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Abstract: This paper introduces an innovative non-contact heart rate monitoring method based
on Wi-Fi Channel State Information (CSI). This approach integrates both amplitude and phase
information of the CSI signal through rotational projection, aiming to optimize the accuracy of heart
rate estimation in home environments. We develop a frequency domain subcarrier selection algorithm
based on Heartbeat to subcomponent ratio (HSR) and design a complete set of signal filtering and
subcarrier selection processes to further enhance the accuracy of heart rate estimation. Heart rate
estimation is conducted by combining the peak frequencies of multiple subcarriers. Extensive
experimental validations demonstrate that our method exhibits exceptional performance under
various environmental conditions. The experimental results show that our subcarrier selection
method for heart rate estimation achieves an average accuracy of 96.8%, with a median error of only
0.8 bpm, representing an approximately 20% performance improvement over existing technologies.

Keywords: Wi-Fi; Channel State Information (CSI); non-contact monitoring; heart rate; subcarrier
selection

1. Introduction

In recent years, as people’s concern for health has deepened, ubiquitous health mon-
itoring has become a focal point for both researchers and the public. Traditional vital
signs monitoring technologies mainly rely on wearable devices that directly contact the
user’s body. While they ensure a certain level of accuracy in monitoring, they also bring
inconveniences to users, such as discomfort from long-term wear and impracticality in daily
use. To address these issues, researchers have begun exploring non-contact health monitor-
ing solutions, especially non-contact vital signs monitoring technologies. These not only
enhance user comfort, but also improve usability in practical monitoring environments,
as they do not require continuous user involvement.

Some diseases, such as myocardial infarction [1], apnea [1], and sudden infant death
syndrome [2], can be detected or prevented by monitoring abnormalities in vital signs.
In many such diseases, the symptoms of patients may only appear in a short period of
time, thus requiring long-term and continuous monitoring. However, due to limitations
in medical resources and funding, long-term hospitalization observation is impractical
for most people. Therefore, continuous and low-cost vital sign monitoring in the home
environment is essential. The traditional vital sign monitoring scheme mainly relies on
specialized sensors attached to the body, such as electrodes used for polysomnography
(PSG) [3] and electrocardiogram (ECG) [4]. However, these devices are not suitable for
use in home environments as they are expensive and may affect sleep quality. Other non-
professional sensors based on attachments, such as pressure or acceleration sensors [5,6],
also require contact with the body, which may cause inconvenience to users. Therefore, non-
contact vital sign monitoring technology has received great attention, especially solutions
based on vision and radio frequency (RF). However, lighting conditions limit computer
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vision-based solutions [7,8]. Meanwhile, devices used in traditional RF-based solutions [9,10],
such as software defined radio or radar systems, are often costly and difficult to deploy.

In recent years, vital sign monitoring based on Wi-Fi has gained widespread attention
due to its capability for non-contact sensing, relying on ubiquitously deployed and cost-
effective Wi-Fi devices. The ability of Wi-Fi to detect vital signs arises from the fact
that breathing and heartbeats cause deformations in the abdomen and chest, thereby
affecting the propagation of Wi-Fi signals. Channel State Information (CSI) captures these
changes [11], enabling the recovery of the required vital signs. CSI provides detailed, fine-
grained physical information on how signals propagate from the transmitter to the receiver,
including detailed amplitude and phase information for different subcarriers. However,
since the trunk deformations caused by breathing and heartbeats are very subtle and have
a relatively minor impact on Wi-Fi signal propagation, theoretical models are necessary to
guide this sensing process. Currently, most advanced schemes are based on the Fresnel
zone model [12], the Fresnel diffraction model [13], or the CSI-ratio model [14,15].

Existing research has primarily focused on estimating breathing rates [6], but in
practical applications, human heart rate information is equally important, as many heart-
related diseases cannot be prevented by monitoring breathing alone. Additionally, the phase
information in CSI also contains breath and heart rate information, whereas most existing
works only consider estimating from either amplitude or phase, potentially not fully
utilizing the perceptive capabilities of the CSI signal.

To overcome these challenges, this paper proposes a non-contact heart rate monitoring
method based on Wi-Fi CSI signals, which accurately estimates heart rate in a home
environment by combining the amplitude and phase information of the CSI signal. Our
contributions can be summarized as follows:

1. In this work, our method not only considers both the amplitude and phase infor-
mation of the CSI signal but also combines them using a rotational projection method to
enhance perception performance.

2. We propose a subcarrier selection algorithm based on frequency domain metrics
and design a combined signal filtering and subcarrier selection algorithm to improve the
accuracy of heart rate estimation.

3. Through extensive experimental testing, we validate the performance of our method
under different conditions and demonstrate that our approach offers higher accuracy and a
broader detection range compared to existing methods.

