
Citation: Rosero, L.A.; Gomes, I.P.;

da Silva, J.A.P.; Przewodowski, C.A.;

Wolf, D.F.; Osório, F.S. Integrating

Modular Pipelines with End-to-End

Learning: A Hybrid Approach for

Robust and Reliable Autonomous

Driving Systems. Sensors 2024, 24,

2097. https://doi.org/10.3390/

s24072097

Academic Editor: Qiong Wu

Received: 6 February 2024

Revised: 4 March 2024

Accepted: 22 March 2024

Published: 25 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Integrating Modular Pipelines with End-to-End Learning: A
Hybrid Approach for Robust and Reliable Autonomous
Driving Systems
Luis Alberto Rosero * , Iago Pachêco Gomes , Júnior Anderson Rodrigues da Silva , Carlos André Przewodowski ,
Denis Fernando Wolf and Fernando Santos Osório *

Institute of Mathematics and Computer Science, University of São Paulo, Ave. Trabalhador São-Carlense, 400,
São Carlos 13564-002, SP, Brazil; iagogomes@usp.br (I.P.G.); junior.anderson@usp.br (J.A.R.d.S.);
carlos.andre.filho@usp.br (C.A.P.); denis@icmc.usp.br (D.F.W.)
* Correspondence: lrosero@usp.br (L.A.R.); fosorio@icmc.usp.br (F.S.O.)

Abstract: Autonomous driving navigation relies on diverse approaches, each with advantages and
limitations depending on various factors. For HD maps, modular systems excel, while end-to-end
methods dominate mapless scenarios. However, few leverage the strengths of both. This paper
innovates by proposing a hybrid architecture that seamlessly integrates modular perception and
control modules with data-driven path planning. This innovative design leverages the strengths of
both approaches, enabling a clear understanding and debugging of individual components while
simultaneously harnessing the learning power of end-to-end approaches. Our proposed architec-
ture achieved first and second place in the 2023 CARLA Autonomous Driving Challenge’s SEN-
SORS and MAP tracks, respectively. These results demonstrate the architecture’s effectiveness in
both map-based and mapless navigation. We achieved a driving score of 41.56 and the highest route
completion of 86.03 in the MAP track of the CARLA Challenge leaderboard 1, and driving scores of
35.36 and 1.23 in the CARLA Challenge SENSOR track with route completions of 85.01 and 9.55, for,
respectively, leaderboard 1 and 2. The results of leaderboard 2 raised the hybrid architecture to the
first position, winning the edition of the 2023 CARLA Autonomous Driving Competition.

Keywords: autonomous driving; hybrid architecture; modular; end-to-end; path planning;
CARLA simulator

1. Introduction

There are different methodologies for developing an autonomous system, which
involves software components and algorithms from fields such as machine learning, com-
puter vision, decision theory, probability theory, and more. This mix of components adds
complexity to both the development and evaluation process [1]. Figure 1 illustrates the
main difference between the three approaches for architecture, being modular, end-to-end,
and hybrid architectures.

The standard method employs modular pipelines and has proven effective in scenarios
with access to detailed high-definition (HD) maps or dense waypoints. This approach,
widely adopted by both companies and research groups [2], decomposes the navigation
problem into specific tasks such as localization, object detection, tracking, prediction,
decision-making, path planning, and control [3–5]. The advantage of this architecture
lies in its interpretability, enabling a comprehensive evaluation of each component. How-
ever, the extensive coupling of numerous components increases the risk of error propaga-
tion, leading to increased complexity in maintaining the entire architecture and a rise in
associated costs.

Conversely, the end-to-end approach aims to directly map sensor input to driving
actions, bypassing explicit task decomposition [6]. This model leverages deep learning

Sensors 2024, 24, 2097. https://doi.org/10.3390/s24072097 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072097
https://doi.org/10.3390/s24072097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3667-0677
https://orcid.org/0000-0002-4184-4440
https://orcid.org/0000-0002-7035-992X
https://orcid.org/0000-0002-4120-8540
https://orcid.org/0000-0003-1485-5686
https://orcid.org/0000-0002-6620-2794
https://doi.org/10.3390/s24072097
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072097?type=check_update&version=1


Sensors 2024, 24, 2097 2 of 30

techniques, employing neural networks to learn complex mappings from raw sensor data
to steering, braking, and throttle commands. While this method simplifies the system
architecture and reduces the need for manual feature engineering, it often requires vast
amounts of training data and lacks transparency in decision-making processes.

Navigation Pipeline

Modular Architecture

Sensors Actuator

Perception Prediction
Decision
Making

Path
 Planning Control

L
o
c
a
li
z
a
ti

o
n

M
a
p

p
in

g

Navigation Pipeline

End-to-End Architecture

Sensors Actuator

Navigation Pipeline

Hybrid Architecture

Sensors Actuator

ControlPerception

Steering

Brake 

Acceleration

Steering

Brake 

Acceleration

Steering

Brake 

Acceleration

Camera

LiDAR

RADAR

GPS

Camera

LiDAR

RADAR

GPS

Camera

LiDAR

RADAR

GPS

Data-driven Path Planning

High-Definition
Map

Obstacle-free
Planning

s
0

s
1

s
2

s
3

Finite-State 
Machine

X X

Longitudinal

Lateral

Longitudinal

Lateral

SLAM GNSS

Trajectory 
Prediction

Figure 1. Example that illustrates the main differences among modular, end-to-end, and
hybrid architectures.

Autonomous navigation in complex environments has progressed with modular and
end-to-end approaches. However, each method has limitations, prompting the develop-
ment of a hybrid model that combines their strengths. Module-based systems, with their
numerous components and inflexibility, may struggle to adapt to diverse and unpredictable
situations, particularly when reliant on precise map data. On the other hand, end-to-end
models, though effective, often operate as black-box systems, making it challenging to
interpret their decision-making processes. Additionally, these models demand extensive
training data, which can be impractical and costly for covering a wide range of driving
scenarios. The hybrid model aims to address these issues by integrating the advantages of
both modular and end-to-end approaches. This approach seeks to strike a balance between
the interpretability of modular systems (with a better performance when considering maps,



Sensors 2024, 24, 2097 3 of 30

and more focused on deliberative tasks) and the learning capabilities of end-to-end models
(with a better performance when considering complex sensorial input data, and more fo-
cused on reactive tasks), offering potential improvements in system robustness, combining
deliberative and reactive behaviors, flexibility, adaptability, and overall performance.

