mm. As for the RSPF-based
localization method, DN is set to 8, and the remaining parameters are the same as in
Section 3.2.

Figure 14. Simulation results under different noises.

3.2.2. Efficiency Evaluation

To measure the execution efficiency, we use the average t100 taken from the aforemen-
tioned simulations.

The results are shown in Figure 15. From the figure, it can be seen that the increase
in ND leads to an increase in computation time. For every increase of one in the value of
ND, the average t100 approximately increases by 0.60 s. Considering the robustness and
execution efficiency of the method, we choose ND = 8 as the optimal parameter.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 27

Figure 14. Simulation results under different noises.

3.2.2. Efficiency Evaluation

To measure the execution efficiency, we use the average 100t taken from the afore-
mentioned simulations.

The results are shown in Figure 15. From the figure, it can be seen that the increase
in DN leads to an increase in computation time. For every increase of one in the value

of DN , the average 100t approximately increases by 0.60 s. Considering the robustness
and execution efficiency of the method, we choose DN = 8 as the optimal parameter.

Figure 15. Average simulation time.

3.3. Performance Evaluation
Based on the optimal parameters in Section 3.2, we evaluate the performance of the

RSPF-based localization method through comparative experiments with related algo-
rithms.

The parameter settings for the methods used in this simulation are as follows. For the
real-time ICCP, the sequence length is 10, with a maximum iteration count of 20 and an
iteration termination threshold of 100 mm. For the single-point particle filter, the particle
number is 300, with a maximum initial distance for particle positions set at 800 mm. For
AFPF, the particle number is 300, with an interval for each execution set at 1200 mm and
a maximum initial distance for particle positions set at 800 mm. As for the RSPF-based
localization method, DN is set to 8, and the remaining parameters are the same as in
Section 3.2.

Figure 15. Average simulation time.

3.3. Performance Evaluation

Based on the optimal parameters in Section 3.2, we evaluate the performance of the
RSPF-based localization method through comparative experiments with related algorithms.

The parameter settings for the methods used in this simulation are as follows. For the
real-time ICCP, the sequence length is 10, with a maximum iteration count of 20 and an
iteration termination threshold of 100 mm. For the single-point particle filter, the particle
number is 300, with a maximum initial distance for particle positions set at 800 mm. For

Sensors 2024, 24, 2120 16 of 24

AFPF, the particle number is 300, with an interval for each execution set at 1200 mm and
a maximum initial distance for particle positions set at 800 mm. As for the RSPF-based
localization method, ND is set to 8, and the remaining parameters are the same as in
Section 3.2.

3.3.1. Positioning Accuracy Evaluation

In order to evaluate the influence of different trajectory shapes and noises on the
positioning accuracy, we select 100 trajectories and set different rL

′, rR
′, d′, σ, and σv for

five comparative experiments, as shown in Table 4. The trajectories and positioning errors
of the simulation results are shown in Figure 16, and the simulation metrics are presented
in Table 5.

Table 4. Simulation parameters for comparative experiments.

rL
’/mm rR

’/mm d’/mm σ/nT σv/nT

1 119 120 495 0 0
2 118 120 490 0 0
3 117 120 485 0 0
4 119 120 495 50 100
5 119 120 495 100 200

Sensors 2024, 24, x FOR PEER REVIEW 18 of 27

3.3.1. Positioning Accuracy Evaluation
In order to evaluate the influence of different trajectory shapes and noises on the po-

sitioning accuracy, we select 100 trajectories and set different 'Lr , 'Rr , 'd ,σ , and vσ
for five comparative experiments, as shown in Table 4. The trajectories and positioning
errors of the simulation results are shown in Figure 16, and the simulation metrics are
presented in Table 5.

Table 4. Simulation parameters for comparative experiments.

 'Lr /mm 'Rr /mm 'd /mm σ /nT vσ /nT

1 119 120 495 0 0
2 118 120 490 0 0
3 117 120 485 0 0
4 119 120 495 50 100
5 119 120 495 100 200

(a) Trajectory 1 (b) Error 1

(c) Trajectory 2 (d) Error 2

(e) Trajectory 3 (f) Error 3

Figure 16. Cont.

