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Abstract: Simultaneous localisation and mapping (SLAM) is crucial in mobile robotics. Most vi-
sual SLAM systems assume that the environment is static. However, in real life, there are many
dynamic objects, which affect the accuracy and robustness of these systems. To improve the perfor-
mance of visual SLAM systems, this study proposes a dynamic visual SLAM (SEG-SLAM) system
based on the orientated FAST and rotated BRIEF (ORB)-SLAM3 framework and you only look once
(YOLO)v5 deep-learning method. First, based on the ORB-SLAM3 framework, the YOLOv5 deep-
learning method is used to construct a fusion module for target detection and semantic segmentation.
This module can effectively identify and extract prior information for obviously and potentially
dynamic objects. Second, differentiated dynamic feature point rejection strategies are developed for
different dynamic objects using the prior information, depth information, and epipolar geometry
method. Thus, the localisation and mapping accuracy of the SEG-SLAM system is improved. Finally,
the rejection results are fused with the depth information, and a static dense 3D mapping without
dynamic objects is constructed using the Point Cloud Library. The SEG-SLAM system is evaluated
using public TUM datasets and real-world scenarios. The proposed method is more accurate and
robust than current dynamic visual SLAM algorithms.

Keywords: dynamic environments; RGB-D VSLAM; YOLOv5; semantic segmentation

1. Introduction

In recent years, significant progress has been made in mobile robot localisation, map-
ping, and autonomous navigation technologies [1]. In particular, simultaneous localisation
and mapping (SLAM) [2,3], which uses data from on-board sensors to achieve localisation
and mapping of environments without prior information, has become indispensable funda-
mental technology for mobile robots. SLAM can be divided into laser and visual SLAM
according to the sensor type [4–6]. Laser SLAM is currently the most stable and mainstream
method for localisation and navigation. However, it is limited by poor recognition of certain
object categories and high costs. Compared to laser SLAM, visual SLAM is more flexible
and provides rich semantic information, which makes it suitable for complex and diverse
environments. Therefore, visual SLAM is gradually gaining popularity, and it has become
a research hotspot.

In visual SLAM, the main sensor is a camera. Common types of cameras include
monocular, stereo, and red/green/blue–depth (RGB-D) cameras. As visual SLAM has
developed [7], the localisation and mapping technology for certain scenes has matured.
Moreover, many excellent visual SLAM systems have been proposed, including orientated
FAST and rotated BRIEF (ORB)-SLAM1-3 [8–10], visual-inertial system (VINS)-Mono [11],
large-scale direct (LSD)-SLAM [12], directed sparse odometry (DSO) [13], and parallel
tracking and mapping (PTAM) [14]. However, although existing visual SLAM systems have
achieved excellent performance for certain scenes, some problems remain to be solved. For
example, most visual SLAM algorithms rely heavily on the environment being static, where
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changes in the field of view mainly arise from the motion of the camera, and there is a lack
of other dynamic objects in the environment. However, dynamic objects are indispensable
in real environments, and their presence can cause erroneous data associations in the feature
point matching process, which affects the localization and map-construction accuracy.

The existence of dynamic objects is not unique in form. Dynamic objects studied in
this paper are divided into two categories based on their motion state: obviously dynamic
objects, such as walking people, and potentially dynamic objects, such as movable chairs.
When dynamic objects are present, traditional visual SLAM algorithms cannot satisfy local-
isation and mapping requirements. This paper categorizes dynamic visual SLAM solutions
into two types: geometric [15–19] and semantic [20–25] methods. Geometric methods
use the geometric information measured by sensors to detect and reject dynamic objects,
whereas semantic methods use neural networks. Geometric methods have higher com-
putational efficiency in known environments and they can satisfy real-time requirements.
However, they cannot detect potentially dynamic objects because they do not have access
to prior information about the scene. By contrast, semantic methods provide a deeper
understanding of the environment and more information about objects. However, they rely
heavily on the quality of the underlying neural networks and cannot guarantee real-time
while satisfying accuracy requirements. To improve the robustness of visual SLAM systems
in dynamic scenes and improve the comprehension of semantic information, researchers
have begun to combine geometric and semantic methods. However, two significant issues
remain unresolved.

First, when obtaining the a priori information of dynamic objects, the target detection
method is unable to accurately obtain the contour information of dynamic objects due to
the inclusion of background points in the detection frame, and the semantic segmentation
method can accurately segment the contour, but it relies heavily on the quality of the neural
network, which affects the real-time performance of the system. Second, when removing
dynamic feature points, if the quality of the neural network is poor, the error of the mask
edge points is significant, and the feature points of potentially dynamic objects cannot be
judged solely on the basis of the information from the neural network, as they are at rest in
some frames.

Therefore, to address these issues, this study presents an indoor dynamic visual SLAM
system called SEG-SLAM, which is based on the ORB-SLAM3 framework. You only look
once (YOLO)v5 target detection and semantic segmentation algorithms, as well as the
epipolar geometry method are introduced to achieve recognition and rejection of dynamic
feature points. The system reduces interference from dynamic objects and uses semantic
information to reconstruct the static background, which improves the localisation and
mapping accuracy. The main contributions of this paper are summarized as follows:

(1) Aiming at the dual challenges of accuracy and real-time performance in obtaining
a priori information about dynamic objects, this paper builds a fusion module of
target detection and semantic segmentation using the YOLOv5 deep-learning method
based on the ORB-SLAM3 framework, which generates basic semantic information of
dynamic objects in a scene in real time.

(2) Aiming at the complexity of dynamic feature point rejection, this paper designs
differentiated dynamic feature point rejection strategies. Among them, obviously
dynamic objects combine depth information to judge dynamic feature points, and
potentially dynamic objects utilize the epipolar geometry method to judge dynamic
feature points. This strategy reduces the effects of dynamic objects and improves the
localisation and mapping accuracy.

(3) Aiming at the problem of dynamic feature points affecting dense map construction,
this paper constructs dense 3D maps with static points after removing dynamic feature
points. The SEG-SLAM system is evaluated in both the Technical University of Munich
(TUM) RGB-D dataset and real dynamic scenes. Experimental results show that the
SEG-SLAM system outperforms most mainstream dynamic visual SLAM algorithms.
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The rest of this paper is organized as follows: Section 2 discusses related work.
Section 3 introduces the SEG-SLAM system framework in detail and describes the pro-
posed method. Section 4 evaluates the algorithm of this paper in the TUM datasets and
real scenes. Sections 5 and 6 are the discussion and conclusion of this paper.

2. Related Work

In recent years, many researchers have attempted to improve the accuracy and robust-
ness of visual SLAM systems for dynamic scenes. Consequently, the detection and rejection
of dynamic features has emerged as a promising solution. Detection and rejection methods
can be divided into three categories: geometric, semantic, and geometric and semantic
fusion methods.

2.1. Geometric Methods

Geometric methods estimate the poses of objects without considering prior information
about the scene. This approach assumes that only static features can satisfy the geometric
constraint model, which utilizes the characteristics of dynamic objects against a static
background. In 2015, Bakkay et al. [15] developed an enhanced scene-flow approach for
detecting dynamic objects. This approach uses a regional growth segmentation algorithm
to separate the dynamic and static parts of a scene, which prevents mismatches during
the alignment step. However, the pixel motion cannot be estimated accurately when an
object moves rapidly or exhibits motion blur. In 2017, Li et al. [16] used deep-edge points to
establish corresponding relationships and devised a static weighting approach to add static
weights to the intensity-aided iterative closest points (IAICP) approach for alignment tasks,
which reduced the impact of dynamic feature points. This method can effectively extract
foreground edge points, although the extraction accuracy for edge points under large
occlusions is relatively low. Therefore, significant errors will occur during the extraction of
deep edge points in scenarios without rich geometric information.