Another challenge in autonomous driving is evaluating the autonomous driving ar-
chitecture, whether it adopts a modular, end-to-end, or hybrid methodology. Kalra and
Paddock [7], Koopman and Wagner [8], and Huang et al. [9] suggest that to comprehen-
sively assess an autonomous system, it is important to combine real-road and simulation
tests. In this regard, simulators offer advantages by creating repeatable scenarios for com-
ponent performance assessments. They simulate diverse driving situations with realistic
dynamics, including weather conditions, sensor malfunctions, traffic violations, hazardous
events, traffic jams, and crowded streets. Simulations also serve as effective benchmarks,
enabling the evaluation of different system approaches under the same conditions for
comparative analysis.

This paper introduces an autonomous driving software architecture employing a
hybrid methodology, integrating modular perception and control modules with data-driven
path planning. The architecture was designed and evaluated during the 2023 CARLA
Autonomous Driving Challenge (CADCH) (Available at: https://leaderboard.carla.org/
challenge (accessed on 5 February 2024), achieving first and second place in the SENSORS
and MAP tracks, respectively (Available at: https://leaderboard.carla.org/leaderboard
(accessed on 5 February 2024)). The 2023 CADCH represents the fifth edition of the
autonomous driving competition set in urban simulated environments using the CARLA,
featuring diverse urban scenarios. Our involvement spans multiple editions, and we
secured victory in the inaugural challenge through a modular and vision-based navigation
stack [10]. Therefore, the primary contributions of this paper are the following.

• A hybrid software architecture for autonomous vehicles, combining modular percep-
tion and control modules with data-driven path planning;

• A comprehensive comparison between modular and hybrid software architectures
through the simulation of urban scenarios;

• Evaluation of autonomous driving performance in diverse and hazardous traffic
events within urban environments.

The remainder of the paper is organized as follows: Section 2 provides a critical
overview of related-works; Section 3 describes the modular software architecture developed
in the competition; Section 4 presents the hybrid architecture approach; Section 5 discusses
the results of the competition and other experiments; finally, Section 6 addresses the final
remarks and suggests some future work.

2. Related Works

As mentioned before, there are different approaches to developing autonomous sys-
tems, depending on the technologies used and how the components are structured. This
section offers a brief and critical review of modular, end-to-end, and hybrid software
architectures. Table 1 summarizes the related works.

Table 1. Summary of related works.

Primary Study Name Type Layers or Methods Sensors or Inputs

Taş et al. [11] BerthaOne Modular Sensing, Perception, Planning,
Control, HMI, Communication

Radar, LiDAR, GNSS, IMU,
Cameras, Stereo Camera, V2V, V2I

Fan et al. [12] Apollo Modular
Perception, Prediction, Planning,

Control, HMI, Guardian,
Localization, HD-Map, CANBus

Radar, LiDAR, GNSS
IMU, Cameras,

V2X, Untrasonic

Autoware [13] Autoware Modular Sensing, Perception, Planning,
Control, HMI, Localization, Map

Radar, LiDAR, GNSS, IMU,
Cameras, Ultrasonic

https://leaderboard.carla.org/challenge
https://leaderboard.carla.org/challenge
https://leaderboard.carla.org/leaderboard


Sensors 2024, 24, 2097 4 of 30

Table 1. Cont.

Primary Study Name Type Layers or Methods Sensors or Inputs

Wei et al. [14] CMU Modular
Hardware, Perception,

Mission Planning, Behavior
Generation, Motion Planning

Radar, LiDAR, GNSS
IMU, Cameras, V2V, V2I,

Wheel speed sensor

Jo et al. [4] A1 Modular
Sensor Interface, Autonomous Driving

Algorithm, Actuator Interface,
Development Interface

Lasers, GNSS
IMU, Cameras

Shao et al. [15] ReasonNet End-to-End
ResNet (2D backbone), Transformer
Encoder, PointPillars (3D backbone),

GAT, CNN, MLP, GRU

Images (left, front,
right and rear),

LiDAR

Shao et al. [16] InterFuser End-to-End ResNet (2D and 3D backbone),
Transformer, GRU, MLP

Images (left, front,
and right), LiDAR

Wu et al. [17] TCP End-to-End ResNet (2D backbone),
MLP, GRU

Image (front), Speed,
High-level command, Goal

Casas, Sadat,
and Urtasun [18] MP3 End-to-End

CNN blocks (3D backbone),
CNN (Map decoders),

Probabilistic Reasoning

LiDAR,
High-level command

Xiao et al. [19] Multimodal
CIL End-to-End CNN (2D backbone),

MLP

Image (front), speed,
Depth Image (front),
High-level command

Zhang et al. [20] MMFN End-to-End
ResNet (2D and 3D backbone),

VectorNet (3D backbone),
GAT, MLP, GRU

LiDAR, Radar,
Map, Goal

Cai et al. [21] PMP-net End-to-End
ResNet (2D and 3D backbones),

Attention Mechanism,
Gaussian Mixtute Model, MLP

Image (front),
LiDAR, Radar, Map,
Position, Goal, Speed

Vitelli et al. [22] SafetyNet Path
Planning

PointNet (trajectory backbone)
Transformer Encoder, MLP

Historical trajectory,
Map, Goal

Song et al. [23] IVGG
LSTM

Path
Planning

DCNN, CNN
LSTM, MLP, VGG

Image (front, left and
right rear view mirror)

Moraes et al. [24] DeepPath Path
Planning

WideResNet38,
DeepLabV3, MLP

Image (front),
Position

Wang et al. [25] CNN
RawRNN

Path
Planning

ResNet50 (2D backbone)
LSTM, MLP

Image (front)

Hu et al. [26] ST-P3 Path
Planning

EfficientNet (2D backbone),
DeepLabV3 (head), Attention

Mechanism, GRU, MLP

Image (front-center, left, right;
back-center, left, right),
High-level command

HMI—human–machine interface; V2V—vehicle to vehicle; V2I—vehicle to infrastructure; V2X—vehicle to
anything; CNN—convolutional neural network; MLP—multi-layer perceptron; GRU—gated recurrent unit;
GAT—graph attention network; DCNN—deep cascaded neural network; LSTM—long short-term memory.