The remainder of this paper is organized as follows: Section 2 introduces related
work, Section 3 details the proposed method, Section 4 presents the results and analysis of
experimental testing, and finally Section 5 summarizes the contributions of this paper and
discusses future work directions.

2. Related Work

The widespread availability of Wi-Fi devices and the convenience of wireless sensing
technology have fostered the flourishing development of passive sensing research based
on Wi-Fi [16–18]. Such studies typically focus on the Received Signal Strength Indicator
(RSSI) or Channel State Information (CSI). Compared to CSI, RSSI is easier to obtain, but it
offers relatively coarser granularity in sensing. Meanwhile, although acquiring CSI requires
modifications to the low-level drivers of Wi-Fi cards, it provides finer sensing granularity
compared to RSSI [19,20].

By leveraging Wi-Fi’s RSSI or CSI data, researchers have successfully realized var-
ious application scenarios using commercial off-the-shelf Wi-Fi devices (COTS Wi-Fi),
including human presence detection [21], gesture recognition [22–24], cross-domain ges-
ture recognition [25,26], localization [27], sleep motion detection [28], and driving activity
detection [29]. Recently, the field of Wi-Fi sensing research has further expanded. For in-
stance, Wang et al. [30] captured human keypoint signals using Wi-Fi devices, achieving
human visualization without the need for visual equipment. Additionally, Wang et al. [31]
demonstrated how to steal smartphone passwords using commercial Wi-Fi devices. Some
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studies have also attempted to optimize Wi-Fi sensing performance through advanced
signal processing techniques. For example, the PhaseAnti project [19] effectively identi-
fied various activities under the same channel interference conditions by extracting signal
components unrelated to channel interference. The SMARS project [32] combined CSI with
Autocorrelation Function (ACF) technology, providing a new solution for detecting sleep
respiratory status and sleep stages. These studies not only showcase the wide applications
of Wi-Fi sensing technology in daily life and work, but also open new possibilities for the
future development of wireless sensing technology.

In the existing field of vital signs monitoring [1,11], the approaches can generally be
categorized into two types: contact-based and non-contact-based. Traditional contact-based
methods typically rely on devices that directly contact the human body, such as wristbands
and fingertip pulse oximeters, to assess an individual’s heart rate and breathing. However,
these methods can be uncomfortable for users, especially when sensors need to be worn for
extended periods.

In contrast, non-contact methods offer more comfortable and convenient solutions.
For example, in [33,34], the authors discuss a non-invasive respiratory monitoring technol-
ogy that combines Software Defined Radio (SDR) with machine learning algorithms for
detecting COVID-19-related breathing patterns; some systems use the built-in microphone
of smartphones [35] to capture sound information for estimating breathing rates, while
others employ detectors connected to beds to estimate breathing and heart rates [16,17].
However, these methods have some limitations, such as short sensing distances, sensitivity
to environmental noise, and limited applicability. Additionally, camera-based systems have
been proposed in [18,19], where videos or images capturing chest movements during sleep
are used to estimate breathing and heart rates. Although these systems can achieve high
accuracy, they may raise privacy concerns and are susceptible to low-light conditions.

As an alternative, research on sensing using radio frequency (RF) signals has been
gaining increasing attention recently. When RF signals propagate from a transmitter to a
receiver, they are influenced by chest and abdominal movements caused by breathing and
heartbeats. However, solutions based on RF signals typically rely on specialized equipment,
such as ultra-wideband devices [35] or Frequency-Modulated Continuous Wave (FMCW)
radars [9,36]. The devices used in these solutions are expensive and not suitable for
everyday environments. In contrast, Wi-Fi-based solutions are more cost effective, simpler
to deploy, and can be implemented using commercial off-the-shelf (COTS) devices.

In recent studies, methods for heartbeat detection using Wi-Fi Channel State Informa-
tion (CSI) have made some progress. However, most research tends to choose either the
amplitude or the phase of the CSI signal for detection [37–40]. This approach overlooks
the complementarity of amplitude and phase in vital signs detection using CSI signals [41].
Although studies [42,43] have considered the complementarity of amplitude and phase,
in practical solution design, they still only choose either the amplitude or the phase signal
that offers superior sensing performance. This selective approach may not fully utilize the
informational content of CSI signals, thereby limiting further improvements in the accuracy
of heartbeat detection.