Sensors 2024, 24, 2120 17 of 24

Sensors 2024, 24, x FOR PEER REVIEW 19 of 27

(g) Trajectory 4 (h) Error 4

(i) Trajectory 5 (j) Error 5

Figure 16. Comparison of trajectories and positioning errors of different simulations.

Table 5. Comparison of accuracy of different methods.

 Odometer Real-Time
ICCP

PF AFPF RSPF

1

Average

RMSEe /mm 714.72 575.86 441.43 441.78 201.31

Average

maxe /mm 1458.34 3021.55 976.41 1065.65 517.33

Average

ende /mm 1061.40 745.30 807.33 945.76 250.78

2

Average

RMSEe /mm 1489.94 1127.50 1275.24 1511.65 236.34

Average

maxe /mm 3032.14 3925.28 2229.72 3957.33 563.16

Average

ende /mm
2169.55 1825.05 1941.41 2646.74 266.51

3

Average

RMSEe /mm
2291.13 1699.99 1641.35 1937.64 242.18

Average

maxe /mm
4669.68 4793.87 4544.77 5063.85 570.73

Average

ende /mm
3248.70 3394.47 2276.20 3254.32 324.92

Figure 16. Comparison of trajectories and positioning errors of different simulations.

Table 5. Comparison of accuracy of different methods.

Odometer Real-Time
ICCP PF AFPF RSPF

1

Average
eRMSE/mm 714.72 575.86 441.43 441.78 201.31

Average
emax/mm 1458.34 3021.55 976.41 1065.65 517.33

Average
eend/mm 1061.40 745.30 807.33 945.76 250.78

2

Average
eRMSE/mm 1489.94 1127.50 1275.24 1511.65 236.34

Average
emax/mm 3032.14 3925.28 2229.72 3957.33 563.16

Average
eend/mm 2169.55 1825.05 1941.41 2646.74 266.51

3

Average
eRMSE/mm 2291.13 1699.99 1641.35 1937.64 242.18

Average
emax/mm 4669.68 4793.87 4544.77 5063.85 570.73

Average
eend/mm 3248.70 3394.47 2276.20 3254.32 324.92

4

Average
eRMSE/mm 714.72 1218.29 501.73 413.06 210.40

Average
emax/mm 1458.34 5640.38 1219.81 1025.42 538.13

Average
eend/mm 1061.40 523.01 706.00 255.08 255.08

5

Average
eRMSE/mm 714.72 1456.84 636.10 447.93 210.87

Average
emax/mm 1458.34 5994.75 1734.87 1055.51 562.40

Average
eend/mm 1061.40 508.84 1194.82 906.51 274.50

Sensors 2024, 24, 2120 18 of 24

From Figure 16 and Table 5, it is illustrated that in simulation 1, when the odometry
trajectory shape is close to the reference trajectory and there is no noise in the geomagnetic
data, all algorithms perform well in positioning. Compared to the odometry trajectory, the
real-time ICCP reduces the average eRMSE and eend by 19.43% and 29.78%, respectively, but
there is a phenomenon of matching failure, which leads to an increase in emax. Single-point
particle filter reduces the average eRMSE, emax, and eend by 38.24%, 33.05%, and 23.94%,
respectively. AFPF reduces three types of errors by 38.19%, 26.93%, and 10.90%, respectively.
The RSPF-based localization method has the best localization accuracy, with errors reduced
by 71.83%, 64.52%, and 76.37%, respectively.

In simulations 2 and 3, as the differences in trajectory shapes increased, the positioning
performance of each algorithm decreased. The real-time ICCP has a suppressing effect on
eRMSE, but matching failures become more severe, leading to an increase in emax and eend.
The single-point particle filter is affected by noise, has a limited matching effect, and has
good performance in the initial stage of localization, but there is divergence in the latter
half of the trajectory, resulting in a limited positioning effect and an increase in emax. AFPF
has a weak ability to correct trajectory shapes, causing divergence in the early stage of
positioning, resulting in an increase in all other errors except for eRMSE in simulation 3. On
the other hand, the RSPF-based localization method can effectively correct trajectory shape
differences and still exhibits good suppressing capabilities on all three types of errors.