2.1. Modular Navigation Architecture

A modular architecture typically organizes software components in a hierarchical
manner based on specific criteria. Each group, referred to as a layer, operates at a distinct
level of abstraction and provides services to its adjacent layers. This structure follows a
descending order of abstraction, where higher-level layers handle more abstract tasks, while
lower-level layers manage finer controls in the architecture. For example, following the
hierarchical navigation stack proposed by Paden et al. [27], the initial layer is responsible
for road and lane-level route planning, determining the roads and lanes the vehicle must
follow to reach its destination. Subsequently, a behavior layer makes tactical decisions
for the vehicle during navigation, such as interactions with other traffic participants,



Sensors 2024, 24, 2097 5 of 30

adherence to traffic rules, and high-level maneuver choices (e.g., lane following, lane
change, U-turn, overtaking, and emergency stop). In addition to the route, this layer also
receives perception information, including obstacle position and velocity and traffic light
status. Once the behavior is determined, a motion planning layer calculates short-term,
feasible, and collision-free trajectories that are translated into low-level commands, such as
throttle, brake, and steering, by low-level controllers within the control layer [28].

This design pattern is widely utilized in autonomous systems and has demonstrated
notable success in both industrial and research vehicle applications [2]. Key studies typically
adopt similar layers, including sensing, perception, planning, control, and human–machine
interfaces as fundamental components [4,11–14]. However, there are variations, such as
communication between vehicles (e.g., vehicle-to-anything—V2X) [11]; health management
systems focusing on hardware and software component monitoring, diagnosis, progno-
sis, and fault recovery [4,12,14]; behavior or mission planning [4,13,14]; and mapping
strategy [4,11,13]. In the latter case, Wei et al. proposed an alternative to the hierarchical
navigation stack. This alternative organizes components of the behavior and control layers
in parallel order, based on the functioning of the ADAS (Advanced Driver Assistance)
system. According to the authors, this approach enhances the flexibility of the autonomous
system, enabling it to operate at a higher frequency compared to alternative methods.

Nevertheless, the parallel design faces challenges in coordinating components dur-
ing complex tasks and maneuvers due to asynchronous communication. Additionally,
both parallel and hierarchical approaches share issues related to error propagation between
components and the intricate management of components with the increase in vehicle
autonomy. This occurs because, as autonomy increases, the vehicle also performs more
tasks (e.g., maneuvers) and encounters a broader range of traffic scenarios. Therefore, the
number of components adversely affects the system’s performance. To minimize error
propagation across components, one approach is to use components that handle uncertain-
ties effectively in lower levels of the navigation stack [29]. This includes employing robust
control, decision-making that addresses partially observable issues, and trajectory planning
that is aware of occlusions and uncertainties in obstacle positions and speeds. Additionally,
incorporating fault detection, diagnosis, prognosis algorithms, and health management
systems for architectural components is crucial [30]. While these approaches do partially
alleviate the impact of error propagation and other issues linked to modular architecture,
they result in increased complexity and maintenance costs for the architecture.

2.2. End-to-End Autonomous Driving

End-to-end is a navigation approach where neural networks and deep learning mod-
els are trained to map sensory input (e.g., images or point clouds) to control outputs
(e.g., steering, throttle, brake) or intermediate outputs (e.g., trajectory segment). This elimi-
nates the need for manual feature tuning in modular navigation pipelines. The advantage
lies in leveraging deep learning generalization to simplify and enhance the adaptability
of navigation stacks across different traffic scenarios. There are various approaches to
classifying end-to-end models, ranging from the degree of the deep learning model’s in-
volvement in tasks to the technology applied. In the former category, methods range from
pure end-to-end architectures, where the deep learning models handle the entire mapping
and decision-making process, to hybrid approaches that integrate different algorithms, such
as probabilistic models, control theory, fuzzy inference systems, etc. The latter category
divides models based on techniques, such as imitation learning and reinforcement learning.

In addition to the presented taxonomy, studies on end-to-end navigation also focus
on input representation aspects and model design. This includes considerations in the
number of cameras (e.g., single or multi-camera setups) [15–17], methods for 3D data
representation (e.g., point cloud or Bird’s Eye View images) [15,16,18,20], sensor fusion
and multimodality (e.g., different sensors and feature fusion methods) [19–21], interaction
with traffic agents (e.g., interaction graphs or grid maps) [15,20], deep learning technolo-
gies (e.g., transformers, graph neural networks, deep reinforcement learning, attention



Sensors 2024, 24, 2097 6 of 30

mechanisms, generative models, etc.) [15,16,20,21], decision-making within the network
(e.g., high-level commands input or inference) [17,18], and the accuracy or feasibility of the
output (e.g., using standard controllers to estimate final outputs or filtering the output of
the deep learning model) [15,18,21].

In summary, end-to-end models primarily rely on RGB images and LiDAR-generated
point clouds, represented in 3D as points, voxels, or bird’s eye view (BEV) images. While the
ResNet network is commonly used for feature extraction from images and BEV [16–18,20,21],
some studies also explore the use of specialized deep learning models for 3D data, such as
PointPillars [15] and VectorNet [20]. Two significant challenges for deep learning models
include multimodality fusion and how to handle tactical decisions within the network (or
when incorporating decisions from external sources). In the former case, early-fusion and
middle-fusion approaches are noteworthy [19], they often involve attention mechanisms
or concatenation of feature vectors. In the latter case, tactical decisions (i.e., high-level
commands) can be treated as an input modality [17] or a conditional variable [18,19], par-
ticularly in approaches exploring multiple-expert designs. However, both pure and hybrid
end-to-end navigation methods still face challenges related to the lack of transparency and
explainability in decision-making and the requirement for extensive training data.

2.3. Data-Driven Path Planning

Autonomous vehicles rely on path planning algorithms to navigate through dynamic
and complex environments. Data-driven approaches have gained prominence in recent
years, representing a shift from traditional rule-based methods [31]. In data-driven path
planning, algorithms leverage machine learning techniques to learn collision-free paths
from large datasets [32]. These datasets typically include information from various sensors,
historical driving experiences, and diverse environmental conditions. Similar to end-to-end
navigation architectures, data-driven path planning also inherits the adaptability features
from deep learning models, which make them able to plan under diverse road geometry
and traffic scenarios.

Techniques for data-driven path planning typically emphasize the representation of
spatial and temporal features. However, to address the challenges of dynamic driving sce-
narios, they also consider the representation of traffic rules, interaction among traffic partic-
ipants, output trajectory smoothness and comfort, high-level commands (e.g., maneuvers),
and variations in road geometry. Spatial features are commonly derived from frontal
camera images or bird’s eye view (BEV) projections, using CNN-based networks for feature
embedding [23–26]. Some works also use the historical trajectory of the ego-vehicle and
surrounding agents [22]. Temporal features are traditionally addressed by recurrent neural
networks (e.g., gated recurrent unit—GRU and long short-term memory—LSTM) [23,25,26],
although recent studies have explored the application of Transformer networks [22]. Se-
mantic and abstract data, such as traffic rules and high-level commands, are integrated
as feature vectors or conditional variables [26]. Finally, ensuring trajectory smoothness
typically involves the application of a post-processing algorithm or the penalization term
in the loss function [26]. Nevertheless, methods employing machine learning for path
planning face challenges in terms of transparency and explainability. Moreover, there
is room for improvement in addressing global planning, high-level commands, manag-
ing dangerous and unexpected driving scenarios, and ensuring dynamic and kinematic
feasibility of planned trajectories.