In our research, we adopted a comprehensive approach that thoroughly considers
both the amplitude and phase information of the CSI signal. By introducing the technique
of rotational projection, we organically combined amplitude and phase information and
successfully extended this projection method to the field of heartbeat detection. Further,
we innovatively proposed a new Wi-Fi CSI subcarrier selection algorithm, which utilizes
frequency domain metrics to select subcarriers. Moreover, we constructed a heart rate
estimation framework based on the ‘subcarrier heart rate interval fusion method’. This
framework, by integrating information from different subcarriers, provides a more effective
method for heart rate estimation.
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3. Proposed Method

In the introduction to the related work, several advantages of the presented research
were highlighted in comparison to other solutions. First, both the amplitude and phase
information of Wi-Fi CSI signals are comprehensively utilized by the proposed method
rather than relying solely on amplitude or phase difference information, which is a signifi-
cant deviation from previous studies. In past approaches [37–40], typically, only the signal
components with superior sensing performance were chosen for analysis. The rotational
projection method, previously used in breath detection [41], has been adapted and extended
to heartbeat detection. Additionally, a new frequency domain metric, the Heartbeat to
Subcomponent Ratio (HSR), has been proposed for effectively evaluating the performance
of subcarriers in heartbeat detection. Based on HSR, a novel subcarrier selection method
has been introduced. This method involves first identifying the maximum frequency en-
ergy intervals of each subcarrier, then determining the most common shared maximum
energy frequency interval among these, which is assumed to be the interval closest to the
actual heart rate. Consequently, the top five subcarriers with the highest HSR values are
selected, the maximum frequency peaks are found using FFT, and the information from
these selected subcarriers is integrated for heart rate estimation. The innovations of the
method compared to other approaches can be seen in the following Table 1.

Table 1. Comparison of Heart Rate Estimation Schemes.

Scheme Selected Signal Subcarrier
Selection Subcarrier Model-Based Detection Error

(MedAE) Estimate Method

[37] Amplitude Variance Single Y 2.28 bpm FFT

[38] Phase
Difference

Mean Absolute
Deviation Single Y 1.19 bpm FFT

[39] Phase
Difference

Spectral
Stability Combination Y 1.0 bpm FFT

[40] Phase
Difference

Variance of
Autocorrelation

Function
Single Y 1.0 bpm FFT

[42] Both None None N 1.37 bpm DL

[43] Both, Selection HNR Combination Y 1.39 bpm FFT

Our Method Both,
Combination HSR Combination Y 0.80 bpm FFT

In this research, the heart rate detection scheme is composed of three core parts: data
preprocessing, subcarrier selection, and heart rate estimation, as shown in Figure 1.

During the data preprocessing phase, four key steps are designed: downsampling,
computing the CSI ratio, Savitzky–Golay (SG) filtering, and rotational projection for pre-
liminary signal processing. Downsampling is aimed at reducing computational complexity.
The computation of the CSI ratio ensures the simultaneous use of both amplitude and phase
difference information of the CSI signal. SG filtering is utilized to detect and eliminate out-
liers in the original CSI ratio data, thereby smoothing the signal. The rotational projection,
inspired by previous work in breath detection, combines the real and imaginary parts of the
CSI signal to integrate both amplitude and phase difference information. After rotational
projection, a candidate set of subcarriers for selection is obtained.

In the subcarrier selection phase, the preprocessed set of subcarriers is filtered for
subsequent analysis. The signal is then decomposed, and frequency domain metrics are
applied to select subcarriers based on the decomposed signal. Specifically, the preprocessed
CSI data are filtered using the Heartbeat to Subcomponent Ratio (HSR) metric, followed by
Discrete Wavelet Transform (DWT) decomposition to further extract heartbeat information.
Subsequently, subcarriers are selected based on the Common Maximum Energy (CME)
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frequency interval. Initially, the energy ratio for each subcarrier in different frequency
domain windows is calculated, recording the window with the highest energy ratio. Next,
the most common frequency interval across all subcarriers is determined, suggesting that
the heartbeat frequency lies within this range. Lastly, the top five subcarriers with the
highest HSR values within this frequency interval are calculated. A Fourier Transform
(FFT) is performed on these subcarrier signals, and their peak frequencies are calculated.
To consolidate the information from these five subcarriers, their normalized HSR values
are used as weighting coefficients to calculate the weighted average frequency peak. This
frequency peak is then multiplied by a time factor to obtain the final heart rate estimation.

The subsequent sections elaborate on the details of each of these components.

Figure 1. System overview.

3.1. Data Preprocessing

For the proposed preprocessing of the original Channel State Information (CSI) data,
the goal is to enhance data quality through a series of refined processing steps and to lay the
groundwork for subsequent analysis. The following steps are involved in preprocessing.

3.1.1. Data Downsampling

As shown in To reduce the volume of data and lessen the computational burden in
subsequent processing steps while ensuring that key information is retained, downsam-
pling techniques are employed on the high-sampling-rate collected CSI data. Specifically,
the original data sampling frequency is reduced to 30 Hz.This approach effectively eliminates
data redundancy and enhances computational efficiency.

