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Abstract: Surface roughness prediction is a pivotal aspect of the manufacturing industry, as it directly
influences product quality and process optimization. This study introduces a predictive model
for surface roughness in the turning of complex-structured workpieces utilizing Gaussian Process
Regression (GPR) informed by vibration signals. The model captures parameters from both the time
and frequency domains of the turning tool, encompassing the mean, median, standard deviation
(STD), and root mean square (RMS) values. The signal is from the time to frequency domain and it
is executed using Welch’s method complemented by time–frequency domain analysis employing
three levels of Daubechies Wavelet Packet Transform (WPT). The selected features are then utilized
as inputs for the GPR model to forecast surface roughness. Empirical evidence indicates that the GPR
model can accurately predict the surface roughness of turned complex-structured workpieces. This
predictive strategy has the potential to improve product quality, streamline manufacturing processes,
and minimize waste within the industry.

Keywords: surface roughness; vibration signal analysis; Gaussian Process Regression; Daubechies
Wavelet Packet Transform; complex-structured workpieces

1. Introduction

Surface roughness is a critical determinant of product quality, functionality, and
reliability in the manufacturing industry. It quantifies the deviation of a workpiece’s actual
surface from its ideal form and is influenced by various factors, such as cutting parameters,
tool geometry, material, and machining processes. The complexity of manufacturing
intricate geometric parts often involves multiple steps, including boring, milling, roughing,
and finishing, with surface roughness needing to meet assembly process specifications
post-finishing. Achieving an optimal balance of surface roughness is essential, as it can
be neither too low nor too high. Consequently, surface roughness is a vital metric for
assessing product quality. Traditionally, quality assurance has relied on periodic sampling
and manual inspection, which can lead to significant waste when surface roughness fails
to meet standards. Thus, the development of a real-time, accurate surface roughness
prediction method is imperative.

Previous research has investigated artificial intelligence (AI) approaches for predicting
surface roughness in turning processes. Benardos and Vosniakos [1] found AI methods to
outperform traditional approaches, while Özel and Karpat [2] and Palanisamy and Shan-
mugasundaram [3] reported that artificial neural networks (ANNs) surpassed regression
models and response surface methodologies.
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Researchers have also refined input variables to enhance prediction accuracy. For
example, in 2010, T. Reddy and C. Reddy [4] correlated acoustic emission (AE) with surface
roughness, Marani et al. [5] evaluated feed rate and cutting speed in adaptive neuro-fuzzy
inference systems (ANFIS), and Lin et al. [6] demonstrated that ANNs could improve
prediction accuracy by incorporating vibration signals. Vasanth et al. [7] fused cutting
force, tool wear, displacement of tool vibration, and three cutting parameters to predict
the roughness in ANN. Moreover, researchers have improved prediction accuracy by
enhancing models’ capabilities. Pimenov et al. [8] found that random forests outperformed
other models, while Badiger et al. [9] and Kong et al. [10] utilized ANNs and machine
learning techniques to optimize cutting parameters and feature extraction, respectively.
Su et al. [11] and Lu et al. [12] applied SVM and GPR, respectively, achieving promising
results.

Despite these efforts, existing methods, which primarily rely on traditional statistics,
SVM, and ANN, depend heavily on comprehensive training data. The complex machining
environment, including the use of cutting coolants, often hinders the acquisition of real
surface images, necessitating a reliable and accessible method for initial data collection.

Time domain signal processing methodologies, encompassing statistical functions and
advanced techniques, have been extensively investigated for tool condition monitoring
in turning processes. Siddhpura and Paurobally [13] conducted a review of flank wear
prediction methods, while Elangovan [14] enhanced the selection of statistical features
from vibration signals using principal component analysis (PCA), achieving a classification
accuracy of 91.2% for flank wear. Aghdam et al. [15] employed the autoregressive moving
average (ARMA) model to identify wear-sensitive features based on the dynamics of the
tool-holder system, addressing the challenges of identifying random tool wear features in
time domain analysis, as noted by Siddhpura and Paurobally [13], Nath [16], and Kuntoğlu
et al. [17].

Frequency domain analysis methods, such as FFT and PSD, have been explored by
Fang et al. [18] and Plaza et al. [19]. Bhuiyan and Choudhury [20] utilized the root mean
square (RMS) of vibration signals and frequency analysis to assess machine tools under
various cutting conditions. Tangjitsitcharoen and Lohasiriwat [21] differentiated broken
chip signals from tool wear using the PSD of decomposed cutting force.