In simulations 4 and 5, as the noise intensity increases, the positioning performance
of each algorithm decreases. The real-time ICCP matches through contour lines and is
sensitive to noise, resulting in a significant increase in eRMSE and emax, and due to severe
oscillations in the matching trajectory, eend is unstable and shows a decrease. The single-
point particle filter has a good positioning effect in the early stage of the trajectory, but there
is divergence in the latter half of the trajectory, resulting in a limited positioning effect and
an increase in emax. AFPF has good resistance to noise impact and a better matching effect
than the single-point particle filter and can reduce three types of errors. The RSPF-based
localization method has the best robustness against noise effects and still exhibits good
suppressing capabilities on all three types of errors.

3.3.2. Execution Efficiency Evaluation

In order to evaluate the execution efficiency of algorithms, this paper measures the
average execution time of each algorithm in the above simulations. The results are shown
in Table 6.

Table 6. Comparison of efficiency of different methods.

Real-Time ICCP PF AFPF RSPF

Average t100/s 28.08 0.94 0.27 8.05

As can be seen from the table, the processing time of the real-time ICCP for 100
points is approximately 28.08 s, while the single-point particle filter, AFPF, and RSPF-based
localization method take 3.35%, 0.96%, and 28.67% of its time, respectively. The real-time
ICCP uses sequence matching, requires multiple iterations, has a large computational
workload, and is the slowest in terms of calculation speed. The single-point particle
filter only performs matching on a single point, resulting in a shorter processing time.
The AFPF, on the other hand, incorporates particle adaptive fission, which increases the
computational workload of a single particle filter. However, there is a distance interval
between two matching processes in this algorithm, reducing the overall execution time. The
computation time is only 28.72% of that of the single-point geomagnetic particle filter. The
RSPF-based localization method employs a sequence of length 8 for particle filtering and
requires an execution every time a new data point is obtained. Compared to single-point
geomagnetic particle filtering, it increases the computational workload by approximately
8.56 times.

Sensors 2024, 24, 2120 19 of 24

4. Experiments

The effectiveness of the method proposed in this article under ideal conditions has
been validated through simulation experiments. To further demonstrate the practicality
of the algorithm, we conduct experiments using a real differential robot and evaluate the
performance of the proposed algorithm. We also compare our method with other related
algorithms.

4.1. Experiment Environment

The experimental equipment is shown in Figure 17. The robot is equipped with a
three-axis magnetometer, a WT901C attitude sensor (manufactured by Witmotion Company
in Shenzhen, China), and wheeled odometers. The real trajectory of the robot is collected
through the FZ Motion optical motion capture system. Using a set of measured location
data from FZ Motion to calibrate the odometer, the robot parameters were obtained as
rL

′ = 148.32 mm, rR
′ = 143.47 mm, and d′ = 484.70 mm. The robot is controlled to move

within the area through a remote control while collecting data with a sampling interval
of 0.25 s. The total number of trajectory data points is 500–600. The experimental area is
limited to 4.85 m × 6.22 m. The experiment used three reference maps of the measured real
geomagnetic vectors X and Z, as shown in Figure 18. The geomagnetic map is divided into
60 × 60 grids, and the maximum magnetic intensity difference between the X, Z, and scalar
reference map is 7896.88 nT, 18,473.76 nT, and 18,177.06 nT, respectively.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 27

Figure 17. Experimental equipment.

(a) X (b) Z (c) Scalar

Figure 18. Geomagnetic reference maps. (a) Reference map of the X component. (b) Reference map
of the Z component. (c) Reference map of the scalar.

The comparison algorithms and evaluation metrics used in the experiment are the
same as those in the simulation.

Some parameters of the methods used in the experiment are adjusted. For the single-
point particle filter, the maximum initial distance for particle positions is set at 500 mm.
For the AFPF, the interval for each execution is set at 800 mm, and the maximum initial
distance for particle positions is 500 mm. For the RSPF-based localization method, we set
λ = 0.3 and γ = 0.3, and DN is set to 10 to achieve better robustness. Other parameters
are the same as the simulation.

4.2. Experimental Results and Performance Evaluation
This paper conducts matching experiments on 10 sets of real trajectories and presents

a comparative analysis of the performance of the proposed method and related methods.