3.1.2. CSI Ratio

In line with previous work [14], the CSI ratio model is introduced to enhance signal
sensing capability. First, the concept of CSI is briefly introduced. In complex indoor
environments, radio frequency signals reach the receiver via multipath propagation, which
includes direct paths and various reflected paths. CSI represents the aggregate of these
multipath signals. Mathematically, CSI can be expressed [41] as follows:

H( f , t) =
L

∑
i=1

Aie−j2π
di(t)

λ . (1)

In the formula, L represents the number of paths, Ai is the complex gain, and di(t)
is the propagation length of the ith path. Based on previous work, CSI can be divided
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into static and dynamic components. The static component includes signals from the
direct path and other fixed reflection paths, while the dynamic component corresponds to
variations caused by human target movement, as shown in Figure 2. Therefore, CSI can be
rewritten [41] as follows:

H( f , t) = Hs( f , t) + Hd( f , t) = Hs( f , t) + A( f , t)e−j2π
d(t)

λ . (2)

In the equation, Hs( f , t) represents the static component, while A( f , t), e−j2π
d(t)

λ ,
and d(t) correspond to the complex attenuation, phase shift, and path length, respectively,
of dynamic component Hd( f , t).

Figure 2. Changes in the dynamic and static components of CSI.

As shown, the time-varying CSI phase caused by changes in the dynamic component
Hd( f , t) is expressed as

θ = β − α = β − arcsin
P
|H| = ∠Hs − arcsin

|Hd| sin ρ√
|Hs|2 + |Hd|2 + 2|Hs||Hd| cos ρ

, (3)

where β is the phase of static component Hs, α is the phase difference between the total
CSI H and Hs, P is the distance from the edge of the dynamic component Hd to Hs, |H| is
the amplitude of the total CSI, and ρ is the Fresnel phase, essentially the phase difference
between the dynamic and static components. Since |Hd| sin ρ is relatively small compared
to |Hs| [19], we approximate the CSI phase as follows:

θ ≈ ∠Hs −
|Hd|√

|Hs|2 + |Hd|2 + 2|Hs||Hd| cos ρ
sin ρ. (4)

We note that |Hd| is much smaller than |Hs|, and the cosine term cos ρ in the denom-
inator has almost no effect on the second term on the right side of Equation (3). Thus,
the CSI phase is mainly determined by sin ρ, and the waveform of the CSI phase is a
quasi-sinusoidal waveform. The CSI amplitude can be expressed as

|H| =
√
|Hs|2 + |Hd|2 + 2|Hs||Hd| cos ρ. (5)

It can be seen that it is a quasi-cosine waveform.
Mathematically, the complementarity of CSI amplitude and phase difference in the

field of vital signs monitoring manifests as complementary sensing capabilities. Specifically,
when the sensing capability of the CSI amplitude is strong, the sensing capability of the
phase difference tends to be weak as shown in Figure 3, and vice versa. This phenomenon
has been confirmed in previous studies. Based on this fact, it is believed that, as demon-
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strated in breath monitoring, a comprehensive and integrated consideration of both CSI
amplitude and phase difference can provide more effective support for heartbeat detection.

Figure 3. Complementarity of CSI amplitude and phase.

The CSI ratio model greatly facilitates the exploration of the complementary character-
istics of CSI. This model calculates the ratio of the CSI readings between two antennas at
the receiver. Through this division operation, most of the pulse noise and transient noise in
the signal can be effectively eliminated. The mathematical expression of the CSI ratio [14]
is as follows:

H1( f , t)
H2( f , t)

=
e−jθoffset(Hs,1 + A1e−j2π

d1(t)
λ )

e−jθoffset(Hs,2 + A2e−j2π
d2(t)

λ )
. (6)

In this expression, Hs,1 and Hs,2 represent the static component parts of CSI readings
from the first and second antennas, respectively. A1 and A2 represent the complex attenu-
ation of the dynamic component in the CSI readings from the first and second antennas,
respectively. d1(t) and d2(t) represent the lengths of different dynamic reflection paths,
and e−jθoffset represents the inherent time-varying phase offset of commercial Wi-Fi.

As shown in Figure 4a,b, after the original collected signal is down-sampled, by
utilizing the CSI ratio model and performing division operations, not only is the main pulse
noise and transient noise in the signal significantly reduced as shown in Figure 4c, but the
model also integrates the information of CSI amplitude and phase difference, theoretically
enhancing the perception efficiency of the CSI signal. For this reason, the CSI ratio model is
adopted in this study for heartbeat detection.

3.1.3. SG Filtering

To further enhance signal quality, a Savitzky–Golay filter is employed in this study
for smoothing the CSI ratio signal. This filter’s advantage lies in its ability to smooth data
while preserving signal characteristics, achieved by fitting data points to a local polynomial
and replacing the original data points with the polynomial’s calculated values. The efficacy
of the Savitzky–Golay filter is derived from its mathematical expression, which employs
convolution operations and polynomial fitting for data smoothing, effectively improving
the signal-to-noise ratio. The formula for the SG filter can be expressed as

y′i =

m
2

∑
j=− m

2

cjyi+j, (7)

where y′i is the filtered data point, m is the chosen window size, cj is the coefficients
in the convolution kernel, and yi+j is the original data and its neighbors. In practical
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applications, the cj coefficients are pre-calculated based on the chosen window size and
polynomial degree.