In the field of machinery fault diagnosis and tool condition monitoring (TCM), the
Daubechies Wavelet Packet Transform (WPT) has been recognized for its efficacy in pro-
cessing vibration signals. The WPT’s selection is attributed to its ability to provide a
balanced time–frequency resolution, which is crucial for capturing the transient characteris-
tics of non-stationary signals, such as those encountered in turning processes. Scheffer and
Heyns [22], Wang et al. [23,24], and Segreto et al. [25] applied wavelet analysis to classify
tool wear, achieving high success rates. The WPT’s adaptability allows for the extraction
of features that are highly relevant to the prediction of tool wear and surface roughness.
This is demonstrated by the work of Plaza and López [26,27], who established clear criteria
for WPT based on vibration signals, and Benkedjouh et al. [28], who combined continuous
wavelet transform (CWT) with blind source separation (BSS) to estimate the remaining
useful life (RUL) of milling tools with high accuracy.

Furthermore, the WPT’s energy localization capabilities enable the precise identifi-
cation of frequency components and their temporal occurrences, which is beneficial for
fault detection and diagnosis (Gangadhar et al. [29]). The robustness of the WPT against
noise, a common challenge in practical applications, is highlighted by Du et al. [30], who
combined WPT and WT features to predict tool state with high accuracy using a neural
network. The WPT’s utility in feature extraction for machine learning models is exempli-
fied by Kong et al. [31], who presented a predictive model for tool wear that integrated
Radial-Basis-Function-based principal component analysis (PCA) and relevance vector
machine, with features extracted from time domain statistical functions and Daubechies
WPT energy using Shannon entropy. This model significantly reduced the root mean square
error, showcasing the WPT’s potential for enhancing the performance of predictive models.
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In comparison to wavelet analysis, the Empirical Mode Decomposition (EMD) has
seen less use in recent TCM studies. However, its combination with WT and other methods
has shown promise in detecting tool wear (Babouri et al. [32], Li et al. [33], Liu et al. [34]).
This suggests that while the WPT is a preferred method, alternative techniques like EMD
can still contribute to the field.

In summary, the Daubechies Wavelet Packet Transform’s selection for processing
original vibration signals is justified by its adaptability, balanced time–frequency resolution,
energy localization, noise robustness, and effectiveness in feature extraction for machine
learning models. These attributes make the WPT a valuable tool in the signal processing
toolkit for machinery health monitoring and predictive maintenance.

Recent advancements, including the application of AI for predicting surface roughness
in additively manufactured components, as demonstrated by Temesgen Batu et al. [35], the
utilization of causality-driven feature selection to enhance deep-learning-based models in
milling machines by Hyeon-Uk Lee et al. [36], and the investigation of novel parameters
in grinding processes by Mohammadjafar Hadad et al. [37], collectively suggest that
innovative methodologies can markedly improve predictive accuracy. The enhanced
prediction of surface roughness in titanium alloy during abrasive belt grinding, achieved
through an advanced Radial Basis Function (RBF) neural network by Kun Shan et al. [38],
and the high precision attained by integrating hybrid features with an Improved Sparrow
Search Algorithm-Deep Belief Network (ISSA-DBN) for milling die steel P20, as reported
by Miaoxian Guo et al. [39], further highlight the efficacy of these cutting-edge approaches.

This paper proposes using Gaussian Process Regression (GPR) based on vibration
signals to accurately predict surface roughness in turning complex-structured workpieces.
GPR offers several advantages: it provides uncertainty estimates, it is non-parametric
and flexible, and it has demonstrated higher accuracy and robustness compared to other
methods. In turning processes, vibration signals, which are less susceptible to external
noise and easier to install, are analyzed using GPR. This approach leverages the strengths
of vibration signals to improve the prediction of surface roughness.

In turning processes, there are various types of signals that can be utilized as inputs for
GPR when predicting surface roughness. These signals include commonly used ones, such
as acoustic emission (AE) and cutting force. However, these signals have limitations that can
affect their accuracy and applicability in different scenarios. On the other hand, vibration
signals possess several advantages. Firstly, vibration sensors can be easily installed without
the need to damage the original structure of the machine tool. Secondly, vibration signals
are less susceptible to external noise and disturbances, resulting in more reliable and
accurate predictions of surface roughness. Therefore, in this paper, GPR is employed to
analyze vibration signals from turning complex-structured workpieces.

This paper elucidates the significance of surface roughness in manufacturing and
addresses the complexities of its prediction. It presents a methodology encompassing
feature extraction, correlation, and the utilization of Gaussian Process Regression (GPR)
for predictive modeling (Section 2). The experimental framework, data acquisition, and
vibration signature analysis are thoroughly described (Section 3). This paper delves into
signal processing methodologies, culminating in GPR-based predictions (Section 4). The
Discussion (Section 5) evaluates cross-validation methodologies and interprets the study’s
outcomes, while the Conclusion (Section 6) encapsulates the research’s essence and suggests
potential research trajectories.