4.2.1. Experimental Results
The trajectory and positioning errors of some experimental results are shown in Fig-

ure 19, and the statistical data is shown in Table 7 based on the defined evaluation metrics.

Figure 17. Experimental equipment.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 27

Figure 17. Experimental equipment.

(a) X (b) Z (c) Scalar

Figure 18. Geomagnetic reference maps. (a) Reference map of the X component. (b) Reference map
of the Z component. (c) Reference map of the scalar.

The comparison algorithms and evaluation metrics used in the experiment are the
same as those in the simulation.

Some parameters of the methods used in the experiment are adjusted. For the single-
point particle filter, the maximum initial distance for particle positions is set at 500 mm.
For the AFPF, the interval for each execution is set at 800 mm, and the maximum initial
distance for particle positions is 500 mm. For the RSPF-based localization method, we set
λ = 0.3 and γ = 0.3, and DN is set to 10 to achieve better robustness. Other parameters
are the same as the simulation.

4.2. Experimental Results and Performance Evaluation
This paper conducts matching experiments on 10 sets of real trajectories and presents

a comparative analysis of the performance of the proposed method and related methods.

4.2.1. Experimental Results
The trajectory and positioning errors of some experimental results are shown in Fig-

ure 19, and the statistical data is shown in Table 7 based on the defined evaluation metrics.

Figure 18. Geomagnetic reference maps. (a) Reference map of the X component. (b) Reference map
of the Z component. (c) Reference map of the scalar.

The comparison algorithms and evaluation metrics used in the experiment are the
same as those in the simulation.

Sensors 2024, 24, 2120 20 of 24

Some parameters of the methods used in the experiment are adjusted. For the single-
point particle filter, the maximum initial distance for particle positions is set at 500 mm.
For the AFPF, the interval for each execution is set at 800 mm, and the maximum initial
distance for particle positions is 500 mm. For the RSPF-based localization method, we set
λ = 0.3 and γ = 0.3, and ND is set to 10 to achieve better robustness. Other parameters are
the same as the simulation.

4.2. Experimental Results and Performance Evaluation

This paper conducts matching experiments on 10 sets of real trajectories and presents
a comparative analysis of the performance of the proposed method and related methods.

4.2.1. Experimental Results

The trajectory and positioning errors of some experimental results are shown in
Figure 19, and the statistical data is shown in Table 7 based on the defined evaluation
metrics.

Sensors 2024, 24, x FOR PEER REVIEW 23 of 27

(a) Trajectory 1 (b) Error 1

(c) Trajectory 2 (d) Error 2

(e) Trajectory 3 (f) Error 3

Figure 19. Trajectories and positioning errors of experimental results.

Table 7. Average results of different algorithms on all experimental trajectories.

 Odometer
Real-Time

ICCP PF AFPF RSPF

Average

RMSEe /mm 556.76 520.33 586.45 514.13 367.19

Average maxe
/mm

1884.59 2197.41 1795.29 1761.01 1107.43

Average ende
/mm

348.90 251.22 420.87 318.60 249.28

100t /s - 20.77 0.89 0.24 8.44

Figure 19. Trajectories and positioning errors of experimental results.

Sensors 2024, 24, 2120 21 of 24

Table 7. Average results of different algorithms on all experimental trajectories.

Odometer Real-Time
ICCP PF AFPF RSPF

Average
eRMSE/mm 556.76 520.33 586.45 514.13 367.19

Average
emax/mm 1884.59 2197.41 1795.29 1761.01 1107.43

Average
eend/mm 348.90 251.22 420.87 318.60 249.28

t100/s - 20.77 0.89 0.24 8.44

4.2.2. Positioning Accuracy Evaluation

As shown in Figure 19 and Table 7, the proposed method in this paper achieves
a higher level of positioning accuracy compared to other algorithms. Specifically, the
real-time ICCP has a reduced average eRMSE and an average eend of 6.54% and 28.00%,
respectively, while the average emax has shown a 16.60% improvement. The single-point
particle filter has a reduced average emax by 4.74%, while the average eRMSE and the average
eend have increased by 5.33% and 20.63%, respectively. The AFPF has a reduced average
eRMSE, average emax, and average eend of 7.60%, 6.56%, and 8.68%, respectively. And the
RSPF-based localization method has a reduced average eRMSE, average emax, and average
eend of 34.04%, 41.23%, and 28.55%, respectively.