Sensor fusion significantly improves the reliability of perception and data-driven
path planning in autonomous systems [33]. Integrating information from various sensors
enhances the system’s understanding of its surroundings [34]. Different sensors, such as
cameras, LiDAR, and radar each have unique strengths and weaknesses. Combining their
data results in a more robust representation of the environment. For instance, cameras
offer rich visual information, while LiDAR provides precise distance measurements [35].
This integration ensures a more accurate perception, enabling the system to generate safer



Sensors 2024, 24, 2097 7 of 30

trajectories, since knowing the precise positions of obstacle, road boundaries, and other
features enhances the path planning system’s capability to navigate complex scenarios.

In this context, this paper introduces a hybrid autonomous vehicle architecture that
integrates modular pipelines with data-driven path planning, offering a comprehensive
comparison of these approaches. This architecture, developed and evaluated in the 2023
CARLA Autonomous Driving Challenge (2023-CADCH), secured first and second place in
the SENSORS and MAP tracks, respectively. By combining modular perception and control
components, it delivers reliable information to the data-driven path planning, ensuring the
generation of kinematically feasible trajectories. Additionally, an early-fusion approach
enhances the spatial and semantic representation of the environment in the data-driven
path planning through the fusion of LiDAR Bird’s Eye View images, Stereo Camera pro-
jections, and high-level commands. The results demonstrate the network’s generalization
capabilities with real-time inference, highlighting the architecture’s reliability.

3. Proposed Modular Pipeline

An autonomous system requires several components and its architectural design pro-
vides an abstract view of the system operation and organization. In a layered architecture,
the components have public and well-defined communication interfaces through which
they exchange information with other components. This characteristic enables the definition
of a common architecture for all tracks in this challenge, through adjustments of a few com-
ponents for the maintenance of the same communication interface. This strategy reduces the
time spent on the development of the agents, and enables the evaluation of the autonomous
navigation performance with different sensors and algorithms for a specific task.

Figure 2 shows the general software architecture designed for all agents of the Labo-
ratório de Robótica Móvel (LRM) team in the 2023 CARLA Autonomous Driving Challenge.
The name “CaRINA Agent” is used to refer to this architecture in the rest of this paper. The lay-
ers of the architecture are sensing, perception, map, risk assessment, navigation, control, and vehicle.
Robotic framework ROS (robotic operating system) supported the communication interface
between components with the Publish/Subscribe pattern for message passing [36].

Sensors

Vehicle

Perception

Map

Navigation Control

Risk Assessment

Simulator

Decision
Making

Steering

Brake

Acceleration

OpenDriver
Manager

+

Local Path 
Planning

Lateral
Controller

Obstacle
Detection and 

Tracking

Traffic Signs
Detection

Traffic Light
Detection

Traffic Scene Evaluation
(Obstacle, Prediction, 

Traffic Lights and Signs)

Localization

Vehicle State

HD Map

Stereo
Camera

Camera

LiDAR

GPS

CAN Bus

High-Level 
Route

IMU

Longitudinal
Controller

Figure 2. General design of the proposed modular architecture.



Sensors 2024, 24, 2097 8 of 30

3.1. Mapping and Path Planning

A map is an essential component enabling the autonomous vehicle to execute its tasks
safely and efficiently, storing diverse information, beneficial for various components of the
autonomous system [37]. This includes the road geometry description for path planning
and the topological representation of roads and intersections, commonly referred to as the
road network, used for route planning. In addition to static object positions, navigable
areas, positions of traffic signs and lights, traffic rules, and semantic information related to
the road. In this architecture, we employed the OpenDRIVE [38,39] map standard to assist
the navigation and perception components.

3.1.1. OpenDRIVE

The OpenDRIVE is an open format to describe road networks, using XML version 1.0,
which is able to represent the road geometry as well as the context information of roads
that may influence the behavior of vehicles driving in it, such as traffic signs, traffic
lights, and the type of roads and lanes (e.g., highway and sidewalk) [39,40]. The format
description is built on a hierarchical structure with four main elements: header; road; junction;
and controller. Figure 3 shows the visualization of the OpenDRIVE map after being parsed
by the map manager in the architecture.

The header is the first element of the description and holds the metadata of the map,
such as the name or a geographic reference for transformations between the Cartesian and
Geodesic coordinate systems. The road element encompasses the geometry description and
additional properties (e.g., elevation profile, lanes, and traffic signs). The properties, such
as traffic signs, are placed with respect to the distance to the initial point of the lane, using
a local coordinate system. Besides that, roads can connect directly or through intersections
using the junction component, preventing ambiguities in connections. Lastly, a controller is
employed for signalized junctions or other road elements imposing control on the vehicle.

3.1.2. Path Planning

Path planning is responsible for determining a feasible and optimal path from a
starting point to a destination in a given environment. This planned path considers
factors such as road geometry, static and dynamic obstacles, vehicle physical constraints,
and criteria like time, speed, fuel efficiency, or safety. Various algorithms, including rule-
based, gradient-based, graph-based, and optimization methods, can perform these tasks.
In addition, recent studies have explored the integration of machine learning into path
planning. Moreover, the task can be divided into two steps: global planning and local
planning. Global planning estimates a reference path, considering static features (e.g., road
geometry and static obstacles) and the intended route. Local planning adjusts this global
reference path based on dynamic variables in the traffic scene, such as dynamic obstacles.

In the modular navigation pipeline strategy, global reference planning incorporates a
local speed profile based on the dynamic scene, along with local lane-change planning
due to traffic events. The global reference planning involves sparse waypoints representing
the intended route. The simulation supplies sparse waypoints at the start of each route.
The goal is for the vehicle to navigate through each waypoint, encountering various
traffic scenarios configured by the competition between them. Subsequently, lane-level
localization determines the corresponding lane and road ID for each waypoint using the
OpenDRIVE map manager. This information enables the system to estimate a lane-level
route, identifying the roads and lanes the vehicle must traverse to reach its destination.
Finally, segments of the reference path, each spanning 50 m in leaderboard 1 and each
100 m in leaderboard 2 are published in the ROS ecosystem based on the vehicle’s speed
and current position.