2. Methodology

Our methodology is meticulously designed to predict surface roughness in the turning
of complex-structured workpieces using Gaussian Process Regression (GPR) informed by
vibration signals. The process encompasses three primary components: signal acquisition,
feature extraction, and surface roughness prediction. We capture vibration signals from
the turning tool in three orthogonal directions throughout the machining process, which
are then preprocessed to mitigate noise from extraneous sources. The feature extraction
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module extracts parameters from these signals, covering both time and frequency domains.
Time domain features are derived using statistical measures, such as the mean, maximum,
median, standard deviation (STD), and root mean square (RMS). Frequency domain analysis
is facilitated by Welch’s method, which transforms the signals from the time domain to
the frequency domain, and it is further enhanced by a three-level Daubechies Wavelet
Packet Transform (WPT). These features are subsequently utilized to construct the surface
roughness prediction model. The GPR model, known for its ability to model nonlinear
relationships between inputs and outputs, is trained with a subset of relevant features
selected based on their correlation with surface roughness. The model’s performance
is optimized using an iterative conjugate gradient method for parameter determination,
ensuring a robust prediction model that is both accurate and efficient.

2.1. Feature Extraction and Correlation

Feature extraction from vibration signals is a pivotal step in preprocessing aimed at
isolating pertinent information that enhances signal quality and processing efficiency. This
process encompasses various methodologies, such as statistical characteristics, frequency
domain features, time–frequency features, and nonlinear characteristics.

Statistical characteristics involve calculating the mean, variance, standard deviation,
and peak values of the vibration signal, which reflect the average vibration level and tool
fluctuation. Frequency domain features are derived through Fourier or wavelet transforms,
capturing attributes like power spectral density, frequency components, and dominant
frequencies, which are essential for analyzing the frequency composition and distribution
of the tool’s vibrations.

Welch’s method, a prevalent frequency domain feature extraction technique, employs
Fourier-transform-based signal analysis. It segments the raw vibration data, X(n), into L
overlapping subsegments, each containing M data points, resulting in a total of N = LM
data points. The jth segment is represented as:

X j(n) = x(n + jM − M), 0 ≤ n ≤ M, 1 ≤ j ≤ L (1)

Then, a window function w(n) is added to each data segment, and the power spectrum
of each segment is calculated. The power spectrum of the jth segment is

Ij(w) =
1
U

∣∣∣∑M−1
n=0 xj(n)w(n)e−jen

∣∣∣2 (2)

where U is the normalization factor:

U =
1
M∑M−1

n=0 w2(n) (3)

Assuming that the power spectra of each segment are approximately uncorrelated,
the power spectral estimate is given by:

Pxx

(
ejw
)
=

1
L∑L

j=1 Ij(w) (4)

The Welch feature extraction method is employed to obtain frequency components
and power spectral density, which are instrumental in analyzing the signal’s frequency
composition and distribution. This method enhances the accuracy of spectral estimation
but may introduce information loss and estimation errors during signal segmentation and
windowing. Consequently, careful parameter selection and optimization are essential, and
they are tailored to the specific application and data characteristics.

Time–frequency domain analysis, including short-time Fourier transform (STFT),
wavelet transform (WT), Hilbert–Huang transform (HHT), and empirical mode decomposi-
tion (EMD), is extensively applied to nonstationary signals for machinery fault diagnosis. In
the context of turning process tool condition monitoring (TCM), WT analysis is particularly
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prevalent due to its significant reduction of processing time and precise identification of
specific frequency contributions (Figure 1).
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To assess the correlation between the statistical properties of time and frequency
domain acceleration signals and roughness data, the Pearson correlation coefficient (PCC)
is utilized. The PCC ranges from −1 to 1, with a value of 0 indicating no correlation.
Negative values denote an inverse relationship, while positive values indicate a direct
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correlation. In this study, the absolute value of PCC is prioritized, as higher absolute values
suggest stronger correlation features. The mathematical equation for PCC is as follows:

PCC(i) =

∣∣∣∣∣ cov(Xi, Ra)√
var(X)× var(Ra)

∣∣∣∣∣ (5)

Here, Xi is the ith variable, Ra is the roughness, var represents variance, and cov
represents covariance. The value of PCC(i) represents the correlation between X and Ra.

2.2. Gaussian Process Regression (GPR) Model

To predict surface roughness, a subset of relevant features is selected based on actual
requirements and the nature of the problem. These features are then incorporated into
a prediction model for tool wear degree utilizing machine learning algorithms, such as
Support Vector Machine (SVM), decision trees, and neural networks for modeling and
prediction.