In 2019, Wang et al. [17] used fundamental matrix detection to cluster depth images
based on inconsistent feature points. When the outliers in clustered regions exceed a
predefined threshold, the region is identified as a dynamic region. This information is
integrated into the visual SLAM system as part of its data filtering. However, this method
has high computational costs and cannot handle potentially dynamic objects. In 2021, Long
et al. [18] proposed a method that assumed that all dynamic objects were single rigid bodies
and concurrently segmented and tracked both static and dynamic objects. This system
can simultaneously localize and reconstruct both static backgrounds and rigid dynamic
components in environments with large occlusions caused by dynamic objects. However,
it cannot segment, track, and reconstruct multiple rigid targets. In 2022, Ni et al. [19]
suggested the notion of feature point reliability markers, which dynamically control the
number of feature points within a predefined range. They used a frame transfer method
for dynamic object detection and introduced a new fault-handling mechanism to improve
the localisation and mapping accuracy. However, all geometric methods ignore potentially
dynamic objects, which can cause erroneous data associations.

2.2. Semantic Methods

Owing to developments in neural-network technology, the number of semantic meth-
ods being applied to visual SLAM systems has increased considerably in recent years.
Advanced deep-learning techniques [20] are typically used to generate semantic infor-
mation for object detection and semantic segmentation. Tunio et al. [21] used the U-Net
architecture based on semantic segmentation for target detection and location, achiev-
ing high accuracy. Wang et al. [22] used the fully convolutional instance-aware semantic
segmentation (FCIS) [23] algorithm to calculate the image boundary boxes for an input
RGB image and obtained the mask information for the entire image. Predefined candidate
categories were selected from the Microsoft common objects in context (MS COCO) dataset
and the results were input into the visual SLAM system in the form of masks.
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Yuan et al. [24] proposed the semantic and depth (SaD)-SLAM system, which combines
semantic and depth information to extract feature points of dynamic objects and detect their
states. The camera pose is calculated using static feature points extracted from dynamic
objects and feature points extracted from static objects. For the semantic information
component, they employed the Mask R-CNN method to extract image information. Bescos
et al. [25] used the Mask R-CNN for instance segmentation with visual feature tracking of
dynamic objects. They optimized the structure of static scenes and dynamic objects based
on the trajectories of the camera and motion agent. Fang et al. [26] proposed using the Mask
R-CNN to extract semantic information to construct semantic descriptors and utilized a
knowledge graph to determine prior motion relationships between entities. This facilitates
the rejection of dynamic objects and improves the tracking and localisation accuracy of
robots in dynamic scenes. However, semantic methods rely heavily on the quality of the
neural networks, which makes it difficult to satisfy the requirements for both real-time
application and accuracy.

2.3. Geometric and Semantic Fusion Methods

Geometric methods have significant advantages in dealing with conventional dynamic
objects. However, they cannot be used to accurately identify and reject dynamic features
owing to insufficient prior information for potentially dynamic objects. Semantic methods
are well suited to scenes with predefined dynamic objects. However, there are poorly suited
to general dynamic scenes as they cannot detect objects beyond the scope of the training
set. Geometric and semantic approaches may be combined to overcome their respective
limitations, and fusion methods may offer more comprehensive and reliable solutions for
dynamic object detection.

In 2018, Bescos et al. [27] proposed the DynaSLAM system, leveraging the Mask R-
CNN segmentation and multiview geometry methods to detect and reject dynamic features
in the RGB-D mode. However, the system involves a complex network model and low
real-time performance. In 2022, Zhong et al. [28] proposed the weighted features (WF)-
SLAM system that closely integrated semantic information and geometric dynamic object
detection algorithms to obtain accurate dynamic object information for a scene. Dynamic
information is used to initialise the system and define the feature point weights, which
transforms the pose optimisation of the ORB-SLAM2 system into a weighted joint optimi-
sation system. However, the relatively protracted execution time of this method may pose
a concern. Wu et al. [29] introduced the YOLO-SLAM system, utilising a lightweight target
detection network called Darknet19-YOLOv3. This network uses low-latency backbone
acceleration and generates basic semantic information for visual SLAM systems. Wu et al.
also introduced a novel geometric constraint approach to exclude the dynamic features
within the detection zone and used the depth difference method based on random sample
consensus (RANSAC) to distinguish dynamic features. However, the performance of the
system can be affected by the rotation of the camera. Xu et al. [30] introduced the efficient
semantic dynamic (ESD)-SLAM system, employing a lightweight semantic segmentation
network, the fully convoluted harmonic densely connected network (FcHarDNet), to ex-
tract semantic information and the region-growing algorithm to optimise the semantic
segmentation boundaries. By combining semantic information with multiview geometric
information, dynamic features are rejected effectively, which further improves the locali-
sation accuracy. However, this method can result in excessive image segmentation. You
et al. [31] proposed the multimodal semantic (MISD)-SLAM system designed for dynamic
environments, which involves instance segmentation, dynamic pixel rejection, and se-
mantic 3D mapping construction. The instance segmentation network provides semantic
information about the surrounding environment at the instance level, which is combined
with the multiview geometric constraints and K-means clustering algorithm to further
improve the positioning and mapping accuracy for dynamic scenes. However, this method
does not consider the detailed treatment of dynamic objects that may appear to be static in
some frames.
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In 2023, Zhang et al. [32] introduced a visual SLAM system that utilizes the YOLOv5s
CNN and Ghostnet backbone network to detect dynamic objects in a scene and integrates
the coordinate attention mechanism to improve the small-target recognition accuracy.
However, the method used to reject dynamic objects is relatively simple and it rejects all
the points within the detection box without fully considering the background points within
the detection box. Cheng et al. [33] introduced the SG-SLAM system, using a normalized
CNN (NCNN) as the basic framework for object detection threads, single-shot detector as
the detection head, and MobileNetV3 as the feature extractor to detect dynamic objects
in a scene. The system uses epipolar geometric constraints to screen dynamic and static
objects in the geometric part. However, this method fails when the dynamic objects move
along the epipolar lines. Song et al. [34] proposed the SCE-SLAM system, which introduces
an object detection thread, self-motion estimation module, and dynamic feature point
rejection module to the ORB-SLAM3 framework. During the object detection thread, the
YOLOv7 neural network is used to detect dynamic objects. However, this method does
not consider potentially dynamic objects. Similarly, Jin et al. [35] proposed a visual SLAM
system that added semantic segmentation, dynamic feature rejection, and dense point
cloud mapping to the ORB-SLAM3 framework. The SparseInst segmentation network
is used in the semantic segmentation thread to detect dynamic objects, and the epipolar
geometry approach is used in the dynamic feature rejection module to reject potentially
dynamic feature points. However, the real-time performance of the system is influenced by
the computational demands associated with the semantic segmentation network.

At present, researchers generally prefer to use geometric and semantic fusion methods
to solve the problem of dynamic objects in visual SLAM systems. Target detection and
semantic segmentation methods are dominant in deep learning, whereas multiview geome-
try and optical flow methods are dominant in geometry. However, concerning real-time
performance and stability, integrating these approaches for practical applications still poses
significant challenges. For example, semantic segmentation algorithms have complex
networks that have long processing times, whereas target detection algorithms often fail to
represent object boundary information clearly. Therefore, this study builds a fusion module
of target detection and semantic segmentation using the YOLOv5 deep-learning method
based on the ORB-SLAM3 framework with high precision and robustness.

3. Methods

In this section, the SEG-SLAM system in the RGB-D mode is introduced in terms of
dynamic feature extraction, dynamic feature point rejection, and dense 3D mapping. First,
the overall framework of the SEG-SLAM system is described in detail. It consists of five
main parallel threads, the (1) tracking thread, (2) fusion thread for target detection and
semantic segmentation, (3) local mapping thread, (4) loop closing thread, and (5) dense
3D mapping thread. Threads 1, 3, and 4 are the three main threads of the ORB-SLAM3
framework and threads 2 and 5 are two new threads introduced in this study. The YOLOv5
depth learning method is implemented in thread 2 and dense 3D mapping is implemented
in thread 5. Other methods are implemented in the tracking thread. Second, the dynamic
features in a scene are identified using the fusion method of target detection and semantic
segmentation. Third, a dynamic feature point rejection strategy is proposed based on prior,
depth, and geometric information. Finally, a static dense 3D mapping is constructed based
on semantic and geometric information.