Sensors 2024, 24, 2097 9 of 30

Figure 3. OpenDRIVE Map. The dots represent high-level commands with red (turn left), blue (turn
right), green (keep lane), and white (go-straight).

3.2. Perception

The autonomous driving systems proposed in this paper rely on two types of sensors
for robust environmental perception: a stereo camera and a LiDAR sensor. Our proposed
perception system, depicted in Figure 4, adopts a multi-sensor fusion approach to achieve
accurate and robust object detection in 2D/3D images and point clouds. This approach
employs distinct detection modules and their fusion, each capitalizing on the strengths of
different sensor modalities.

• Height map: As a basic obstacle detector, we employ a height map generated from
the LiDAR point cloud, similar to the one presented in [41]. This method analyzes height
differences in a grid, identifying obstacles exceeding a threshold. Grid cells with no such
differences are deemed part of a plane. We use a polar grid map with 20 cm as the threshold.
This detection mechanism serves as a backup for emergency situations. The first branch in
Figure 4 depicts a height map-based perception process, where points are assigned colors
based on their height to create a visual representation of the surrounding environment’s
topography then grid cells within that contain points exceeding the predetermined vertical
distance threshold are identified. Finally, points situated within these designated grid cells
are marked in red to clearly indicate potential obstacles. Our obstacle detector using a height
map in a polar grid is open source and available online (Available at: https://github.com/
luis2r/Polar-Height-Map (accessed on 5 February 2024)).

• Instance segmentation: For object detection, we employ Mask R-CNN [42], a power-
ful instance segmentation algorithm that extracts coordinates of bounding boxes and masks
for each object instance detected in the image. Our system categorizes these objects into
eight categories: car (including vans, trucks, and buses), bicycle (including motorcycles),
pedestrian, red traffic light, yellow traffic light, green traffic light, stop, and emergency vehicle.
Code is open source and available online (Available at: https://github.com/luis2r/Instance-
segmentatio-CARLA (accessed on 22 January 2024)).

• Disparity/Depth estimation: The third branch demonstrates how disparity estima-
tion leads to the generation of either an RGB-D image or an RGB point cloud. This is
achieved by processing a pair of stereo images. This module allows for the use of any

https://github.com/luis2r/Polar-Height-Map
https://github.com/luis2r/Polar-Height-Map
https://github.com/luis2r/Instance-segmentatio-CARLA
https://github.com/luis2r/Instance-segmentatio-CARLA


Sensors 2024, 24, 2097 10 of 30

disparity algorithm. In our case, we leverage the efficient large-scale stereo matching
(ELAS) algorithm, commonly employed in autonomous driving applications [43].

3

3D Detection
(Point Pillars)

Height Map

3D Detection
(Point Pillars)

Disparity
Depth
(ELAS)

Instance
Segmentation
(Mask-RCNN)

LiDAR

+

Tracking
(SORT)

Stereo
Camera

Figure 4. Perception module.

One of the key advantages of ELAS is its computational efficiency. ELAS is known
for its ability to efficiently compute dense stereo correspondences, making it suitable for
real-time applications such as ours. This efficiency allows our system to process stereo
image pairs rapidly (approximately 5 hz for our setup), enabling the timely generation of
3D point clouds for perception tasks.

Moreover, ELAS exhibits robustness in handling various scene complexities and tex-
ture variations. It is capable of producing accurate depth estimates even in challenging
environments with occlusions, textureless regions, and varying lighting conditions. This
robustness ensures reliable perception capabilities across a wide range of scenarios encoun-
tered in autonomous driving environments.

However, the modular nature of our pipeline allows for the incorporation of other
typical disparity estimation algorithms, such as semi-global matching (SGM) [44] or other
modern stereo matching algorithms based on deep learning such as IGEV-Stereo [45].

• Fusion with stereo camera: Since the image used for instance segmentation is also
the left image of the stereo camera, we leverage this for 3D detection and classification.
The bounding box coordinates and pixel mask of each object instance detected in 2D are
mapped to corresponding 3D points in the organized point cloud. This 3D point cloud
inherits the color and the image’s row and column structure but expands it with 3D/depth
information. This fusion process creates an RGBD point cloud with color and 3D/depth
information for each object instance, enabling accurate classification and positioning.

The third branch, Figure 4, illustrates an example of a point cloud constructed from
the stereo camera, while the fourth branch shows an example of instance segmentation
corresponding to the same scenario. Finally, the fusion of these two branches enables the
detected objects to be mapped onto the RGBD point cloud, providing a comprehensive
visualization of their positions within the 3D environment.

While this method can detect both static and dynamic objects, it is not the primary
system detector in our architecture due to its non-real-time operation with a maximum
of 5 frames per second. Nevertheless, the detailed information it provides on traffic light
states, unavailable from LiDAR, justifies its inclusion despite the latency. Dynamic object
detection (cars, bicycles, and pedestrians) in this fusion serves as a backup for emergencies,
and we currently do not track these objects.

• Three-dimension detection in point clouds (dynamic objects): For 3D detection in
LiDAR point clouds, we leverage the PointPillars algorithm [46]. This algorithm provides
regression of 3D bounding boxes of objects and their orientation related to the ego vehicle.
PointPillars demonstrates commendable performance in real-world autonomous driving
scenarios. Its pillar representation retains valuable spatial information while maintaining
computational efficiency, a critical factor for real-time applications. Moreover, it effectively



Sensors 2024, 24, 2097 11 of 30

leverages the strengths of LiDAR data, including its ability to handle occlusions and
perform reliably in diverse lighting conditions.

• Tracking: The perception stack (in point clouds) detailed in this section, which
supplies inputs to the risk assessment module responsible for determining finite state
machine (FSM) graph states, consists of two integral components: (i) pose estimation
(bounding boxes) and (ii) multi-object tracking (MOT) modules. Having a stable and
precise state estimation, both for the ego-vehicle and dynamic objects in the surroundings,
is important to transition across the states.

Regarding the multi-object tracking module, we based it on the one proposed by [47].
This approach, known as simple online and realtime tracking (SORT), divides the tracking task
into three sub-tasks: detection, data association, and state estimation.

As detailed earlier, objects are detected in the LiDAR frame using PointPillars. This
detection model differs from the ones adopted originally by the SORT tracker. The detected
objects’ bounding boxes are projected into the world frame using the ego-vehicle estimated
pose, and their respective poses are matched in the data association step. At this point,
we keep the SORT tracker data association in the 2D space, in which we compute the
intersection over union (IoU) of the top-down projection of the bounding boxes. Our
assumption is that two dynamic objects do not overlap in the X–Y plane.