Due to the significant differences in shape between the odometry trajectory and the
actual trajectory and the presence of high noise levels in the magnetometer data, both the
real-time ICCP and the single-point particle filter experience a considerable number of
matching failures, resulting in additional errors. On the other hand, AFPF, with an execution
interval of 800 mm, experiences fewer matching failures. However, the positioning accuracy
of AFPF is heavily influenced by trajectory shapes. As the robot’s traveling distance
increases, the positioning performance gradually deteriorates, limiting its ability to reduce
errors. In contrast, the method proposed in this paper demonstrates a good ability to correct
trajectory shapes and exhibits robustness against noise, effectively suppressing odometry
cumulative errors and achieving higher positioning accuracy.

4.2.3. Efficiency Evaluation

In terms of execution efficiency, according to Table 7, the average processing time of
the real-time ICCP for 100 points is approximately 20.77 s. The processing times of the
single-point particle filter, AFPF, and RSPF-based localization method are 4.29%, 1.16%,
and 40.63%, respectively, compared to the real-time ICCP. From Tables 6 and 7, it can
be observed that, compared to the simulated environment, the experimental area under
real conditions is smaller, resulting in a decrease in the computational complexity of
contour lines. As a result, the processing time of the real-time ICCP is reduced by 26.03%
compared to the simulation. However, it still has the longest processing time compared
to other algorithms. The single-point particle filter still has the shortest computation time,
followed by AFPF. Due to the increase of ND to 10, the time consumption of the RSPF-based
localization method has increased to 9.48 times that of the single-point particle filter, but it
is still faster compared to the real-time ICCP. Considering the improved accuracy, this level
of computational efficiency is acceptable.

4.3. Discussion

The generality and efficiency of the RSPF-based localization method are discussed in
this section:

(1) Discussion of Generality:

RSPF can process data sequences in real time to reduce the impact of high noise
levels in measurement data and improve the robustness of the localization algorithm.
Simultaneously, when integrated with the odometry calibration model, it mitigates the

Sensors 2024, 24, 2120 22 of 24

influence of trajectory shapes, resulting in the achievement of high-precision positioning
results. This strategy can be applied to other multi-sensor fusion localization algorithms
based on motion models with severe noise in the data, including, but not limited to,
geomagnetic/INS integrated navigation and others.

However, there are still some issues with our selection of range limit at present. In
order to maintain the universality of the parameters, we have chosen larger constraint
parameters, µrL , µrR , and µd, which may lead to potential algorithm divergence or wastage
of computing resources. We will explore more suitable parameter selection in our future
research.

(2) Discussion of Efficiency:

The real-time analysis of a data sequence may introduce heightened computational
complexity, and the computation time is approximately the product of the processing time
of the single-point algorithm and sequence length, resulting in a decrease in execution
efficiency. We will explore in future research how to lightweight algorithms to further
improve real-time performance while maintaining positioning accuracy.

(3) Discussion of Robustness:

Simulation results show that the RSPF-based localization method has strong robustness
against zero mean Gaussian noise. However, compared to the simulation, the localization
performance of the method has decreased in real environments, which may be due to the
complexity of noise in real environments. We will consider how to reduce the noise impact
in real environments in future research, such as adaptively adjusting sequence length and
designing more suitable particle weight formulas.

5. Conclusions

In this paper, we proposed a geomagnetic/odometry integrated localization method
based on RSPF for differential robot navigation. The proposed RSPF method used the
data sequence from a segment of the trajectory to perform particle filtering. This approach
reduced positioning errors caused by magnetometer measurement noise in a single-point
particle filter while maintaining real-time performance. Additionally, the method incorpo-
rated the odometry calibration parameters of a differential robot to adjust the trajectory
shapes, thereby mitigating errors introduced by rigid transformations applied to the trajec-
tory. Lastly, secondary matching on the matching results through the MAGCOM algorithm
was performed to reduce the potential position errors of the particle filter. The experimental
results indicated that, compared to the odometry trajectory, the average eRMSE, average
emax, and average eend have been reduced by 34.04%, 41.23%, and 28.55%, respectively.
However, compared to the single-point particle filter, this algorithm will result in an in-
crease in computational complexity and an average processing time of 9.48 times, which
leads to higher hardware support when applied.