Gaussian Process Regression (GPR) is a machine learning algorithm adept at modeling
nonlinear relationships between inputs and outputs. It uses the chosen features from signal
acquisition and feature extraction modules to predict surface roughness. The Gaussian
process, represented by Equation (6), is characterized by feature vectors that include certain
parameters, such as the time domain maximum, average, median, and root mean square
values.

f ∼ GP
[
m(X), k

(
X, X′)] (6)

The mean function, as described by Equation (7), represents the expected value of the
function.

m(X) = E( f (X)) (7)

The covariance function, detailed in Equation (8), is a critical component of the GPR
model.

k
(
X, X′) = E

[(
f (X)− m

(
X′))( f

(
X′)− m

(
X′))] (8)

The kernel function of GPR, which combines a mean function and a covariance func-
tion, typically sets the mean function to zero. The rational quadratic kernel function, as
shown in Equation (9), is a common choice.

k(X, X′) = σ2

(
1 +

(X − X′)2

2αs2

)−α

(9)

This function’s parameters, including the scale factors σ, s, and the proportional
mixed factor α, are optimized for this study. The rational quadratic kernel function can
be interpreted as a sum of square exponential kernel functions with varying reduction
lengths, and it reduces to a square exponential kernel under certain conditions. Its infinite
differentiability ensures a smooth function, which is crucial for the GPR model. The optimal
parameter solution is determined using an iterative conjugate gradient method.

In essence, a robust prediction model requires accurate signal collection, followed by
the optimization and adjustment of feature extraction methods and parameters based on
specific vibration signals and tool wear conditions. Additionally, the efficacy of feature
extraction and model construction necessitates experimental validation.

3. Field Tests and Data Acquisition
3.1. Field Experiment Setup

The field experiments were conducted using a CNC machine, model SNC-A200, from
Shanghai SYMA Machine Tool Technology Corporation, as depicted in Figure 2a. Four
types of tools were employed for the machining process: roughing turning, finishing
turning, milling, and drilling. The focus of this study is on finishing turning, as it directly
impacts surface roughness. The specific tool used is shown in Figure 2b, and a sample of



Sensors 2024, 24, 2117 7 of 26

the finished workpiece with a complex structure is presented in Figure 2c. Uniform cutting
conditions were maintained for all workpieces, as detailed in Table 1. Figure 3 displays the
magnetically attached acceleration sensor on the finishing turning tool.
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Table 1. SYMA CNC cutting parameters.

Cutting Parameters Data

Depth of cut 0.06 (mm)

Spindle speed 3200 (RPM)

Feed rate 0.06 (mm/rev)

Tool nose radius 0.6 (mm)

Tool overhang length 13 (mm)

Cutting fluid With coolant
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To ensure high-quality signal preprocessing, several measures were implemented.
Prior to collecting vibration signals, the machine tool was meticulously calibrated to
eliminate external noise and other factors that could compromise the accuracy of the
signals. This included the precise placement of the sensor on the machine tool, positioning
it as close to the tool’s head as possible, and adjusting the sensor’s orientation to align
with the actual working conditions. Furthermore, the sensor and tool were securely affixed
using strong glue and a powerful magnet. After careful adjustment, the sensor position, as
shown in Figure 3, was finalized.

During the experiment, vibration signals from 50 workpieces were recorded, along
with their surface roughness measurements, over a period of cutting 1000 workpieces. An
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increase in the number of workpieces processed corresponded to an increase in surface
roughness.

3.2. Description of Data

The correlation between the workpiece’s surface roughness and the vibration signals
during turning is presented below.

3.2.1. Roughness

The workpiece, constructed from ADC-6 aluminum alloy die casting, underwent
surface roughness measurements at three distinct surface locations using the Surftest SJ-210
Surfagauge, as shown in Figure 4. The Surfagauge’s stylus was employed to meticulously
assess the workpiece’s surface, with the Ra value representing the arithmetic mean of the
roughness profile. The maximum permissible Ra value for this workpiece is established at
700 µm.
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The roughness values are described as:

rj = [rj1, rj2, rj3] (10)

The measured values were taken at three distinct positions on each workpiece. Simi-
larly, the maximum, median, mean, and standard deviation (STD) roughness values were
calculated from three separate measurements for each workpiece.

During the SYMA field test, No. 1 Tool was utilized for 62 days, during which it
processed a total of 40,060 workpieces. Some of the workpieces exhibited roughness
levels exceeding the specified tolerance of 600 µm. Owing to nightly downtime, the daily
production ranged from 500 to 1600 workpieces, with acceleration data being collected from
approximately 30 workpieces each day. No. 2 Tool was under same cutting parameters
as No. 1 Tool. However, No. 2 Tool only cut 29,196 workpieces that reached the desired
tolerance.

3.2.2. Vibration Data

The vibration sensor utilized is the CA-YD-3193 from Sinocera Piezotronics Inc.
(Yangzhou, China), featuring a sample frequency of 25,600 Hz. The cutting process for a
single workpiece encompasses loading (approximate time), rough turning, drilling, milling,
finishing turning, and unloading, totaling an approximate cutting time of 50 s. Further
details are provided in Table 2.