As for the state estimation, we use a Kalman Filter-based approach, in which our goal
is to estimate the 3D position of the bounding box center (x, y, z), 3D dimensions of the
bounding box (sx, sy, sz), the yaw angle ψ, and the 3D velocities (ẋ, ẏ, ż) of the tracked
object in the International System of Units and in the global reference frame. This space
state differs from the SORT paper state, in which the estimated state is performed in the
pixel space. Also, notice that the vehicle pose estimation is important in this step, as we are
tracking in the global reference frame.

As we represent this state vector as Sobj = (x, y, z, sx, sy, sz, ψ, ẋ, ẏ, ż)T , we need to
define both the state propagation and observation model matrices.

The state propagation we adopted assumes constant linear velocity between detections
so that we can propagate the position using the propagation matrix F from Equation (1).

F =

 I3x3 03x4 ∆T · I3x3
04x3 I4x4 04x3
03x3 03x4 I3x3

, (1)

where I represents the identity matrix, 0 the zero-filled matrix, and ∆T represents the period
between predictions. The subscripts indicated with MxN represent the matrix number of
rows M and columns N, respectively.

Regarding the observation model matrix, since we directly obtain the 3D position,
dimensions, and yaw angle from our detection module, our observation matrix is defined
by H = I7x10.

The third branch in Figure 4 illustrates detection and tracking in 3D, with LiDAR
serving as input to the 3D detector. In our case, the 3D detections of point pillars are fed into
the SORT algorithm, which we have modified for tracking. Ultimately, for visualization,
each tracked object is assigned a distinct color.

• Prediction: Our system employs a prediction-based approach to ensure safe naviga-
tion by anticipating the movements of surrounding objects. This approach utilizes a simple
motion model based on the object’s current speed, as estimated by the tracking system and
this model assumes constant velocity for each object, providing a first-order approximation
of their trajectories.

The prediction formula for a linear motion model is defined by Equation (2).

x(∆t) = xo + v∆t (2)



Sensors 2024, 24, 2097 12 of 30

where xo is the current pose, v is the actual velocity of the surrounding object, and ∆t
represents the time interval for prediction (5 s). Finally, x(∆t) is the predicted pose in the
interval ∆t.

While more complex prediction models exist, opting for a simple linear model en-
sures computational efficiency. This linear motion model for future pose prediction de-
mands fewer computational resources, making it suitable for real-time applications in
autonomous driving.

3.3. Risk Assessment

Our autonomous driving system employs a dedicated collision risk assessment (CRA)
module to continuously evaluate potential threats posed by both dynamic (cars, pedestrians,
bicycles) and static surrounding objects. This module integrates the current and future
positions of surrounding objects, obtained from the previous stage, with the ego vehicle’s
planned path for risk assessment.

• Zoned Risk Evaluation: The planned path is divided into two zones, each reflecting
different risk levels based on distance from the ego vehicle: a High Risk Zone (0–4 m) and a
Moderate Risk Zone (4–40 m). For risk evaluation, the path ahead is divided into two zones,
each carrying different risk levels based on Euclidean distance. These zones are corridors
created from the waypoints of the planned path (essentially buffer zones extending 40 m
ahead of the ego vehicle). The width of these corridors matches the width of the ego car.

Any object (static or dynamic) whose current position intersects either zone is consid-
ered a potential collision threat. The intersection point of predicted trajectories with the
ego vehicle’s path is also considered. We assume that our lateral model predictive control
(MPC) controller guarantees that the ego car will pass exactly through these corridors.

The identified potential points of collision and object information, including type,
distance, and predicted trajectory, are reported to the decision-making module for deter-
mining appropriate speed adaptations. Figure 5 visually illustrates the risk assessment
process, showcasing three points as examples. Note that other surrounding objects and
their predicted trajectories are currently ignored unless they enter the relevant risk zones
or directly influence the planned path.

1

23

Figure 5. Risk assessment. Point 1—Zone of influence of a red traffic light. Point 2—The predicted
trajectory of another car intersects the ego vehicle’s path in the yellow zone. Point 3—A parked car
within the yellow zone is identified as a potential obstacle but receives lower priority compared to
threats in the red zone.



Sensors 2024, 24, 2097 13 of 30

3.4. Decision Making

The decision-making module utilizes a synchronous Moore finite state machine (FSM)
to orchestrate actions based on inputs from the collision risk assessment (CRA) module.
The FSM employs a binary encoding scheme for inputs as shown in Table 2.

Table 2. Finite state machine (FSM) inputs.

Input Description

00 No obstacles detected, indicating a clear path ahead.

01 An obstacle is being tracked, requiring speed adjustments to maintain safe
following distances.

10 A red traffic light is ahead, necessitating a controlled stop.

11 A stop sign is detected, also demanding a full stop.

The finite state machine (FSM) consists of four key states. In this FSM, the next state is
determined solely by the current input, not the previous state. Each state governs specific
speed control behaviors.

• Drive State (S1): No obstacles impede the vehicle’s progress. Target speed is set to a
maximum of 8.8 m/s (31.68 km/h). This speed was empirically chosen to prevent penalties
from the MinSI metric on Leaderboard 2, which considers the average speed of agents in
the simulation. While Leaderboard 1 has permissive speed requirements, Leaderboard 2
introduces the MinSI metric, requiring a speed that balances collision avoidance and
adherence to the minimum speed limit.

• Follow the Leader State (S2): The CRA reports an obstacle (static or dynamic) ahead
of the ego vehicle, triggering dynamic speed adjustments. Speed is adjusted based on
distance and time to collision (TTC), calculated using the ego vehicle’s current speed and
distance to the obstacle.

• Red Light State (S3) and Stop Sign State (S4): These states mirror the “Follow the
Leader” logic, utilizing TTC to achieve controlled stops at designated locations. The vehicle
decelerates smoothly, ensuring compliance with traffic rules and safety.

Figure 6 depicts the state transition diagram, visually representing the FSM’s logic.
Table 3 provides a detailed state transition table. The decision-making module employs
a straightforward yet effective FSM structure for robust decision making. Speed control
strategies adapt dynamically to varying conditions, ensuring safe and efficient navigation.
The module seamlessly integrates with other components of the autonomous driving
system, including perception and control modules. The FSM operates synchronously at
10 Hz, aligning with sensory data capture rates.

Table 3. State transition table (based on hand-crafted rules).