The SG filter optimizes the local approximation performance of the data, accurately
depicting the overall trend of the data even for individual data points affected by noise.
As shown in Figure 4d, therefore, the SG filter significantly improves the quality of signal
smoothing while maintaining data structure.

(a) Original CSI Amplitude (b) Downsampled CSI Amplitude

(c) CSI Ratio Amplitude (d) SG Filtered CSI Ratio Amplitude

Figure 4. CSI raw signal preprocessing.

3.1.4. Rotational Projection

In this study, the first task undertaken was to extend the projection method used in
breath detection in [14] to heartbeat detection. First, this method is briefly introduced.

When performing CSI measurements on a single antenna, the phase information itself
is not suitable for monitoring due to time-varying random phase offsets. However, by using
the ratio of CSI, stable phase difference information between two antennas can be obtained
(since the random phase offsets are canceled out). This allows for the integration of the
phase and amplitude information of the CSI ratio to overcome blind spots in monitoring,
thus extending the range of perception.

As shown in Figure 5, it is important to note that a complex number can be represented
in the form of a + bi and Aeiθ , where a and b represent the real part (I) and the imaginary
part (Q), respectively, while A and θ represent the amplitude and phase. The real part
(I component) and the imaginary part (Q component) of the CSI ratio exhibit perfect comple-
mentarity, meaning that if the I component at a certain location is not suitable for heartbeat
monitoring, the Q component might be advantageous, and vice versa. Therefore, these
two components are combined, effectively unifying amplitude and phase for monitoring.
By assigning different weights to the composite I and Q components, a series of candidate
combinations of subcarrier signals can be generated, and the designed subcarrier selection
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method is used to filter out the subcarrier signals most suitable for heartbeat monitoring
for further analysis.

Figure 5. Complex plane rotation projection of CSI signals.

Unlike the traditional method of choosing the better one from the I and Q components,
we linearly combine the I and Q components by projecting them onto the complex plane
along different angles θ. The figure shows how to project z = a+ bi onto the axis [cosθ, sinθ]
to obtain a new point z′, where θ is the angle of the projection axis. According to simple
geometry, we can derive

oz′ = [cosθ, sinθ]

[
a
b

]
= acosθ + bsinθ. (8)

Specifically, point z is a linear combination of its I and Q components, where the
weight of the I component is cos θ and the weight of the Q component is sin θ. Similarly,
for the time series of the CSI ratio data x, its projection y onto the axis [cosθ, sinθ] can be
represented as

ye = [cosθ, sinθ]

[
R(x)
I(x)

]
, (9)

where R(x) is the real part (I component) of x, and I(x) is the imaginary part (Q component)
of x. By varying θ within the range of 0 to 2π in fixed steps, we can generate a variety of
different candidate combinations.

3.2. Subcarrier Selection
3.2.1. Composite Signal Selection

In the above-described CSI data preprocessing steps, a candidate set of signals for
each subcarrier was generated, which includes signals obtained by combining the real and
imaginary parts of the CSI using the rotational projection method. The goal is to select the
best signal for each subcarrier after rotational projection, which is achieved through the
defined metric, Heartbeat to Subcomponent Ratio (HSR). Next, the definition of HSR and
its application in heartbeat detection is elaborated.

HSR (Heartbeat to Subcomponent Ratio) is defined as the ratio of the maximum FFT
energy bin to the second largest FFT energy bin within the heartbeat frequency range. This
ratio directly measures the characteristics of the energy distribution of the heartbeat signal:

HSR =
HE_ f irst

HE_second
, (10)

where HE_ f irst represents the largest FFT energy bin within the signal’s heartbeat range,
and HE_second represents the second largest FFT energy bin within this range. As shown in
Figure 6, we propose that the higher the HSR value of a signal, the stronger its ability to
perceive heartbeat motion.
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Unlike common subcarrier selection metrics such as variance, spectral stability score,
and HNR (Harmonic-to-Noise Ratio), HSR evaluates heartbeat characteristics based on
changes in energy distribution, overcoming the limitation of variance methods that focus
only on time-domain waveform changes and ignore spectral features. HSR does not rely on
spectral historical consistency and can acutely capture the dynamic changes of heartbeat
signals, thereby outperforming the spectral stability score method. Compared to HNR, HSR
avoids sensitivity to same-frequency interference when assessing the quality of heartbeat
signals, enhancing the stability and accuracy of heartbeat detection. In summary, HSR
quantifies the heartbeat energy characteristics directly and efficiently by analyzing the ratio
of the main energy bins.