Sensors 2024, 24, 2117 9 of 26

Table 2. Approximate time duration of each step of cutting.

1 8~12 Loading

2 15~16 Moving

3 16~20 Roughing

4 21~23 Drilling

5 23~25 Moving

6 25~47 Milling

7 47~48 Moving

8 48~53 Finishing Turning

9 53~58 Moving Back

3.3. Vibration Signature
3.3.1. Time Domain Vibration for Cutting One Workpiece

Vibration measurements were conducted using a triaxial accelerometer, with the mea-
surement directions specified in Figure 3. Table 2 outlines the procedures in chronological
order. Figure 5 presents the vibration signals along the X, Y, and Z axes, as indicated in
a–c, respectively. The Y-axis displays the highest acceleration values, followed by the X
and Z axes. For this study, only the finishing turning process, which is most relevant to
surface roughness, was selected. This is represented by the vibration signal between the
two orange, dashed lines in Figure 6.
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3.3.2. Frequency Analysis of Finishing Turning Signals

Employing Welch’s method, the power spectrum density of the finishing turning
process was obtained and is depicted in Figure 6. The red circles in the figure denote the
harmonic peaks of the signal. The fundamental frequency of the vibration was determined
to be 53.3 Hz, corresponding to the CNC spindle speed of 3200 RPM.

4. Signal Processing and Features Optimization
4.1. Time Domain Analysis

The commonly utilized statistical functions in time domain analysis encompass a
range of well-established metrics, such as the mean, root mean square (RMS), standard
deviation (STD), skewness, kurtosis, and crest factor. These functions are instrumental in
characterizing the behavior of signals and identifying trends or anomalies within the data.

The time domain analysis involved the examination of signals from both ending facing
and cylindrical turning processes while focusing on certain parameters, such as the mean,
RMS, STD, skewness, kurtosis, and crest factor. The statistical properties were categorized
into three distinct groups based on the production timeline. The first group spanned from
the 2nd to the 17th day, with approximately 5000 workpieces produced; the second group
from the 23rd to the 50th day; and the third group on the 62nd day. Over the 62-day
sample period, the analysis revealed fluctuations in amplitude with minimal changes in
skewness. The mean value, RMS, and STD decreased in the first group, while the second
group showed an increase, and the crest factor and kurtosis exhibited a contrasting trend.
The RMS and STD properties were notably similar.

Figure 7a presents roughness measurements from three different positions of the
30 workpieces for each day, with Figure 7b,e depicting the max, median, mean, and STD
of these measurements. The roughness values fluctuate, with some abnormal peaks, but
generally trend upwards over time. The roughness can be divided into three groups. The
first is from the 2nd to the 17th day, with values primarily between 350 µm and 450 µm;
the second is from the 23rd to the 50th day, with values around 450 µm to 550 µm; and the
third is on the 62nd day, with some workpieces exceeding the desired tolerance of 600 µm.
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stronger correlations with the max, median, and mean of roughness, with PCC absolute 
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strated the highest correlation with each statistical roughness, with a maximum PCC of 
0.7969 for the mean roughness value. 

Figure 7. (a) Three times of Ra; (b) max of Ra; (c) median of Ra; (d) mean of Ra; (e) STD of Ra.

The STD, as shown in Figure 7b, occasionally highlighted discrepancies among the
roughness measurements. Figure 8’s heatmaps illustrate the PCCs between the time
domain’s statistical properties and roughness metrics. The mean value and kurtosis of the
time domain in the X-axis (tangential direction) and Z-axis (feed direction) showed stronger
correlations with the max, median, and mean of roughness, with PCC absolute values
ranging from 0.70 to 0.79. The kurtosis of the time domain in the X-axis demonstrated the
highest correlation with each statistical roughness, with a maximum PCC of 0.7969 for the
mean roughness value.
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Figure 8. Correlations between statistical properties of time domain and roughness.

In summary, the mean value of the time domain signals in the X-axis and Z-axis
demonstrated consistent performance across both tools, suggesting their potential as rele-
vant features for predicting roughness.

4.2. Frequency Domain Analysis

The Fast Fourier Transform (FFT) is a highly regarded and widely applied technique
for processing signals in the frequency domain by harnessing the Fourier Transform (FT)
to seamlessly transition signals from the time domain to the frequency domain. The FFT
algorithm achieves this by performing a series of multiplications and additions, which
markedly decreases the computational burden compared to the traditional DFT. This
optimization significantly enhances the efficiency of the DFT computation by minimizing
the number of complex operations required.