In summary, the proposed method can effectively improve positioning accuracy and
offers an important reference to geomagnetic-aided localization in other applications. But
further research is still needed to reduce the complexity of the method.

Author Contributions: Q.L.: Conceptualization, Methodology, Funding acquisition. M.Y.: Method-
ology, Software, Writing original draft. X.Y.: Software, Validation, Methodology, Writing review
and editing. Z.Z.: Project administration, Resources, Supervision. C.W.: Conceptualization, Formal
analysis. B.L.: Software, Validation, Writing review and editing. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China grant
number 62271164 and 62101158, the Major Scientific and Technological Innovation Project of Shan-
dong Province of China grant number 2020CXGC010705, 2021ZLGX-05, and 2022ZLGX04, the
Shandong Provincial Natural Science Foundation grant number ZR2020MF017, ZR2022MF255, and
ZR2023MF051, the engineering research center of Shandong province, the joint innovation center of
Shandong Province, and the Shan-dong Provincial Key Laboratory of Marine Electronic Information

Sensors 2024, 24, 2120 23 of 24

and Intelligent Unmanned Systems, Key Laboratory of Cross-Domain Synergy and Comprehensive
Support for Unmanned Marine Systems, Ministry of Industry and Information Technology, Discipline
construction fund grant number 2023SYLHY05.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of the study are available from the
corresponding author on reasonable request.

Conflicts of Interest: Author Qinghua Luo was employed by the company Shandong Institute of
Shipbuilding Technology, Ltd. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict of
interest.

List of Abbreviations

GMN Geomagnetic Matching Navigation
INS Inertial Navigation System
RSPF Real-Time Sequential Particle Filter
MAGCOM Magnetic Contour Matching
ICCP Iterative Closest Contours Point
SIMAN Sandia Inertial Magnetic Aided Navigation
PSO Particle Swarm Optimization
FIFO First-In-First-Out
MSD Mean Square Difference
AFPF Adaptive Fission Particle Filter
RMSE Root Mean Square Error

References
1. Zhuang, Y.H.; Yuan, C.Z.; Lin, C.Y.; Peconkova, V.; Lee, M.F.R. Calibration for kinematic control of differential-drive mobile

robots: A machine learning approach. In Proceedings of the 2023 International Conference on Advanced Robotics and Intelligent
Systems, Taipei, Taiwan, 30 August–1 September 2023; pp. 1–6. [CrossRef]

2. Wen, Z.; Yang, G.; Cai, Q.; Chen, T. A novel bluetooth-odometer-aided smartphone-based vehicular navigation in satellite-denied
environments. IEEE Trans. Ind. Electron. 2023, 70, 3136–3146. [CrossRef]

3. Ouyang, W.; Wu, Y.; Chen, H. INS/odometer land navigation by accurate measurement modeling and multiple-model adaptive
estimation. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 245–262. [CrossRef]

4. Sousa, R.B.; Petry, M.R.; Moreira, A.P. Evolution of odometry calibration methods for ground mobile robots. In Proceedings of the
2020 IEEE International Conference on Autonomous Robot Systems and Competitions, Ponta Delgada, Portugal, 15–17 April
2020; pp. 294–299. [CrossRef]

5. Chen, Z.; Liu, K.; Zhang, Q.; Liu, Z.; Chen, D.; Pan, M.; Hu, J. Geomagnetic vector pattern recognition navigation method based
on probabilistic neural network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–8. [CrossRef]

6. Hong, L.; Mingyong, L.; Kun, L. Bio-inspired geomagnetic navigation method for autonomous underwater vehicle. J. Syst. Eng.
Electron. 2017, 28, 1203–1209. [CrossRef]

7. Chen, Z.; Liu, Z.; Zhang, Q.; Chen, D.; Pan, M.; Xu, Y. A new geomagnetic vector navigation method based on a two-stage neural
network. Electronics 2023, 12, 1975. [CrossRef]

8. Dong, J.; Ren, X.; Han, S.; Luo, S. UAV vision aided INS/odometer integration for land vehicle autonomous navigation. IEEE
Trans. Veh. Technol. 2022, 71, 4825–4840. [CrossRef]