3.1. SEG-SLAM Framework

ORB-SLAM3 is an advanced visual SLAM system that is robust for static scenes.
However, it cannot provide accurate estimates for the camera pose or provide stable maps
for dynamic scenes owing to the effects of dynamic objects. Therefore, this study aims
to optimize ORB-SLAM3 to improve its robustness for dynamic scenes. Figure 1 shows
the original ORB-SLAM3 system with the added fusion thread for target detection and
semantic segmentation (thread 2) and dense 3D mapping (thread 5). The fusion thread for
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target detection and semantic segmentation relies on the YOLOv5 segmentation to provide
semantic information about the dynamic objects in the scene. The tracking thread (thread 1)
effectively screens and rejects dynamic feature points using the depth information, epipolar
geometry, and other approaches. The dense mapping thread uses the keyframe information
through the Point Cloud Library (PCL) to accurately construct a 3D dense mapping. The
remaining local mapping and loop closing threads (threads 3 and 4, respectively) complete
basic functions, such as updating the local map and optimising the pose graph.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 31 
 

 

3.1. SEG-SLAM Framework 
ORB-SLAM3 is an advanced visual SLAM system that is robust for static scenes. 

However, it cannot provide accurate estimates for the camera pose or provide stable maps 
for dynamic scenes owing to the effects of dynamic objects. Therefore, this study aims to 
optimize ORB-SLAM3 to improve its robustness for dynamic scenes. Figure 1 shows the 
original ORB-SLAM3 system with the added fusion thread for target detection and se-
mantic segmentation (thread 2) and dense 3D mapping (thread 5). The fusion thread for 
target detection and semantic segmentation relies on the YOLOv5 segmentation to pro-
vide semantic information about the dynamic objects in the scene. The tracking thread 
(thread 1) effectively screens and rejects dynamic feature points using the depth infor-
mation, epipolar geometry, and other approaches. The dense mapping thread uses the 
keyframe information through the Point Cloud Library (PCL) to accurately construct a 3D 
dense mapping. The remaining local mapping and loop closing threads (threads 3 and 4, 
respectively) complete basic functions, such as updating the local map and optimising the 
pose graph. 

During the operation of the SEG-SLAM system, each frame of the image passes 
through the tracking and fusion threads for target detection and semantic segmentation. 
In the fusion thread for target detection and semantic segmentation, the system extracts 
the semantic information for obviously and potentially dynamic objects from each frame. 
At the same time, the tracking thread also performs the task of extracting ORB feature 
points and screens and rejects feature points based on previously obtained semantic in-
formation. Among them, the mask boundary points are filtered based on depth infor-
mation, while potentially dynamic feature points are screened utilising the epipolar ge-
ometry method. This effectively reduces the adverse effects of erroneous data associations 
for dynamic feature points. 

 
Figure 1. SEG-SLAM framework. This study introduces new fusion and dense 3D mapping threads 
(indicated in green) to the ORB-SLAM3 system. 

3.2. Dynamic Object Detection 
Deep learning-based target detection and semantic segmentation methods are widely 

used to obtain prior information about dynamic objects in a scene. Target detection meth-
ods process less information and have higher computational efficiency than semantic 
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(indicated in green) to the ORB-SLAM3 system.

During the operation of the SEG-SLAM system, each frame of the image passes
through the tracking and fusion threads for target detection and semantic segmentation. In
the fusion thread for target detection and semantic segmentation, the system extracts the
semantic information for obviously and potentially dynamic objects from each frame. At
the same time, the tracking thread also performs the task of extracting ORB feature points
and screens and rejects feature points based on previously obtained semantic information.
Among them, the mask boundary points are filtered based on depth information, while
potentially dynamic feature points are screened utilising the epipolar geometry method.
This effectively reduces the adverse effects of erroneous data associations for dynamic
feature points.

3.2. Dynamic Object Detection

Deep learning-based target detection and semantic segmentation methods are widely
used to obtain prior information about dynamic objects in a scene. Target detection methods
process less information and have higher computational efficiency than semantic segmen-
tation methods; however, they only provide bounding box information for objects and
they ignore specific contours and shape information. By contrast, semantic segmentation
methods can achieve fine-grained localisation at the pixel level and deal with occlusion
and overlapping situations more effectively. However, they have greater computational
complexity and require more computational resources. Therefore, a fusion method of
target detection and semantic segmentation is utilised for the detection of each image
frame. The semantic segmentation method is used to detect obviously dynamic objects,
whereas the target detection method is used to detect potentially dynamic objects. This
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fusion method helps acquire more comprehensive prior information about dynamic objects,
thereby improving the understanding and perception ability for complex scenes.

Traditional semantic visual SLAM systems face significant challenges in balancing
the accuracy and real-time performance of semantic segmentation networks. Although
Mask-RCNN, a common two-stage instance segmentation method, has high segmentation
accuracy, it requires relatively long processing times, which makes it difficult to satisfy
real-time requirements. Furthermore, some convolutional neural networks, such as fully
convolutional networks (FCNs) [36] and SegNet [37] algorithms using encoder–decoder
structures, have been extensively employed in visual SLAM systems. However, these
approaches do not provide sufficient contextual information and only use single-scale
feature maps for segmentation. Consequently, they multiscale feature fusion, which makes
it difficult to accurately segment dynamic objects of different scales. To improve the
accuracy and operational efficiency of the visual SLAM system, this study adopts the
lightweight detection algorithm YOLOv5, and its network structure is shown in Figure 2.
Among the YOLO series of algorithms, although YOLOv8 brings many innovations as an
updated detection algorithm, its maturity still needs to be improved compared to other
versions. Therefore, in order to ensure the stability and reliability of the detection results,
this paper decides to adopt the more mature and widely verified YOLOv5 algorithm
to provide the a priori information. The structure diagram is mainly divided into four
modules, which are the input side of the network; the backbone network, which performs
feature extraction on the input image; the neck network, which performs feature fusion
on the features extracted by the backbone network; and the head output side. which has
three detection heads to predict the feature map. When each frame is passed from the
input to the network, the detected image can be output at the output according to the
dynamic categories set in this paper. Compared to the Mask-RCNN algorithm, the YOLOv5
segmentation algorithm has a higher operational efficiency, and its design emphasises real-
time performance. By integrating the target detection and segmentation tasks into a single
stage, the processing speed is significantly improved. Therefore, the SEG-SLAM algorithm
can satisfy the requirements for both accuracy and real-time performance.
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YOLOv5 is a target-detection algorithm written in Python. To integrate it into the
SEG-SLAM system more effectively, C++ is used to deploy the neural network for the
YOLOv5 algorithm, as shown in Figure 3. Firstly, the trained pt weights file from the
Python side is converted into a weights file in torchscript format that can be loaded by
the libtorch library (the environment of Python and C++ should be guaranteed to be
the same CUDA version, and also Pytorch and libtorch should be guaranteed to be the
same corresponding version). Secondly, with the help of the torch::jit::load function of
the libtorch library, the torchscript file is loaded to obtain the network model available
for inference, and at the same time, the RGB image of the input system is converted into
the torch::Tensor type and passed into the network model for forward propagation to
obtain the prediction information and segmentation information, Thirdly, a non-extremely
large value suppression function is written to filter the optimal detection box and the
corresponding category information. Fourthly, the segmentation information is multiplied
with the category information, the sigmoid activation function is applied to obtain the
preliminary masking results, the masking results are adjusted according to the size of the
original image, and the results are binarised. Finally, the corresponding detection box
information and mask information are output, in which the results of the detection box
information are the coordinates of the centre point of the detection box as well as the length
and width information, and the result of the mask information is the binary image in the
form of cv::Mat.
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3.3. Dynamic Feature Point Rejection

Feature points are a set of pixels used to describe key local features in an image and
they are crucial for camera pose estimation and 3D scene reconstruction. However, the
presence of dynamic feature points can cause erroneous data associations in subsequent
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tasks, thereby affecting the accuracy of localisation and mapping. Therefore, this study
adopts a feature point rejection strategy that fully integrates prior information, depth
information, and epipolar geometry methods to form a tightly coupled processing pipeline.
For obviously dynamic objects, the internal points are eliminated using mask information
and the boundary points are assessed using depth information. For potentially dynamic
objects, the dynamic attributes of the feature points (dynamic or static) are assessed using
epipolar geometry methods. This strategy significantly reduces the effects of dynamic
feature points on the subsequent localisation and mapping tasks, thereby improving the
overall system’s accuracy and robustness.