While the FT is fundamental to signal analysis, it faces a limitation due to its reliance
on sinusoidal basis functions. This dependency can impede the precise determination of
FT coefficients for non-stationary signals, which lack a constant frequency throughout their
duration.

Power spectral density (PSD) quantifies the distribution of signal power across various
frequency bands. Welch’s method enhances PSD analysis by introducing window functions,
which effectively mitigate the noise associated with finite data sets, thus providing a more
precise depiction of the signal’s power distribution across frequencies.

Figure 9 demonstrates the application of Welch’s method to analyze the frequency do-
main of acceleration signals in three orthogonal directions, with a sample rate of 25,600 Hz.
The data are divided into 256 overlapping segments, each processed with a Hamming
window. The PSD is depicted for the three axes—X, Y, and Z—represented in blue, red, and
green, respectively. Typically, PSD increases with frequency, with distinct peaks observed
around 3700 Hz for the X-axis (Figure 9a) and Z-axis (Figure 9c) in Groups 1 and 3. The
Y-axis (Figure 9b) for Group 2 exhibits the highest PSD at approximately 3700 Hz.
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Figure 9. Welch results: (a) X-axial; (b) Y-axial; (c) Z-axial.

Figure 10 presents the Pearson correlation coefficients (PCCs) between the PSD of
every 100 frequencies and the statistical roughness, which aids in the selection of relevant
frequencies. The blue, red, yellow, and purple curves represent the max, mean, median, and
STD of roughness, respectively. The largest PCCs in the X-axis are approximately 0.8446,
0.8674, and 0.8595 for the maximum values, mean values, and median values of roughness,
respectively, at 3700 Hz (Figure 10a). Although these PCCs are not the highest in the Y-axis
(Figure 10b) or Z-axis (Figure 10c), they still exhibit strong correlations of around 0.67 and
0.72, respectively. The PCCs for mean values, median, and max of roughness are similar,
with the median roughness PCC slightly higher. The highest PCCs are around 0.7689 at
1300 Hz for the Y-axis and around 0.7562 at 3800 Hz for the Z-axis. Other significant PCCs
are observed around 1200 Hz, 6500 Hz, and 12,600 Hz for the X and Y axes. The STD of
roughness is less related to the frequency domain.

Figure 11 also shows the comparison of PCCs between the frequency domain and
roughness for Tool No. 1 and No. 2. The STD of roughness, which is less related to the
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frequency domain, is disregarded. The blue and red curves represent Tool No. 1 and No. 2,
respectively. For No. 2, the highest PCCs are around 0.8221 at 4700 Hz for the X-axis, 0.7749
at 8100 Hz for the Y-axis, and 0.8511 at 3100 Hz for the Z-axis. The PCCs between the
frequency domain and max, mean value, and median of roughness for both tools exhibit
similar trends in low frequencies across all three axes. The ranges from 3000 Hz to 4000 Hz
generally exhibit steady high PCCs for both tools, especially in the X-axis. The PCCs
between the frequency domain and roughness are consistently higher than 0.7 around
12,600 Hz for both tools in the X-axis.
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Figure 10. Correlations between roughness and frequency domain: (a) X-axial; (b) Y-axial; (c) Z-axial.

Table 3 summarizes the comparison of maximum PCCs for time and frequency do-
mains for both tools. The frequency domain PCCs are superior to those of the time domain
for both tools.

In summary, the correlation between the frequency domain and surface roughness
outperforms that of the time domain, particularly in the frequency range around 12,600 Hz
for the X-axis, where the PCC exceeds 0.7, indicating a strong correlation and suggesting
these frequencies as promising features for analysis. While the peaks of PCCs in the
frequency domain vary between the two tools, the trends in low frequencies are notably
similar.
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Figure 11. Comparison PCCs of frequency domain and roughness for No. 1 Tool with No. 2 Tool:
(a) X-axial; (b) Y-axial; (c) Z-axial.

Table 3. Comparison of two tools’ maximum values of PCCs.

Tool No. Domain Parameters X Y Z

1

Time
PCC 0.7969 0.7013 0.7396

Property Kurtosis Kurtosis Kurtosis

Frequency
PCC 0.8674 0.7689 0.7562

Frequency (Hz) 3700 1300 3800

2

Time
PCC 0.8267 0.2708 0.7402

Property STD/RMS STD/RMS STD/RMS

Frequency
PCC 0.8221 0.7749 0.8511

Frequency (Hz) 4700 8100 3100
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4.3. Wavelet Packet Transform

Wavelet analysis employs a set of mother wavelets, such as Haar, Daubechies, symlets,
Morlets, and coiflets, to decompose signals into their constituent components. The three
principal types of wavelet analysis are the continuous wavelet transform (CWT), discrete
wavelet transform (DWT), and wavelet packet transform (WPT). A crucial distinction
between the short-time Fourier transform (STFT) and wavelet analysis is that STFT breaks
down signals into shorter segments using a window function for DFT computation, while
wavelet analysis relies on mother wavelets in place of sinusoidal functions. The WPT
extends the capabilities of DWT by providing further decomposition of the approximation
and detail signals.