9. Hu, Z.D.; Guo, C.F.; Zhang, S.F.; Cai, H. Application of unscented kalman filter in geomagnetic navigation for aerodynamic
missile. J. Astronaut. 2009, 30, 1443–1448. [CrossRef]

10. Huang, C.Y.; Tian, H.D.; Zhao, H. Present research situation of geomagnetic filter navigation technologies. Sci. Technol. Eng. 2013,
13, 8976–8982. [CrossRef]

11. Zhiguo, D.; Chong, K. Geomagnetic field aided inertial navigation using the SITAN algorithm. In Proceedings of the 2014 2nd
International Conference on Systems and Informatics, Shanghai, China, 15–17 November 2014; pp. 79–83. [CrossRef]

12. Li, M.M.; Lu, H.Q.; Yin, H.; Huang, X.L. Novel algorithm for geomagnetic navigation. J. Cent. S. Univ. Technol. 2011, 18, 791–799.
[CrossRef]

13. Solin, A.; Sarkka, S.; Kannala, J.; Rahtu, E. Terrain navigation in the magnetic landscape: Particle filtering for indoor positioning.
In Proceedings of the 2016 European Navigation Conference, Helsinki, Finland, 30 May–2 June 2016; pp. 1–9. [CrossRef]

https://doi.org/10.1109/ARIS59192.2023.10268540
https://doi.org/10.1109/TIE.2022.3169714
https://doi.org/10.1109/TAES.2020.3011998
https://doi.org/10.1109/ICARSC49921.2020.9096154
https://doi.org/10.1109/TGRS.2023.3273552
https://doi.org/10.21629/JSEE.2017.06.18
https://doi.org/10.3390/electronics12091975
https://doi.org/10.1109/TVT.2022.3151729
https://doi.org/10.3873/j.issn.1000-1328.2009.04.022
https://doi.org/10.3969/j.issn.1671-1815.2013.30.021
https://doi.org/10.1109/ICSAI.2014.7009263
https://doi.org/10.1007/s11771-011-0764-9
https://doi.org/10.1109/EURONAV.2016.7530559

Sensors 2024, 24, 2120 24 of 24

14. Quintas, J.; Teixeira, F.C.; Pascoal, A. AUV geophysical navigation using magnetic data—The MEDUSA GN system. In
Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium Journal, Monterey, CA, USA, 23–26 April 2018;
pp. 1122–1130. [CrossRef]

15. Quintas, J.; Cruz, J.; Pascoal, A.; Teixeira, F.C. A comparison of nonlinear filters for underwater geomagnetic navigation. In
Proceedings of the 2020 IEEE/OES Autonomous Underwater Vehicles Symposium, St. Johns, NL, Canada, 30 September–2
October 2020; pp. 1–6. [CrossRef]

16. Shi, L.; Yu, M.; Yin, W. PDR/geomagnetic fusion localization method based on AOFA-improved particle filter. IEEE Trans. Instrum.
Meas. 2022, 71, 1–9. [CrossRef]

17. Siebler, B.; Gerstewitz, T.; Sand, S.; Hanebeck, U.D. Magnetic field-based indoor localization of a tracked robot with simultaneous
calibration. In Proceedings of the 2023 13th International Conference on Indoor Positioning and Indoor Navigation, Nuremberg,
Germany, 25–28 September 2023; pp. 1–6. [CrossRef]

18. Yu, H.; Li, Z.; Yang, W.; Shen, T.; Liang, D.; He, Q. Underwater geomagnetic localization based on adaptive fission particle-
matching technology. J. Mar. Sci. Eng. 2023, 11, 1739. [CrossRef]

19. Chen, Z.; Liu, Z.; Zhang, Q.; Chen, D.; Pan, M.; Hu, J.; Xu, Y.; Wang, Z.; Wang, Z. An improved geomagnetic navigation method
based on two-component gradient weighting. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