3.3.1. Mask Scaling

For obviously dynamic objects, mask information can be used to effectively improve
the accuracy of dynamic feature point rejection. However, for complex dynamic objects with
irregular motion or high motion uncertainty, the extraction of mask boundary information
may be inaccurate and static background feature points may be included in the mask.
Therefore, the mask extracted by YOLOv5 is scaled to ensure that it is fully within the
range of the object (e.g., a human body). This approach aims to improve the accuracy of the
mask information for complex dynamic objects by adjusting the size and shape of the mask,
thereby more accurately rejecting dynamic feature points and providing more reliable data
for subsequent tasks.

The mask information for obviously dynamic objects is obtained according to the
process described in Section 3.2. It consists of a binary image with pixel values of 0 or 255,
as shown in Figure 4. To calculate the scaled mask region, the findContours function in the
OpenCV library is used to extract the original mask contours. The contours are shown in
Figure 5. The contours consist of a finite number of connected points. Therefore, we scale
the pixel coordinates of these points and then use the drawContours function to draw a
new binary image based on the new coordinates. The traditional coordinate scaling method
calculates the relationship between the coordinate points and the centroid of the region and
then scales the coordinate points along the centroid direction. However, this method has
high requirements for the shape of the contour and complex shapes are difficult to process
accurately. Therefore, this study presents a new approach that can be used to calculate
various complex contours.

The proposed method calculates the inner and outer points at a certain distance in
the normal direction from adjacent points on the original contour. One point belongs to
the inward reducing contour point set and the other belongs to the outward expanding
contour point set. The inward reducing and outward expanding contour point sets are
denoted reducePoints and expandPoints, respectively.
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Assume that two local adjacent points on the original contour have coordinates
p1(x1, y1) and p2(x2, y2). Then, the direction vector between these two points can be
expressed as

v = p2 − p1 = (x2 − x1, y2 − y1). (1)

The normal vector coordinates are

n = (y1 − y2, x1 − x2) (2)

and the normal coordinates of the normal vector are

ne =

 y1 − y2√
(x1 − x2)

2 + (y1 − y2)
2

,
x2 − x1√

(x1 − x2)
2 + (y1 − y2)

2

. (3)

Tests show that a translation distance of seven pixels produces the best scaling contour
effect. The coordinates of the scaling point set are calculated using the equations

x = x1 ±
7(y1 − y2)√

(x1 − x2)
2 + (y1 − y2)

2
(4)

and

y = y1 ±
7(x2 − x1)√

(x1 − x2)
2 + (y1 − y2)

2
. (5)

The translation point sets for the original contour in the inward and outward directions
are calculated and the calculation schematic is shown in Figure 6. Subsequently, a screening
strategy is used to determine which points should be included in the reduced and expanded
contours. First, considering the position of the origin of the image pixel coordinate system
and the principle of the findContours function, the point farthest from the origin in the
first group of calculated points for each contour is added to the reducePoints point set and
the other point is added to the expandPoints point set. Second, for each original contour
from the 2nd to the nth point, the distances of the two calculated (x, y) coordinates from
the origin are compared to those of the latest coordinates in the reducePoints point set.
The point with the smallest distance is added to the reducePoints point set and the other
point is added to the expandPoints point set. The results are shown in Figure 7a. This
strategy produces an approximate point set. However, the coordinates generated by the
findContours function are all integers, which indicates that the point set is not accurate
enough, particularly for the left leg of the figure.



Sensors 2024, 24, 2102 11 of 30

Sensors 2024, 24, x FOR PEER REVIEW 11 of 31 
 

 

Several methods are used to eliminate incorrect points from the point set. These 
methods are implemented as follows: 
1. If the reducePoints point set contains more than two points, the distances between 

the two newly calculated points a and b and the two latest points p and q in the re-
ducePoints point set are compared. If point a is closer to both points p and q than to 
point b, then points a and b are added to the reducePoints and expandPoints point 
sets, respectively. If point a is closer to either point p or q than to point b, then the 
distances are compared to the previous point in the original contour. The point with 
the smallest distance is added to the reducePoints point set and the other is added to 
the expandPoints point set. The results are shown in Figure 7b. The expansion and 
reduction processes of the contour approximately follow the change trends of the 
original contour. 

2. In the enlarged image on the right side of Figure 7b, it can be found that there are still 
individual wrong red and green dots, and some of them are too close to the white 
dots, and the distance is too close to achieve a be er zoom effect. To further improve 
the calculation accuracy for the two contours, the coordinates of the 50 points before 
and after each point in the original contour are traversed (if there are fewer than 50 
points before or after a point, the data are truncated at the beginning or end). The 
distances between the two newly calculated points and these points are compared. If 
the distance to one point is less than three, the newly calculated point is deleted from 
the corresponding point set. The results are shown in Figure 8. 

3. A point set named newPoints is created. If both scaling points calculated for a certain 
point in the original contour are not deleted, then the original contour point is added 
to the newPoints point set. This point set is used in Section 3.3.2. 

 
Figure 6. Schematic diagram showing the calculation of the translation point sets. In the enlarged 
image, the white, red, and green pixels represent the original, enlarged, and reduced contour point 
sets. 

Figure 6. Schematic diagram showing the calculation of the translation point sets. In the enlarged im-
age, the white, red, and green pixels represent the original, enlarged, and reduced contour point sets.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 31 
 

 

 
(a) 

 
(b) 

Figure 7. Mask contour optimisation process. The white, red, and green pixels represent the original, 
enlarged, and reduced contour point sets. (a) Process I; (b) Process II. 

3.3.2. Internal Mask Point Rejection 
The mask contour is divided into inner and outer contours. As described in Section 

3.3.1, the reducePoints point set is the set of points furthest from the origin. Therefore, for 
the outer contour, the reducePoints and expandPoints point sets correspond to inward 
reduction and outward expansion, respectively. By contrast, for the inner contour, the ex-
pandPoints and reducePoints point sets correspond to inward reduction and outward ex-
pansion, respectively. 

For the outer contour, the drawContours function is used to draw a white mask con-
tour on a black background based on the reducePoints point set. If an inner contour also 
exists, the drawContours function is used to draw a black mask contour based on the ex-
pandPoints point set. This generates a new binary image, as shown in Figure 9. If the ex-
tracted feature points belong to the mask contour, they are rejected. The rejection effect is 
shown in Figure 10. 

Figure 7. Mask contour optimisation process. The white, red, and green pixels represent the original,
enlarged, and reduced contour point sets. (a) Process I; (b) Process II.



Sensors 2024, 24, 2102 12 of 30

Several methods are used to eliminate incorrect points from the point set. These
methods are implemented as follows:

1. If the reducePoints point set contains more than two points, the distances between
the two newly calculated points a and b and the two latest points p and q in the
reducePoints point set are compared. If point a is closer to both points p and q than to
point b, then points a and b are added to the reducePoints and expandPoints point
sets, respectively. If point a is closer to either point p or q than to point b, then the
distances are compared to the previous point in the original contour. The point with
the smallest distance is added to the reducePoints point set and the other is added
to the expandPoints point set. The results are shown in Figure 7b. The expansion
and reduction processes of the contour approximately follow the change trends of the
original contour.