Figure 12 presents a three-level WPT decomposition, where the input signal (x) is
initially processed by a low-pass filter to obtain the approximation coefficients (AL) and a
high-pass filter to extract the detailed coefficients (DH). This process is recursively applied
at subsequent levels.
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Figure 12. WPT of three levels of decomposition.

Figure 13 provides an example of a workpiece’s signal decomposition using a three-
level Daubechies WPT. The original vibration signals for the X, Y, and Z axes are depicted
in Figure 13a,c,e, respectively. The corresponding reconstructions of wavelet coefficients
are shown in Figure 13b,d,f, where larger nodes represent higher-pass wavelet coefficients,
indicating regions of greater frequency content.
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Figure 13. An example of the WPT of three levels of decomposition. (a) X-axis original vibration signal,
(b) reconstructions of wavelet coefficient, (c) Y-axis original vibration signal, (d) reconstructions of
wavelet coefficient, (e) Z-axis original vibration signal, (f) reconstructions of wavelet coefficient.

The PSD results of reconstructed coefficient 3 (frequency range: 3200 Hz to 4800 Hz)
are exemplified in Figure 14. Blue, red, and green represent Groups 1, 2, and 3, respectively,
consistent with Section 4.1. Notably, there are clear peaks around 3700 Hz in the X and Z
axes for Group 3, similar to Figure 9.

Table 4 lists fifty-two mother wavelet families. Two sets of data are analyzed to
determine the optimal performance of PCCs between the energy percentage of these
wavelet coefficients and surface roughness, as shown in Figure 15a for Tool No. 1 and
Figure 15b for Tool No. 2. Stability-wise, levels L2 and L3 exhibit variability, and their
PCCs are lower than other levels for both tools. The best mother wavelet for Tool No. 1
is dmey at level L4 with a PCC of 0.8558 in Figure 15a. For Tool No. 2, the best mother
wavelet is db18 at level L6 with a PCC of 0.9109 in Figure 15b.
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Figure 14. An example of PSDs of wavelet coefficient 3. (a) X-axis reconstructed coefficient 3,
(b) Y-axis reconstructed coefficient 3, (c) Z-axis reconstructed coefficient 3.

Table 4. Fifty-two mother wavelets.

Mother Wavelets Families Order

Daubechies
db2, db3, db4, db5, db6, db7, db8, db9, db10,

db11, db12, db13, db14, db15, db16, db17, db18,
db19, db20

Haar Haar

Discrete Meyer dmey

Fejer–Korovkin filters fk4, fk6, fk8, fk14, fk22

Coiflets coif1, coif2, coif3, coif4, coif5

Symmlets sym2, sym3, sym4, sym5, sym6, sym7, sym8

Biorthogonal
bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8,
bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4,

bior5.5, bior6.8.
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Figure 16 explores the effect of decomposition level (L) on the PCCs between the en-
ergy percentage of wavelet decomposition and the roughness of Tool No. 1 in three direc-
tions. The highest PCC is 0.8558 at 8000 Hz to 8800 Hz in Y-axis level L4 in Figure 16d. 
Low-pass coefficients of scale functions and high-pass coefficients of wavelet functions fail 
to filter signals correctly at L2 and L3. Changes in energy percentage at high frequencies 

Figure 15. PCCs between energy of each decomposition level (L) and roughness: (a) No. 1 Tool;
(b) No. 2 Tool.

Figure 16 explores the effect of decomposition level (L) on the PCCs between the
energy percentage of wavelet decomposition and the roughness of Tool No. 1 in three
directions. The highest PCC is 0.8558 at 8000 Hz to 8800 Hz in Y-axis level L4 in Figure 16d.
Low-pass coefficients of scale functions and high-pass coefficients of wavelet functions fail
to filter signals correctly at L2 and L3. Changes in energy percentage at high frequencies
are more relevant to roughness at L4, L5, L6, and L7. However, increasing decomposition
levels does not improve PCCs, as L7’s high-frequency PCC is lower than L5 and L6. There
are no significant differences between L5, L6, and L7.
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Figure 16. PCCs between energy of each decomposition level (L) and roughness: (a) L2; (b) L3; (c) L4;
(d) L5; (e) L6; (f) L7.

Figure 17 compares the PCCs between the energy of dmey decomposition level L6
and roughness for Tool No. 1 and Tool No. 2. The blue line represents Tool No. 1, and
the cyan line represents Tool No. 2. PCCs decrease at lower frequencies after WPT in the
X-axis, while they increase at higher frequencies. The frequency around 10,000 Hz in the
X-axis is a common feature for both tools, with PCCs around 0.7.
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Figure 17. (a–c) PCCs between energy of dmey decomposition level (L6) and roughness for No. 1
Tool and No. 2 Tool.