(a) Top 50 Subcarriers by Original HSR

(b) Top 50 Subcarriers by Rotated HSR

(c) Gain of Top 50 Subcarriers
Figure 6. Changes in HSR values after rotational projection.
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The HSR (Heartbeat to Subcomponent Ratio) metric is utilized to filter and select from
the candidate combinations for each subcarrier. As can be seen from the aforementioned
illustration, the HSR values of the combined signals, obtained after rotational projection,
increase, indicating an enhanced ability to perceive heartbeats as shown in Figure 7. The sig-
nals with the highest HSR values are ultimately selected for subsequent operations. This
selection process ensures that the most effective signals for heartbeat detection are being
used, thereby increasing the accuracy and reliability of the monitoring system.

Figure 7. Frequency Spectrum of Raw CSI Ratio and Combined Signal.

Since the time-domain waveform of the heartbeat is more difficult to discern clearly
compared to breathing, the focus is primarily on observing its frequency domain changes.
The rotational projection on the complex plane effectively amplifies the components of the
signal that are most relevant to the heartbeat while reducing the influence of other irrelevant
or noise components. This process highlights the heartbeat signal in the frequency domain,
making it more distinct and easier to analyze. Consequently, this approach significantly
aids in the accurate detection and estimation of heart rates, especially in scenarios where
the heartbeat signal may be weak or obscured by noise.

3.2.2. Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is a method for analyzing signals at various
resolutions. It decomposes a signal into approximations and details at different scales by
applying a series of wavelet filters and downsampling operations, achieving multi-scale
analysis of the signal. Therefore, DWT is applied to the signals selected from the candidate
set to extract heartbeat signals.

First, the fourth wavelet of the Daubechies series, commonly abbreviated as ‘db4’, is
chosen. This wavelet is often used for processing signals with prominent features because it
balances the need for time and frequency localization. Daubechies wavelets, known for their
good compact support properties, perform well with signals displaying sharp transitions.

The choice of the number of decomposition levels is dependent on the signal’s sam-
pling rate and the frequency range of interest. In this study, with the signal sampling rate
at 30 Hz, the aim is to cover a heartbeat frequency range of approximately 0.8 Hz to 2.5 Hz.
Considering that each level of decomposition roughly halves the frequency range, choosing
4 levels of decomposition allows for the analysis of signals close to 30/24 = 1.875 Hz,
encompassing the typical frequency range of heartbeat signals.

Finally, wavelet decomposition is performed on the selected subcarrier signals to
extract heartbeat information. This step is crucial as it filters out irrelevant frequencies and
focuses on the range where heartbeat information is present, thereby enhancing the signal’s
relevance to the task of heartbeat detection.

As shown in Figure 8, it can be observed that the combined signal undergoes four
levels of wavelet decomposition. The signal at the fourth level closely resembles the true
waveform of the heart rate. This level of the signal, the closest approximation to the actual
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heart rate waveform, is selected as the heartbeat signal H for subsequent processing. This
selection is based on the principle that higher levels of wavelet decomposition provide a
more detailed and refined view of the lower frequency components of the signal, crucial for
heart rate detection. The fourth level of decomposition isolates the frequency components
corresponding to the heart rate, effectively filtering out higher frequency noise and other
irrelevant signal components. Using this decomposed signal at the appropriate level en-
sures that the subsequent analysis and heart rate estimation are based on the most relevant
and accurate representation of the heart rate signal, thereby improving the precision and
reliability of the monitoring system.

Figure 8. Wavelet Decomposition of Combined Signal.

3.2.3. Subcarrier Selection

As shown in Figure 9, after applying Discrete Wavelet Transform (DWT), the recon-
structed heartbeat signals H for each subcarrier are obtained. For each subcarrier signal
h, a Fast Fourier Transform (FFT) is performed. A frequency domain sliding window,
with parameters including window length L and step size s, is designed. This sliding
window traverses all the FFT bins, calculating energy ratio Ri for each window w against
the entire signal, h. The maximum energy ratio Ri_MAX and its corresponding frequency
window wi are identified. Repeating this process for each subcarrier signal yields a set of
frequency bands W = {w1, w2, . . . , wn}. The most common frequency band wc within this
set is then found, which is the most likely heart rate interval.

Finally, the signals of the top five subcarriers with the highest HSR values within the
common frequency band wc are selected, recording their HSR values r1, r2, r3, r4, r5 and the
highest peak frequencies f1, f2, f3, f4, f5. These subcarriers, with the highest HSR values
in the common band, are deemed most suitable for heart rate estimation. This process
effectively identifies the subcarrier signals that are most sensitive and accurate for detecting
the heart rate, providing a robust method for heart rate monitoring using Wi-Fi CSI signals.
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Figure 9. Flow chart of subcarrier selection algorithm.