2. In the enlarged image on the right side of Figure 7b, it can be found that there are still
individual wrong red and green dots, and some of them are too close to the white
dots, and the distance is too close to achieve a better zoom effect. To further improve
the calculation accuracy for the two contours, the coordinates of the 50 points before
and after each point in the original contour are traversed (if there are fewer than
50 points before or after a point, the data are truncated at the beginning or end). The
distances between the two newly calculated points and these points are compared. If
the distance to one point is less than three, the newly calculated point is deleted from
the corresponding point set. The results are shown in Figure 8.

3. A point set named newPoints is created. If both scaling points calculated for a certain
point in the original contour are not deleted, then the original contour point is added
to the newPoints point set. This point set is used in Section 3.3.2.
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3.3.2. Internal Mask Point Rejection

The mask contour is divided into inner and outer contours. As described in Section 3.3.1,
the reducePoints point set is the set of points furthest from the origin. Therefore, for
the outer contour, the reducePoints and expandPoints point sets correspond to inward
reduction and outward expansion, respectively. By contrast, for the inner contour, the
expandPoints and reducePoints point sets correspond to inward reduction and outward
expansion, respectively.

For the outer contour, the drawContours function is used to draw a white mask
contour on a black background based on the reducePoints point set. If an inner contour
also exists, the drawContours function is used to draw a black mask contour based on the
expandPoints point set. This generates a new binary image, as shown in Figure 9. If the
extracted feature points belong to the mask contour, they are rejected. The rejection effect is
shown in Figure 10.
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3.3.3. Edge Mask Point Rejection

To improve the dynamic feature point rejection effect, the mask contour is reduced
inwards by a certain distance, as discussed in Section 3.3.2, to ensure that all the rejected
points correspond to obviously dynamic objects. However, for irregularly shaped objects,
such as humans, there may be some errors in the contours identified via semantic segmen-
tation. Therefore, the feature points located at the contour boundaries must be assessed. In
this section, we will combine depth information to judge the feature points located in the
intermediate region between the inwardly narrowed and outwardly expanded point sets.

A binary mask for the intermediate region is drawn based on the point set information
obtained in Section 3.3.1. For the outer contour, the drawContours function is used to draw
the expandPoints point set as white mask contours on a black background and the redu-
cePoints point set as black mask contours. If there are inner contours, the drawContours
function is also used to draw the reducePoints point set as white mask contours and the
expandPoints point set as black mask contours. This generates a new binary image for the
points in the intermediate mask region, as shown in Figure 11. Owing to the randomness
in the movement of obviously dynamic objects, such as people, optimum results cannot be
achieved by simply classifying feature points and objects based on their depth. Therefore,
this study adopts an adaptive depth-judgment strategy.

Following from Section 3.3.1, the straight lines formed by each point in the newPoints
point set and their corresponding inward and outward expansion points are calculated. For
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each feature point located in the mask edge region, the nearest straight line is calculated
using the equation

d =
(xe − xr)(yr − y)− (ye − yr)(xr − x)√

(xe − xr)
2 + (ye − yr)

2
, (6)

where d is the distance from the point to the corresponding straight line, (xe, ye) is a point
in the expandPoints point set, (xr, yr) is the corresponding point in the reducePoints point
set to (xe, ye), and (x, y) is a feature point in the mask edge region.
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People can adopt different poses, and the depth values of different body parts can
vary significantly. Therefore, for each feature point in the mask edge region, the inner
feature point on the nearest straight line is selected. For the outer contour, the point in
the reducePoints point set on the nearest straight line to the feature point is located. Then,
its depth value is compared to that of the feature point to determine whether the point
belongs to an obviously dynamic object, such as a person, or the background based on
the threshold value. For the inner contour, the point in the expandPoints point set on the
nearest straight line to the feature point is located. Then, the depth value is assessed. After
debugging, the best effect is achieved when the threshold is set to 0.3 m. That is, when the
difference between the depth of the feature point and the depth of the corresponding point
is less than 0.3 m, the feature point is rejected; otherwise, it is retained. The rejection effect
is shown in Figure 12.
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3.3.4. Potentially Dynamic Feature Point Rejection

In Sections 3.3.1–3.3.3, the feature points for obviously dynamic objects were success-
fully rejected. Semantic segmentation assumes that dynamic objects are moving constants.
However, this may not apply to potentially dynamic objects, such as chairs; therefore, a
different feature point rejection method is required. In this section, a feature point rejection
strategy for potentially dynamic objects is proposed.

Potentially dynamic objects, such as chairs, often have more complex contours than
obviously dynamic objects and they may be located in areas with low light. Therefore, the
accuracy of the segmentation mask is greatly reduced if semantic segmentation is applied
to potentially dynamic objects. Hence, this study uses a target detection method to assess
internal feature points using detection box information. Subsequently, information about
the feature points in the previous frame is used to ensure that each pair of feature points
has a correct matching relationship and to determine whether a feature point is dynamic.
Finally, based on the matching relationship, the epipolar geometry method is used to assess
all feature points within the detection box and dynamic feature points are rejected.

When the surrounding environment remains static, the matching points between two
frames satisfy an epipolar geometric relationship. As shown in Figure 13, point P is a
point in 3D space, and points O1 and O2 represent the camera position in frames 1 and 2,
respectively. In addition, points e1 and e2 are the epipoles, lines l1 and l2 are the epipolar
lines, and points p1 and p2 are the feature matching points in frames 1 and 2, respectively.
Assume that the corresponding matching points between the previous frame feature points
p1 and the current frame feature points p2 are

p1 = [u1, v1, 1]T (7)

and
p2 = [u2, v2, 1]T , (8)

respectively, where (u1, v1) and (u2, v2) are the matching pixel coordinates of the previous
and current frames. According to the definition of the fundamental matrix,

PT
2 F21 p1 = 0, (9)

where F21 denotes the fundamental matrix. Equation (9) describes the relationship between
the coordinates of a static point in each frame. Fundamental matrix F21 can be calculated
as follows.

1. Find the feature points in the current frame that are not within the detection boxes
(including all the detection boxes for obviously and potentially dynamic objects).
These feature points are considered to be static and cannot move.

2. Find the feature points in the current frame that correspond to the feature points in
the previous frame and establish a correct matching relationship.

3. Perform normalisation operations on the feature points that have established match-
ing relationships.

4. Use the eight-point method to estimate the fundamental matrix.
5. Check the accuracy of the fundamental matrix.
6. Select the best matrix as the fundamental matrix based on the scores.

According to the definition of epipolar lines,

l = F21 p1 =
[
a2 b2 c2

]T , (10)

where a2, b2, and c2 are the coefficients of epipolar line l. If point P is a dynamic feature
point, as shown in Figure 13, then point P′ represents the point to which point P moves
and its projection in the current frame is p′2. Owing to noise and other errors, a certain
error exists between the theoretical and actual matching points for both dynamic and static
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feature points projected onto the current frame. The distance from point p′2 to the epipolar
line l2 is defined as h, where

h =
a2u2 + b2v2 + c2√

a2
2 + b2

2

. (11)

For each pair of matching points, the corresponding error value h is calculated. By
comparing the error value h with an empirical threshold, point P can be identified as a
static or dynamic feature point. The rejection effect is shown in Figure 14, where the feature
points for the chair on the left are rejected.
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Figure 14. Effect of potentially dynamic feature point rejection. The feature points for the chair on the
left are rejected.

3.4. Dense 3D Mapping

Section 3.3 considered the effective elimination of dynamic feature points in dynamic
scenes with the aim of improving the positioning accuracy of dynamic visual SLAM systems.
By accurately identifying and eliminating the unstable feature points corresponding to dy-
namic objects, a solid foundation for subsequent map construction was established, which
significantly improves the accuracy of dense mapping in dynamic scenes. This section
further explores the application of dense-mapping technology to dynamic visual SLAM.