WPT can enhance PCC performance at low and high frequencies, but important
features may be filtered during signal decomposition. Increasing decomposition levels
does not yield better results, as there are no significant differences between L5, L6, and L7.
The best mother wavelet for both tools is dmey.

4.4. Results of GPR Predict Roughness

To prevent overfitting due to a large number of features, six optimal features with
high correlation to roughness were selected as inputs for the Gaussian Process Regression
(GPR) model. The dataset was divided into five equally sized folds, with four folds used
for training and one for testing. This cross-validation process was repeated five times while
rotating the folds, and the average performance of the model across all folds was calculated
to determine the final evaluation model.

Figure 18 shows that the blue dots represent the surface roughness measurements ob-
tained by the Surftest SJ-210 Surfagauge, while the yellow dots indicate the GPR predicted
values. The model’s predictions exhibit a strong correlation with the measured results,
as demonstrated by an R-squared value of 0.96 and a root mean square error (RMSE) of
35 µm.
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5. Discussion

The literature review indicates that research on linear regression, Support Vector
Machines (SVMs), and Gaussian Process Regression (GPR) models has shown promising
results. Consequently, this study undertakes a comparative analysis of these three models
as detailed below.

5.1. Cross-Validation

Cross-validation is a robust technique for model training and validation, which in-
volves partitioning the training data into two distinct subsets: one for actual training and
the other for validation. In the context of k-fold cross-validation, k-1 subsets are designated
for training, while the remaining subset serves as the validation set. This process is iterated
k times, with each of the k subsets being used as the validation set once. In this thesis, a
k-fold cross-validation with k set to five is employed.

The predictive accuracy of the models is assessed using two key metrics: the root
mean square error (RMSE), which quantifies the magnitude of the prediction error, and
the determination coefficient (R2), which measures the degree of correlation between the
predicted and actual data.

For predicting surface roughness, linear regression, SVM, and GPR models are applied
while utilizing features derived from the preceding sections. Table 5 presents the accuracy
metrics for the No. 1 Tool, with GPR emerging as the most accurate model, boasting the
lowest RMSE (16.141) and the highest R2 (0.94). The GPR model utilizes an exponential
kernel function, and the results are visually depicted in Figure 19, where the red points
represent the predicted roughness according to GPR, contrasted with the green points
representing the measured roughness.

Table 5. Prediction models’ accuracy.

Models Tool RMSE R2

Linear regression
1# 18.369 0.92

2# 28.19 0.81

SVM
1# 18.453 0.92

2# 27.779 0.81

GPR
1# 16.141 0.94

2# 26.682 0.83

5.2. Discussion

In this research, the feature set has been expanded to encompass both time and
frequency domains, thereby enhancing the predictive precision of surface roughness esti-
mation.

For the No. 2 Tool, the analysis is conducted using the same input variables and
models as for the No. 1 Tool. The comparative results, as presented in Table 5, reveal that
the GPR model once again outperforms others with the lowest RMSE (26.682) and the
highest R2 (0.83). The GPR’s predictive performance is visually demonstrated in Figure 9,
where the predicted roughness (red points) is juxtaposed with the measured roughness
(green points). The reduced accuracy observed for the No. 2 Tool is attributed to the
lower Pearson correlation coefficients (PCCs) of the input variables, indicating a weaker
correlation with the output variable.
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Figure 19. GPR prediction results for (a) No. 1 Tool and (b) No. 2 Tool.

6. Conclusions

This study presents a predictive model for surface roughness in the turning of complex-
structured workpieces employing Gaussian Process Regression (GPR) and vibration signals.
The model incorporates parameters extracted from the time and frequency domains of
vibration signals captured in three orthogonal directions from the cutting tool. These
features are then utilized as inputs for GPR to forecast surface roughness. The experimental
outcomes confirm that the model delivers precise predictions for surface roughness in
complex turning operations. The model’s utility extends to the optimization of cutting
parameters, tool geometry, and material selection, enabling the attainment of the desired
surface finish within a turning system.

A significant advantage of this approach is its ability to accurately predict surface
roughness for intricate workpieces without relying on intricate simulations or laborious
physical measurements. This capability can streamline the quality control process in
manufacturing, reducing both costs and time, and aid manufacturers in refining their
production methods to enhance surface quality and minimize waste.

Furthermore, the model’s predictive capabilities can be harnessed for real-time surface
roughness estimation during manufacturing. This real-time feedback allows manufacturers
to dynamically adjust machining parameters, ensuring superior surface finish and a lower
rate of defective products.
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