3.3. Heart Rate Estimation

After the selection of the five subcarriers most suitable for detecting heartbeats, the fi-
nal step is the estimation of the heart rate. The maximum frequency peaks of these five
subcarriers are first found. Their HSR values are then normalized to define them as weight
coefficients. The final heart rate estimate is calculated by multiplying these maximum
frequency peaks with their normalized weight coefficients. Finally, this frequency estimate
is multiplied by a time factor to obtain the heart rate estimate.

The formula for the heart rate estimate E is given by

E = 60 × rn1 · f1 + rn2 · f2 + rn3 · f3 + rn4 · f4 + rn5 · f5

rn1 + rn2 + rn3 + rn4 + rn5
, (11)

where E represents the final heart rate estimate, rni the normalized HSR weight value of
the selected subcarrier, and fi the maximum frequency peak of the subcarrier.

This method effectively combines the contributions of each selected subcarrier, weighted
by their respective HSR values, to produce a more accurate and robust estimate of the heart
rate. The multiplication by 60 converts the frequency estimate into beats per minute (BPM),
which is the standard measure for heart rate.

4. Performance Evaluation

In this section, a comprehensive series of experiments focused on real-world appli-
cation scenarios were conducted. The experimental configuration and environmental
setup were detailed, describing the equipment configuration, the conditions during the
experiments, and the relevant application parameters as shown in Table 2. Following
this, the experimental results obtained using the selected data processing methods were
presented, including a detailed analysis of their effectiveness in various scenarios.
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Table 2. Experimental Setup and Conditions.

Parameter Setting

Experimental Location Meeting room, Dormitory

Device Position Transmitter and receiver 1 to 4 m apart, 1.5 m
above the ground

Subject Position 0.5 to 3 m from the transmitter and receiver in
Line of Sight (LOS)

Subjects Nine individuals, six males and three females

Data Collection Equipment
Chuangtong Electronics TA8K (802.11 ac)

custom model, ASUS laptop, Linux
Ubuntu 18.10

Reference Device Lepu Medical PalmECG PC-80D (Three-lead
ECG Monitor)

Number of Antennas One transmitter, two receivers

Default Transmission Power 24 dbm

Carrier Frequency 5.8 GHz

Transmission Rate 1000 packets/s

The evaluation then moved on to a critical assessment of the performance of the
method proposed in the study. This involved analyzing the accuracy, reliability, and ef-
ficiency of the method, comparing it with existing methods and benchmarks in the field.
Finally, additional factors that might influence the system’s performance, such as environ-
mental variables, hardware limitations, and other external influences, were explored.

4.1. Experimental Setup

As shown in Figure 10, the experiments in this study were conducted in two real-
world scenarios, as illustrated in the following setup. The first experimental environment,
simulating a home living room, was set up in a conference room furnished with tables,
chairs, and cabinets, with participants seated in chairs for the experiment as shown in
Figure 10a. The second experimental setting, simulating a home bedroom, was situated in a
school dormitory, equipped with a bed and a table, where subjects conducted experiments
while on the bed as shown in Figure 10b.

For the experiments, a wireless router was used as the signal transmitter and a laptop
equipped with an Intel 5300 wireless card served as the receiver. In terms of data collection,
data were gathered from nine participants over a month at a frequency of 200 Hz. To obtain
the true heart rate values, data were also recorded using a Lepu heart rate monitor. More-
over, to consider the impact of different transmitter and receiver placement scenarios on
the results, the line of sight (LOS) distance between the user and the devices was adjusted.
Finally, the collected data were processed and analyzed using Matlab.

4.2. Data Processing Results
4.2.1. Data Preprocessing Module

The data preprocessing module in this study primarily addressed the challenges
of noise reduction, signal smoothing, and the integrated use of amplitude and phase
information from the original CSI data. The original CSI signal, illustrated in Figure 11a,
exhibited a high sampling rate and a wide amplitude range, indicating the presence of
various signal components and noise. As shown in Figure 11b, downsampling reduced the
complexity for subsequent computations.
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(a) Meeting Room (b) Dormitory

(c) Actual measurement
Figure 10. Experiment environments.

(a) Raw CSI Amplitude (b) Downsampled CSI Amplitude
Figure 11. Data Preprocessing.

Further refinement was achieved by calculating the CSI ratio from multiple antennas,
which helped to stabilize phase information and is shown in Figure 12. Following that,
the real and imaginary parts of the CSI ratio were combined, enhancing the perception of
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the heartbeat motion and resulting in a clearer pattern indicative of a rhythmic component
corresponding to the heartbeat, as shown in Figure 13.

Figure 12. CSI Ratio.

Figure 13. Combined Signal.