Compared to sparse maps, dense maps have higher precision, more detailed repre-
sentation, and better describe environmental structures, surface properties, and geometric
shapes. Owing to their accuracy and detailed environmental representations, dense maps
are widely used in fields such as robot navigation, environmental perception, and scene
understanding. Advanced point cloud processing techniques are required to construct
dense 3D mappings. The PCL library is one of the most popular open-source 3D point
cloud libraries and it provides a wealth of algorithms and data structures, which makes
making point-cloud processing relatively simple and efficient. This study constructs a static
dense 3D mapping by combining information such as raw RGB images, depth maps, and
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keyframes. This process is summarised in Figure 15. First, the 3D coordinates and RGB
colour values of each pixel in the keyframe images are calculated. Second, the coordinate
pose is transformed into the global coordinate system. Third, when a new point cloud is
added, voxel filtering operations are applied to the entire point cloud. Finally, the 3D dense
mapping is output in the PCD format.
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4. Experimental Results

In this section, the SEG-SLAM system will be demonstrated on the public TUM RGB-D
datasets [38] and real scenes to evaluate its accuracy and robustness in dynamic scenes. The
SEG-SLAM system was compared to the original ORB-SLAM3 system, DynaSLAM system,
and other dynamic visual SLAM systems. The simulation experiments were conducted
using a desktop computer with an Intel® Core™ i5-9600KF CPU, 3.70 GHz clock speed, 16
GB RAM, NVIDIA GeForce GTX 1650 graphics card, and Ubuntu 20.04 operating system.
The real-scene experiments were conducted using a Lenovo Y700 laptop with an Intel®

Core™ i5-6300HQ CPU, 2.30 GHz clock speed, 16 GB RAM, NVIDIA GeForce GTX 960M
graphics card, and Ubuntu 18.04 operating system. For the semantic segmentation module,
the input size of the RGB-D images was 640 × 640. For all the experiments, the feature
point number N was 1000 and the depth threshold dt was 0.3 m.

The estimated camera trajectory data were compared to the real camera trajectory data
using two common evaluation indicators: the absolute trajectory error (ATE) and relative



Sensors 2024, 24, 2102 18 of 30

pose error (RPE). The ATE describes the absolute error between the estimated and real
poses, which can directly reflect the accuracy of the algorithm and the global consistency of
the trajectory. The RPE describes the differences between the estimated and real poses in
adjacent frames, including both rotation and translation errors. These indicators are crucial
for assessing the accuracy and robustness of the system.

The root mean square error (RMSE) values for each indicator were used to evaluate
the SEG-SLAM system. The RMSE of the ATE (ATE − RMSE) can be expressed as

ATE − RMSE =

√
1
n ∑n

i=1 I Itrans
(
Êi
)
− trans(Ti)

2 I I, (12)

where Êi denotes the estimated camera pose, Ti denotes the ground-truth pose, n is the
number of frames in the image sequence, and trans denotes the transformation of the
camera pose. In addition, the RMSE of the RPE (RPE − RMSE) can be expressed as

RPE − RMSE =

√
1
m ∑m

i=1 I Itrans
((

T−1
i Ti+∆

)−1(
Ê−1

i Êi+∆

))2
I I, (13)

where ∆ denotes the time interval, m denotes the difference between n and ∆. The experi-
mental results were evaluated using the EVO evaluation tool and the results were used to
produce the subsequent charts and other content.

4.1. TUM RGB-D Dataset

The TUM dataset is widely used to evaluate the robustness of indoor visual SLAM
systems. It consists of data that were collected using Kinect RGB-D cameras with a frame
rate of 30 Hz and a resolution of 640 × 480 pixels. The dataset was divided into 39 sequences
based on the diversity of the scenes and motion states. For this study, eight sequences were
selected from dynamic sequence fr3. Details of the selected sequences are given in Table 1.
The sequences from the sitting and walking series datasets were lowly and highly dynamic
sequences, respectively. They were integrated to ensure that the system was evaluated
accurately and comprehensively for different dynamic scenarios.

Table 1. Details of the selected sequences.

Sequence Duration (s) Trajectory Length (m) Number of Frames Camera Movement

fr3/sitting_static 23.63 0.259 680 Static
fr3/sitting_xyz 42.50 5.496 1219 Along xyz
fr3/sitting_half 37.15 6.503 1074 Along half sphere
fr3/sitting_rpy 27.48 1.110 795 Along rpy

fr3/walking_static 24.83 0.282 717 Static
fr3/walking_xyz 28.83 5.791 827 Along xyz
fr3/walking_half 35.81 7.686 1021 Along half sphere
fr3/walking_rpy 30.61 2.698 866 Along rpy

4.1.1. Comparison of the SEG-SLAM and ORB-SLAM3 Algorithms

The algorithm in this paper is improved based on ORB-SLAM3 [10]. To highlight the
improvement, a detailed comparison between it and ORB-SLAM3 is conducted. The locali-
sation performance of the two algorithms was evaluated by comparing their ATE − RMSE
values, as shown in Table 2. SEG-SLAM exhibited greater precision than ORB-SLAM3 for
the highly dynamic walking-series datasets, which indicates that it had superior perfor-
mance for highly dynamic scenes. Furthermore, SEG-SLAM and ORB-SLAM3 produced
similar results for the slightly dynamic sitting-series datasets. To visualise the differences in
the precision of the two algorithms, the data in the table were plotted as shown in Figure 16.
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Figure 16. ATE distributions for the algorithms with different datasets. ATE distributions for
the ORB-SLAM3 (blue) and SEG-SLAM (green) algorithms with sequences. (a) fr3/sitting_static,
(b) fr3/sitting_xyz, (c) fr3/sitting_half, (d) fr3/sitting_rpy, (e) fr3/walking_static, (f) fr3/walking_xyz,
(g) fr3/walking_half, and (h) fr3/walking_rpy. The RGB-D images represented by the blue lines in
the figure indicate the dynamic objects in the scene.
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Table 2. ATE − RMSE values for ORB-SLAM3 and SEG-SLAM with different sequences. The best
values are indicated in bold.

ATE−RMSE (m)
Sequence ORB-SLAM3 SEG-SLAM

fr3/sitting_static 0.0084 0.0062
fr3/sitting_xyz 0.0088 0.0110
fr3/sitting_half 0.0207 0.0162
fr3/sitting_rpy 0.0221 0.0252

fr3/walking_static 0.1882 0.0081
fr3/walking_xyz 0.7218 0.0141
fr3/walking_half 0.3283 0.0243
fr3/walking_rpy 0.7022 0.0306

The blue and green lines in Figure 16 represent the ATE values of the ORB-SLAM3
and SEG-SLAM algorithms, respectively. When dealing with the slightly dynamic sitting-
series dataset, the curves for both algorithms showed similar changes. For the datasets
where the camera moved in the xyz or rpy aspects, the ORB-SLAM3 algorithm showed
superior overall performance. However, for the datasets where the camera was static
or moved over a half sphere, the SEG-SLAM algorithm showed superior performance.
This phenomenon can be explained by the fact that, for the slightly dynamic datasets, the
small movements of the characters and discontinuities in the motion states made the ORB-
SLAM3 algorithm more robust; thus, it performed better in specific scenarios. For the highly
dynamic dataset, the movement characteristics of humans were more pronounced, which
caused the ORB-SLAM3 algorithm to generate many erroneous matching feature points.
Consequently, the camera pose was calculated incorrectly. By contrast, the SEG-SLAM
algorithm uses a dynamic feature point rejection strategy. Consequently, only reliable
static feature points were retained, which significantly reduced the number of feature point
mismatches and increased the robustness of the algorithm. Therefore, the SEG-SLAM
algorithm is more reliable for highly dynamic scenes and can provide valuable support for
accurately reconstructing the camera trajectory.