Present State
Next State

Output/Description
Input = 00 Input = 01 Input = 10 Input = 11

S1 S1 S2 S3 S4 DR/Drive

S2 S1 S2 S3 S4 FL/Follow the Leader

S3 S1 S2 S3 S4 ST/Stop Red Traffic Light

S4 S1 S2 S3 S4 SS/Stop Sign

The current approach uses the actual velocity of the ego vehicle to calculate TTC,
after which velocity adjustments are made to prevent collisions. This method is simple, fast,
suitable for quick estimations, easy to implement, and computationally efficient. However,
it assumes constant velocity and ignores potential future trajectory changes. The TTC
formula is: TTC = Distance/RelativeVelocity.



Sensors 2024, 24, 2097 14 of 30

00

S1 S2 S3 S4
Start

00

00

01

00

11

11

11

11

01

01
ST

01

10

10

10

10

DR FL SS

Figure 6. State transition diagram for the Moore finite state machine used in our decision-
making module.

3.5. Control

The control layer generates steering, throttle, and brake commands to keep the agent on
the planned trajectory. This goal is achieved through two closed-loop control mechanisms
that receive desired vehicle trajectory information from the navigation layer’s decision-
making and local path-planning modules. These modules set the desired trajectory and
velocity into the agent’s action space. The closed-loop controls translate reference values
into actual control actions for braking, throttle, and steering, which are then sent directly to
the simulator for execution.

For longitudinal control, the decision-making module (FSM) calculates the desired agent’s
velocity, which is used to compute the final velocity. A proportional–integral–derivative (PID)
controller then ensures the agent follows this desired reference.

Lateral Control (MPC)

Lateral control employs model-based predictive control (MPC) to generate the steering
signal. MPC is a control strategy that relies on mathematical models of systems to predict
future behavior and compute optimal control actions over a finite time horizon H. It
formulates an optimization problem to minimize a predefined cost function, which typically
accounts for control objectives and constraints on system variables. MPC computes a
sequence of control actions, one for each time step (∆t), that optimize the cost function over
the prediction horizon and applies only the first control action to the system. This process
repeats at each time step, with the prediction horizon shifting forward in time, allowing
MPC to continually adjust control actions based on updated measurements and changing
system conditions.

The limitations defining the vehicle’s motion model are inherently non-holonomic.
Non-holonomic systems pose unique challenges in control and navigation due to their
inherent constraints on motion that limit the degrees of freedom. Unlike holonomic sys-
tems, which can move freely in any direction, non-holonomic systems, such as car-like
robots or vehicles, are restricted in their movements. These constraints often manifest as
limitations on the system’s velocity, acceleration, or steering angles, making it difficult to
achieve desired trajectories or execute complex maneuvers efficiently [28]. Thus, planning
feasible paths while adhering to the non-holonomic constraints adds complexity, requiring
advanced algorithms and optimization techniques.

Given the assumption of wheels rolling without slipping, only the kinematic equations
are pertinent, and the lateral dynamic effects can be disregarded [48]. Hence, the considera-
tions outlined thus far yield the following kinematic model [49]:

ẋ
ẏ
θ̇
κ̇

 =


cos θ
sin θ

κ
0

v +


0
0
0
1

τ, (3)



Sensors 2024, 24, 2097 15 of 30

where τ = φ̇/(Dbl cos2 φ).
Incorporating the motion constraints into the optimization problem involves intro-

ducing the third power of ∆t based on Equation (3) [50], where v is determined by the
decision-making module (treated as constant in the optimization). The cost function is
formulated as the summation of quadratic differences between the decision variables and
the reference path,

Lre f = Cx
1
2
(x− xre f )

2 + Cy
1
2
(y− yre f )

2 + Cθ
1
2
(θ − θre f )

2 + Cκ
1
2
(κ − κre f )

2, (4)

and also, the quadratic of τ

Lτ = Cτ
1
2
(τ)2, (5)

where Cx, Cy, Cθ , Cκ , and Cτ are cost weights manually tuned. The chosen parameters are
shown in Table 4.

Table 4. Non-linear model predictive control (MPC) parameters.

∆t H Cx Cy Cθ Cκ Cτ

1 s 4 s 5 5 10 100 10

3.6. Localization

In order to perform the ego-vehicle pose estimation, we fused the relative transforms
obtained using an odometry source (in our case, visual-inertial odometry—VIO), the inertial
measurement unit (IMU) orientation, and the global navigation satellite system (GNSS)
position using an extended Kalman filter (EKF) approach, as in Figure 7. The inputs of our
stack are the camera image, the IMU orientation, the GNSS coordinates, and the sensor
calibration (external reference frames’ relative transformation). The output elements of the
pose estimation stack are estimated pose and its uncertainty.

3

Stereo Camera

IMU 
Orientation

GNSS
Coordinates

Visual Inertial
Odometry

Syncronization

Sensor 
Calibration

EKF

Estimated 
Pose

Uncertainty

Tcam
cam

t-1
t

TW
imut

,

,Σ tvio

tglobalΣ

Figure 7. The pose estimation stack used in our perception module.

The VIO estimation is responsible for estimating Tcamt−1
camt , which represents the pose

transformation matrix of the current camera frame with respect to the previous, and the
estimation uncertainty covariance matrix, Σviot .

While the GNSS is responsible for providing the global geographic coordinates,
the IMU provides the linear acceleration, angular velocity, and 3D orientation at a higher
frequency. We then synchronize both the 3D orientation and global coordinates in order to
provide TW

imut
, which represents the transformation matrix of the IMU frame relative to the



Sensors 2024, 24, 2097 16 of 30

world frame, and its uncertainty, Σglobalt . In our case, the IMU and GNSS are represented
by the same reference frame, but we left them illustrated in the diagram for the sake of
clarity. Also, the geographic coordinates provided are then converted to a plane projection
coordinate system.

The input poses, Tcamt−1
camt and TW

imut
, and the sensor calibrated, are then provided

to the EKF and then converted to a common reference frame internally. The goal is to
estimate the 6DoF pose of the agent frame with respect to the world frame, Sagent =
(x, y, z, qx, qy, qz, qw)T , where: (x, y, z) are the global coordinates, easting, northing, and al-
titude, respectively, and (qx, qy, qz, qw) represents the four components of the quaternion
that represents our agent’s orientation. For each relative pose received, Tcamt−1

camt , the EKF
performs a system prediction, which implies accumulating drift until a global pose, TW

imut
,

is received and the state update is performed.
We emphasize that this pose estimation module is also modular, so that the back end

(in this case, the EKF), the methods used for estimating the relative transforms, and the
source of the global pose estimation do not need to be the same as the ones we used in
this project.