The signal was then subjected to multi-level wavelet decomposition, isolating the
frequency components associated with the heart rate from other unrelated frequencies,
as depicted in Figure 14. The fourth level of this decomposition produced a signal closely
resembling the expected heartbeat waveform. The frequency spectrum of this decomposed
signal revealed distinct peaks within the heart rate frequency band.
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Figure 14. Heartbeat Signals from Combined Signals.

4.2.2. Subcarrier Selection Module

Utilizing the proposed method, the target subcarriers were identified using their
frequency domain peaks to accurately estimate the heart rate, illustrated in Figure 15a,b.

(a) Time-Domain Waveforms of Top 5 Subcarriers Based on HSR

(b) Frequency-Domain Spectra of Top 5 Subcarrier Based on HSR
Figure 15. Subcarriers Selection.
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As shown in Figure 15b, we then used Equation (11) to calculate the weighted
maximum peak frequency of the five selected subcarriers as the estimated heart rate
frequency value.

4.3. Heart Rate Estimation Performance Evaluation

In this study, the Cumulative Distribution Function (CDF) was utilized to assess
the estimation error, which is the deviation between the measured values and the true
values. The CDF graph presents the cumulative probability distribution of the estimation
errors. As benchmarks for comparison, methods based on variance, Harmonic-to-Noise
Ratio (HNR), and spectral stability scoring were selected. Comparative analysis clearly
demonstrated that the proposed method outperformed these three methods in terms of
performance as shown in Figure 16.

Figure 16. CDFs of estimation errors of heart rate estimation.

Specifically, with the implemented method, 80% of the test errors were less than
two beats per minute (bpm), and 90% of the test cases had errors less than 4.1 bpm.
Moreover, the median error was reduced from 1 bpm to approximately 0.8 bpm, achieving
an about 20% performance improvement compared to the previously best performing
system. Additionally, within a detection distance range of 2 to 3 m, the method also showed
superiority over existing methods. These results not only prove the effectiveness of the
method in improving detection accuracy, but also demonstrate its potential in extending
the detection range.

4.4. Impact of Other Factors
4.4.1. Impact of Experimental Environment

The graph demonstrates the impact of different experimental environments on heart
rate estimation when the distance between the transmitter and receiver is fixed at two
meters. It was observed that the accuracy of heart rate detection remained above 96.5%
in both the conference room and dormitory environments. This finding underscores the
environmental adaptability of the method, indicating that it can maintain a high level of
detection accuracy across various settings as shown in Figure 17.
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Figure 17. Imapct of the Experimental environment.

4.4.2. Impact of Transceiver Distance

During the experiments, tests were conducted at distances of 1 m, 2 m, 3 m, and 4 m
between the transmitter and receiver. The charts created illustrate the influence of the
distance between the transmitter and the receiver in the laboratory on the accuracy of
heart rate estimation. The results showed that the highest accuracy of heart rate detection
was achieved at a distance of 1 m, with a median error in detection of less than 1 bpm.
However, as the distance between the transmitter and receiver increased, the accuracy of
detection declined. Notably, at a distance of 4 m, the precision of detection dropped to its
lowest as shown in Figure 18. This phenomenon is primarily due to the fact that at greater
distances, the heartbeat-induced changes in the reflected signal are weaker, thus affecting
detection precision.

Figure 18. Impact of the Transmitter–Receiver Distance.

4.4.3. Impact of Distance from Person to Transceiver LOS

In the experiments, the effect of the line-of-sight (LOS) distance between the user and
the transmitter–receiver setup was tested, including distances of 0.5 m, 1 m, 1.5 m, 2 m,
2.5 m, and 3 m. The experimental results indicated that within a range of 2 m, the detection
error was very small, approximately around 1 bpm. However, as the distance increased,
the accuracy of detection began to decline. Particularly at the distance of 3 m, the detection
error increased to about 2.5 bpm as shown in Figure 19. These results highlight the impact
of distance on the precision of heartbeat detection.
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Figure 19. Impact of user-to-device distance.

5. Conclusions

This paper investigates the problem of non-contact heart rate monitoring using Wi-Fi
Channel State Information (CSI) and presents a comprehensive heart rate detection scheme
that includes data preprocessing, subcarrier selection, and heart rate estimation steps.
Utilizing the newly defined metric, Heartbeat to Subcomponent Ratio (HSR), we developed
an innovative subcarrier selection method for heart rate estimation. Empirical results
demonstrate that our proposed method for subcarrier selection in heart rate estimation
achieves an overall accuracy rate above 96.5%, with a median error of only 0.8 bpm, marking
an improvement of about 20% over existing solutions. In future research, we plan to expand
upon the current method to further enhance the accuracy and range of detection and to
extract more health-related information from heart rate data such as indicators of cardiac
health and exercise rehabilitation metrics.
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