4.1.2. Comparison of the SEG-SLAM and DynaSLAM Algorithms

SEG-SLAM mainly uses semantic segmentation to obtain prior information about
dynamic objects. To comprehensively demonstrate the robustness of the SEG-SLAM
algorithm, it was compared to the classical DynaSLAM algorithm [27], which uses Mask-
RCNN segmentation. Table 3 shows a detailed comparison of the results. SEG-SLAM
showed better overall robustness than DynaSLAM and its ATE values were lower in each
case except for the fr3/walking_static sequences. This indicates that, in most cases, SEG-
SLAM performs better than DynaSLAM in terms of robustness and is more robust when
dealing with dynamic scenes.

To gain a deeper understanding of the differences between the two algorithms, box
plots were used to conduct a comparative analysis of the ATE values, as shown in Figure 17.
A box plot is a graphical representation of the distribution of data that provides a visual
understanding of the centre of the data, the degree of dispersion, and outliers, which
include medians, quartiles, outliers, and so on. SEG-SLAM had a lower median ATE than
DynaSLAM for every dataset except fr3/walking_static, where it was slightly higher. This
indicates that the SEG-SLAM algorithm generally performed better, although there were
some exceptions. However, the number of exceptions was relatively small and they did
not significantly affect the median value of the overall data distribution, which indicates
that SEG-SLAM can produce accurate estimates in most cases. Further analysis of the
exceptions will be conducted in the future to determine their causes and to identify relevant
scenes or data features.
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Figure 17. ATE distributions for the algorithms with different datasets. ATE distributions for
the DynaSLAM (blue) and SEG-SLAM (green) algorithms with sequences (a) fr3/sitting_static,
(b) fr3/sitting_xyz, (c) fr3/sitting_half, (d) fr3/sitting_rpy, (e) fr3/walking_static, (f) fr3/walking_xyz,
(g) fr3/walking_half, and (h) fr3/walking_rpy.
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Table 3. ATE − RMSE values for DynaSLAM and SEG-SLAM with different sequences. The best
results are indicated in bold.

ATE−RMSE (m)
Sequence DynaSLAM SEG-SLAM

fr3/sitting_static 0.0065 0.0062
fr3/sitting_xyz 0.0136 0.0110
fr3/sitting_half 0.0209 0.0162
fr3/sitting_rpy 0.0441 0.0252

fr3/walking_static 0.0071 0.0081
fr3/walking_xyz 0.0151 0.0141
fr3/walking_half 0.0291 0.0243
fr3/walking_rpy 0.0371 0.0306

4.1.3. Comparison of Mainstream Dynamic Visual SLAM Algorithms

To better demonstrate the robustness of the SEG_SLAM algorithm, several recent
mainstream dynamic visual SLAM algorithms were selected for comparison. DynaSLAM
uses the Mask-RCNN method to eliminate dynamic feature points, DS-SLAM [39] uses the
SegNet method to eliminate dynamic feature points, and RDS-SLAM [40] uses both the
Mask-RCNN and SegNet methods to eliminate dynamic feature points. Dynamic-VINS [41]
uses target detection and depth information fusion in resource-limited environments to
eliminate dynamic feature points, and YOLO-SLAM [29] uses an improved YOLOv3 neural
network to eliminate dynamic feature points. Table 4 shows the ATE − RMSE for the
various algorithms. The data for DynaSLAM and DS-SLAM are the actual test results,
whereas the data for the other algorithms were obtained from the relevant references.
SEG-SLAM showed the best results in six cases, and the ATE − RMSE only exceeded
those of the other algorithms for the fr3/sitting_rpy and fr3/walking_static sequences.
The segmentation algorithms used by DynaSLAM and DS-SLAM have higher precision;
therefore, they may produce better results for individual static datasets.

Table 4. Comparison of the ATE − RMSE values for various algorithms with different sequences.
Here, “-“ indicates that there were no relevant experimental data, and the best results are indicated
in bold.

ATE−RMSE (m)
Sequence DynaSLAM DS-SLAM RDS-SLAM Dynamic-VINS YOLO-SLAM SEG-SLAM

fr3/sitting_static 0.0065 0.0072 0.0084 - 0.0089 0.0062
fr3/sitting_xyz 0.0136 0.0111 - - - 0.0110
fr3/sitting_half 0.0209 0.0170 - - - 0.0162
fr3/sitting_rpy 0.0441 0.0243 - - - 0.0252
fr3/walking_static 0.0071 0.0080 0.0720 0.0077 0.0094 0.0081
fr3/walking_xyz 0.0151 0.0191 0.0240 0.0486 0.0194 0.0141
fr3/walking_half 0.0291 0.0299 0.0306 0.0608 0.0268 0.0243
fr3/walking_rpy 0.0371 0.4352 0.0587 0.0629 0.0933 0.0306

Tables 5 and 6 show the relative errors in the pose transformation for various dynamic
visual SLAM algorithms. The SEG-SLAM algorithm had the best RMSE values for four
sequences and the differences between the RMSE values for the SEG-SLAM algorithm, and
the best results were small for the other sequences. Therefore, SEG-SLAM has a significant
advantage in terms of the translation and rotation errors compared to other dynamic visual
SLAM algorithms.

To compare the overall motion error of the camera more intuitively, the differences
between the estimated camera trajectories and the ground truths are illustrated in Figure 18.
Among the eight sequences, the trajectory errors for the three algorithms were similar.
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However, SEG-SLAM had lower overall trajectory errors and was more robust than the
other algorithms.

Table 5. Comparison of RPE − RMSE values for various algorithms with different sequences (RPE
translation part). Here, “-“ indicates that there were no relevant experimental data, and the best
results are indicated in bold.

RPE−RMSE (m/s)
Sequence DynaSLAM DS-SLAM RDS-SLAM Dynamic-VINS YOLO-SLAM SEG-SLAM

fr3/sitting_static 0.0055 0.0045 0.0097 - 0.0089 0.0055
fr3/sitting_xyz 0.0106 0.0088 - - - 0.0096
fr3/sitting_half 0.0163 0.0101 - - - 0.0124
fr3/sitting_rpy 0.0216 0.0149 - - - 0.0148
fr3/walking_static 0.0070 0.0052 0.0529 0.0095 0.0094 0.0070
fr3/walking_xyz 0.0124 0.0146 0.0299 0.0578 0.0194 0.0112
fr3/walking_half 0.0149 0.0134 0.0332 0.0665 0.0268 0.0133
fr3/walking_rpy 0.0271 0.0230 0.0700 0.0595 0.0933 0.0200
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Figure 18. Camera trajectory errors of different methods. The black line represents the ground truth
of the camera trajectory, the blue line represents the estimated trajectory, and the red line represents
the absolute difference between the estimated trajectory and the ground truth. The results are
presented for sequences (a) fr3/sitting_static, (b) fr3/sitting_xyz, (c) fr3/sitting_half, (d) fr3/sitting_
rpy, (e) fr3/walking_static, (f) fr3/walking_ xyz, (g) fr3/walking_ half, and (h) fr3/walking_ rpy and
algorithms (1) DS-SLAM, (2) DynaSLAM, and (3) SEG-SLAM.
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Table 6. Comparison of RPE − RMSE values for various algorithms with different sequences (RPE
rotation part). Here, “-“ indicates that there were no relevant experimental data, and the best results
are indicated in bold.