20. Xiao, J.; Duan, X.; Qi, X. An adaptive delta m-ICCP geomagnetic matching algorithm. J. Navig. 2018, 71, 649–663. [CrossRef]
21. Liu, K.; Motta, G.P.A.; Ma, T.; Guo, T. Multi-floor indoor navigation with geomagnetic field positioning and ant colony

optimization algorithm. In Proceedings of the 2016 IEEE Symposium on Service-Oriented System Engineering, Oxford, UK, 29
March–2 April 2016; pp. 314–323. [CrossRef]

22. Chen, Z.; Zhang, Q.; Pan, M.; Chen, D.; Wan, C.; Wu, F.; Liu, Y. A new geomagnetic matching navigation method based on
multidimensional vector elements of earth’s magnetic field. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1289–1293. [CrossRef]

23. Chen, K.; Liang, W.C.; Liu, M.X.; Sun, H.Y. Comparison of geomagnetic aided navigation algorithms for hypersonic vehicles. J.
Zhejiang Univ.-Sci. A 2020, 21, 673–683. [CrossRef]

24. Lihui, W.; Ninghui, X.; Qingya, L. A PSO geomagnetic matching algorithm based on particle constraint. J. Chin. Inert Technol.
2020, 28, 755–760. [CrossRef]

25. Xu, N.; Wang, L.; Wu, T.; Yao, Z. An innovative PSO-ICCP matching algorithm for geomagnetic navigation. Measurement 2022,
193, 110958. [CrossRef]

26. Zixiang, J.; Supeng, X.; Guibin, Z.; Jian, L.; Genwang, D.; Zhenyu, F. An ISCCP algorithm for geomagnetic gradient matching for
navigation. Geophys. Geochem. Explor. 2022, 46, 1225–1231. [CrossRef]

27. Zhang, H.; Yang, L.; Li, M. Improved ICCP algorithm considering scale error for underwater geomagnetic aided inertial
navigation. Math. Probl. Eng. 2019, 2019, 1527940. [CrossRef]

28. Qiu, K.; Huang, H.; Li, W.; Luo, D. Indoor geomagnetic positioning based on a joint algorithm of particle filter and dynamic time
warp. In Proceedings of the 2018 Ubiquitous Positioning 2018, Indoor Navigation and Location-Based Services, Wuhan, China,
22–23 March 2018; pp. 1–7. [CrossRef]

29. Liu, F.; Li, F.; Lin, N.; Jing, X. Gravity aided positioning based on real-time ICCP with optimized matching sequence length. IEEE
Access 2019, 7, 97440–97456. [CrossRef]

30. Cai, L.; Zheng, T. Gravity matching simulation of real-time ICCP algorithm. Ship Electron. Eng. 2016, 36, 109–112. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/PLANS.2018.8373495
https://doi.org/10.1109/AUV50043.2020.9267915
https://doi.org/10.1109/TIM.2021.3128706
https://doi.org/10.1109/IPIN57070.2023.10332492
https://doi.org/10.3390/jmse11091739
https://doi.org/10.1109/LGRS.2022.3213779
https://doi.org/10.1017/S0373463317000844
https://doi.org/10.1109/SOSE.2016.18
https://doi.org/10.1109/LGRS.2018.2836465
https://doi.org/10.1631/jzus.A1900648
https://doi.org/10.13695/j.cnki.12-1222/o3.2020.06.009
https://doi.org/10.1016/j.measurement.2022.110958
https://doi.org/10.11720/wtyht.2022.1567
https://doi.org/10.1155/2019/1527940
https://doi.org/10.1109/UPINLBS.2018.8559747
https://doi.org/10.1109/ACCESS.2019.2929778
https://doi.org/10.3969/j.issn.1672-9730.2016.12.025

	Introduction
	Proposed Method
	RSPF
	Trajectory Shape Correction Using Odometry Calibration Parameters
	Matching Result Correction Using MAGCOM
	Method Steps

	Simulation
	Simulation Setup
	Simulation Platform
	Simulation Environment Construction
	Reference Methods
	Evaluation Metrics

	Feasibility Evaluation
	Robustness Evaluation
	Efficiency Evaluation

	Performance Evaluation
	Positioning Accuracy Evaluation
	Execution Efficiency Evaluation

	Experiments
	Experiment Environment
	Experimental Results and Performance Evaluation
	Experimental Results
	Positioning Accuracy Evaluation
	Efficiency Evaluation

	Discussion

	Conclusions
	References