RPE−RMSE (deg/s)
Sequence DynaSLAM DS-SLAM RDS-SLAM Dynamic-VINS YOLO-SLAM SEG-SLAM

fr3/sitting_static 0.0040 0.0038 0.3217 - 0.2709 0.0041
fr3/sitting_xyz 0.0082 0.0078 - - - 0.0079
fr3/sitting_half 0.0114 0.0097 - - - 0.0100
fr3/sitting_rpy 0.0117 0.0108 - - - 0.0102
fr3/walking_static 0.0046 0.0041 1.4966 0.4581 0.2623 0.0046
fr3/walking_xyz 0.0097 0.0105 0.7739 1.6932 0.5984 0.0094
fr3/walking_half 0.0106 0.0105 0.8194 5.2116 0.7534 0.0102
fr3/walking_rpy 0.0147 0.0134 1.4736 5.0839 1.8238 0.0126

4.1.4. Dense 3D Mapping

SEG-SLAM was used to generate a static dense 3D mapping by eliminating dynamic
objects from the scene. The process was tested using the TUM dataset and the results are
shown in Figure 19. Figure 19a shows the result obtained using ORB-SLAM3, which did not
remove the dynamic objects and contains a lot of dynamic object ghosting. Figure 19b shows
the result obtained using SEG-SLAM, which does not contain obviously dynamic objects.
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4.2. Real Scene

The robustness of the SEG-SLAM system with real scenes was verified using the
experimental platform shown in Figure 20. A Lenovo y700 laptop (Lenovo, Beijing, China)
and Intel RealSense D455 depth camera (Intel, Santa Clara, CA, USA) were positioned
on the lifting platform of an Agilex Robotics-BUNKER mobile platform (AgileX Robotics,
Shenzhen, China).

The experimental scene consisted of an indoor office area where humans were the
main moving objects. The mobile robot travelled along a circular route. As shown in
Figure 21, two perspectives were used to compare the results of ORB-SLAM3 and SEG-
SLAM. ORB-SLAM3 failed to eliminate dynamic object feature points, whereas SEG-SLAM
eliminated feature points effectively and did not mistakenly eliminate static background
feature points. Figure 22 shows a comparison of the trajectories obtained via ORB-SLAM3,
DS-SLAM, and SEG-SLAM. SEG-SLAM had the best trajectory effect, whereas ORB-SLAM3
caused serious trajectory drifting owing to erroneous data associations between matching
points caused by the retained dynamic feature points. The trajectories obtained using
DS-SLAM and SEG-SLAM showed similar trajectories. However, DS-SLAM showed local
drifting. Owing to the unstable structure of the lifting platform, the camera shook as the
robot moved, which resulted in local trajectory jitters.
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4.3. Running Time Analysis

The running time is an important consideration when evaluating visual SLAM sys-
tems. The median and mean tracking times for each frame were used to evaluate the
running efficiency of SEG-SLAM compared to other algorithms, as shown in Tables 7 and 8.
The TUM dataset was tested using a desktop computer and the real scene was tested on
a laptop. For the TUM dataset, SEG-SLAM has a higher operating efficiency than Dy-
naSLAM and a lower operating efficiency than DS-SLAM. For the real scene, SEG-SLAM
and DS-SLAM had similar operating efficiencies. Therefore, when considering semantic
segmentation methods to obtain prior information about objects, SEG-SLAM exhibits high
robustness, although its overall operating efficiency is relatively low. After the analysis,
YOLOv5 was found to have high computational requirements when calculating the object
mask information, which affected the real-time performance of the system. In the future,
lightweight operations will be applied to the YOLOv5 segmentation process to improve
the running speed of the visual SLAM system.

Table 7. Comparison of computation times for different algorithms with TUM (fr3/walking_xyz).
The best results are indicated in bold.

Computation Time (s)
System Median Mean

DynaSLAM 0.2771 0.5655
DS-SLAM 0.0544 0.0643

SEG-SLAM 0.1168 0.1189

Table 8. Comparison of computation times for different algorithms with real scenes. The best values
are indicated in bold.

Computation Time (s)
System Median Mean

ORB-SLAM3 0.0215 0.0222
DS-SLAM 0.0561 0.0609

SEG-SLAM 0.0617 0.0687

5. Discussion

This study proposed an RGB-D SLAM system that integrated geometric and semantic
information, resulting in remarkable robustness for dynamic environments. Conventional
dynamic visual SLAM systems based on geometric information ignore potentially dy-
namic objects, whereas those based on semantic information struggle to meet real-time
performance requirements. Therefore, this study used a target detection and semantic
segmentation fusion module based on YOLOv5. Target detection can only obtain the
boundary information of objects, which is prone to incorrectly eliminating points from the
background. Semantic segmentation can effectively identify object contour information, al-
though it is highly dependent on the mask quality. Therefore, the YOLOv5 neural network
was used to combine both types of information. In the feature point elimination module,
if only the internal points of obviously dynamic objects are eliminated, some errors will
occur. Therefore, an adaptive strategy for dynamic feature point selection was designed,
and the epipolar geometry method was used to eliminate the feature points of potentially
dynamic objects.

To evaluate the reliability of the system, the performance of the SEG-SLAM system was
compared to various mainstream dynamic visual SLAM systems using the TUM dataset
and real scenes. The experimental results are presented in Tables 2–6. The positioning
accuracy of SEG-SLAM was higher than that of ORB-SLAM3 for highly dynamic sequences
and higher than or similar to that of ORB-SLAM3 for slightly dynamic sequences. The ATE
values of the two algorithms were compared graphically, as shown in Figure 16. SEG-SLAM
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was also compared to the state-of-the-art DynaSLAM system, which uses the Mask-RCNN
semantic segmentation method. SEG-SLAM showed better overall positioning accuracy and
real-time performance than DynaSLAM. The differences between the results obtained using
the two algorithms were compared using box plots, as shown in Figure 17. SEG-SLAM used
a target detection and semantic segmentation fusion module based on YOLOv5, which
had a higher positioning accuracy than other mainstream algorithms based on SegNet,
Mask-RCNN, and YOLOv3 target detection. In real scenarios, this paper’s algorithm has
higher accuracy compared to ORB-SLAM3 and DS-SLAM algorithms. In terms of real-time,
the algorithm in this paper has higher real-time compared to DynaSLAM, DS-SLAM, and
other SLAM systems using semantic segmentation algorithms.

6. Conclusions

This study proposed a robust dynamic visual SLAM system based on ORB-SLAM3.
To prevent erroneous data associations caused by dynamic objects in a scene, a target
detection and semantic segmentation fusion module based on YOLOv5 was developed. In
this module, target detection was used to detect potentially dynamic objects such as chairs
and output the object bounding boxes and category information. Semantic segmentation
was used to detect obviously dynamic objects and output the object mask and category
information. A differentiated dynamic feature point elimination strategy was developed
using the dynamic object prior information, depth information, and epipolar geometry.
First, for obviously dynamic objects, the mask information was used to eliminate internal
feature points. Second, after considering the error of the mask contour, the edge feature
points of obviously dynamic objects were eliminated. Finally, for potentially dynamic
objects, the epipolar geometry method was used to eliminate dynamic feature points. In
addition, keyframes with eliminated dynamic feature points were combined with the PCL
library to build a static dense 3D mapping. The SEG-SLAM system was evaluated using
the challenging TUM RGB-D dataset and real scenes, and the results were compared to
those obtained using the most advanced dynamic visual SLAM algorithms reported in
recent years. The results showed that the SEG-SLAM system effectively processes the
mask edge feature points and rejects the dynamic feature points of potentially dynamic
objects, has higher localisation accuracy than mainstream dynamic vision SLAM systems,
and has higher real-time performance in dynamic vision SLAM systems using semantic
segmentation algorithms, so the algorithm in this paper has higher accuracy and robustness
in dynamic environments.

Although the algorithm in this paper has achieved excellent performance, there are
still some problems in the following two aspects: (1) compared with the target detection to
obtain semantic information methods, the algorithm in this paper has a large amount of
computation, and the real-time performance is on the low side; (2) the algorithm of this
paper has some limitations when obviously dynamic objects are not in motion at a certain
moment. In the future, several aspects of the SEG-SLAM system should be optimised.
First, to improve the real-time performance, distillation methods may be used to develop
lightweight YOLOv5 models, and more reasonable multithreading methods may be used
to deploy the target detection and semantic segmentation modules. Second, for obviously
dynamic objects that are stationary at a given moment, reasonable strategies should be
designed to recover the feature point information within the mask. Finally, for dense
mapping, filtering methods should be used to further optimise the map quality.
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