In practice, for estimating the relative pose transformations using VIO, we used the
RTabMap ROS implementation (Available at: https://github.com/introlab/rtabmap_ros
(accessed on 5 February 2024)). RTabMap is known for its estimation robustness, and its
full functionalities are widely used in SLAM applications. As for the EKF implementa-
tion, we used the GTSAM implementation (Available at: https://gtsam.org/doxygen/
4.0.0/a03631.html (accessed on 5 February 2024)). While GTSAM is known for imple-
menting solutions using factor graphs, it also implements a very convenient interface
for representing pose transformations and implements the 3D pose extended Kalman
filter off-the-shelf. Finally, our localization stack is open source and available online
(Available at: https://github.com/cabraile/LRM-Localization-Stack-2023 (accessed on
5 February 2024)).

4. Hybrid Architecture for Mapless Autonomous Driving

This section introduces our hybrid architecture for mapless autonomous driving, de-
signed to navigate challenging scenarios like the CARLA Leaderboard’s SENSORS track.
Building upon our modular pipeline described in previous sections, we leverage robust ob-
stacle detection, risk assessment, and decision-making modules while replacing traditional
map-based planning with an end-to-end path planner named the CNN-planner [10].

Conventional map-based approaches often struggle in dynamic environments lacking
accurate maps. We overcome this limitation by using an improved version of the CNN-
planner for mapless situations. This planner generates a set of waypoints and utilizes
sensor fusion in the BEV space as its primary input.

This fusion is named BEVSFusion, which is a rich data structure that seamlessly
fuses high-level commands and point clouds.The BEVSFusion structure receives data from
three sources that are processed in the following way.

• Stereo Camera: We utilize a pair of cameras with a specific field of view, resolution,
and baseline. Disparity maps are calculated with the ELAS algorithm and projected
into a point cloud. The stereo point cloud is transformed from the camera coordinate
system to the BEV coordinate system using the transformation matrix TBEV

cam .
• LiDAR: The LiDAR point cloud is directly transformed to the BEV coordinate system

using a TBEV
LiDAR transformation matrix. LiDAR points are then rasterized in an RGB

image where a colormap encodes height information (blue for ground, yellow for
above sensor). Empty pixels are filled with black.

• High-Level Commands: Global plan commands are converted from the world frame
to the BEV frame using TBEV

W and rasterized as colored dots in BEV space (blue for turn
right, red for turn left, white for straight, and green for lane follow). Additionally, we
rasterize a straight line connecting two adjacent high-level commands. This connection

https://github.com/introlab/rtabmap_ros
https://gtsam.org/doxygen/4.0.0/a03631.html
https://gtsam.org/doxygen/4.0.0/a03631.html
https://github.com/cabraile/LRM-Localization-Stack-2023


Sensors 2024, 24, 2097 17 of 30

enhances the representation of the order and sequence of points within the raster,
facilitating interpretation and providing additional information to the CNN network.

Finally, these three processed elements (rasterized LiDAR, stereo, and high-level
commands) are stacked into a single 9-channel image (BEVSFusion). This unified structure
integrates spatial, depth, height, color, and high-level command information for robust
path planning.

BEVSFusion serves as the input to CNN of the path planner. The CNN-Planner can be
represented as a function:

w = CNN-Planner(BEVSFusion), (6)

This CNN is an architecture for the regression of a sequence w of dense waypoints for
the ego vehicle’s trajectory. Each waypoint in the sequence w = {w1, . . . , wn} represents
a point with (x, y) coordinates in the ego-car coordinate system. w1 corresponds to the
closest point to the ego car, while wn denotes the furthest point on the planned trajectory.
w is transformed from the ego coordinate system to the world coordinate system using the
TW

ego transformation matrix.
Compared to the original CNN-planner implementation, which generates an output

of 50 w waypoints, our approach yields 200 w waypoints. These waypoints cover a distance
of 40 m, resulting in a longer path. This extended path not only provides a larger area for
monitoring potential issues but also ensures more precise guidance for the vehicle.

Figure 8 visually illustrates the process, highlighting the creation of BEVSFusion
through sensor fusion and its integration as input for the CNN-planner and generating the
planned trajectory. Finally, the path w in the world coordinate system is followed using an
MPC controller.

For our CNN-Planner, we train a ResNet 18 over 100 epochs using the Adam opti-
mizer [51] and the MSE error (Equation (7)).

L = MSE(y, ŷ) =
∑N−1

i=0 (yi − ŷi)
2

N
(7)

where y is the predicted path and ŷ is the ground truth path.

LiDAR

Stereo
Camera

ResNet

Path

Path
Steering 

AngleLiDAR/
Stereo Camera

End-to-End
Path Planner

Lateral 
Controller

Raw Data 
Fusion

T
BEV

W

T
BEV

LiDAR

T
BEV

CAM

T
W

BEV

Figure 8. Our neural path planner takes as input BEVSFusion and the output is a list w (path) that is
followed by the model predictive control (MPC) controller.



Sensors 2024, 24, 2097 18 of 30

5. Experiments and Results
5.1. Experimental Setup

Our research adopts the robot operating system (ROS) as the unifying framework for
both our modular and hybrid driving architectures. ROS’s publisher–subscriber communi-
cation paradigm [52] facilitates efficient data exchange between components, enabling a
flexible and scalable system design. The ROS master node indexes and coordinates com-
ponents, while peer-to-peer messaging enables direct communication between nodes [36].
This structure streamlines the development and integration of multi-component systems,
particularly in applications like autonomous driving and robotics.

Our autonomous driving agents implement all modules described, for the perception
layer we have the following.

• Two monocular cameras with 71° field of view (FOV) each are combined to form a
stereo camera for 3D perception, producing a pair of rectified images with dimensions
of 1200× 1200 pixels. The baseline of our stereo camera is 0.24 m. We utilize the ELAS
algorithm [43] to generate 3D point clouds from the stereo images.

• LiDAR sensor: 64 channels, 45° vertical field of view, 180° horizontal field of view,
50 m range. Our system utilizes a simulated LiDAR collecting around one million
data points per scan across 64 vertical layers.
LiDAR and stereo cameras are centered in the x-y plane of the ego car and mounted at
1.8 m height.

• GNSS and IMU: For localization and ego-motion estimation.
• CANBus: Provides vehicle internal state information such as speed and steering angle.

Our modular architecture additionally utilizes an OpenDrive map pseudo-sensor
for route planning and an ObjectFinder pseudo-sensor, used exclusively for dataset cre-
ation, provides ground-truth information about dynamic and static objects within the
CARLA simulator.

5.2. Time Execution Results

This section provides a comprehensive analysis of the execution time for each module
within the modular pipeline. Our tests were conducted locally on a high-performance
computer equipped with a 16-core Intel Core i9-9900KS processor, 64 GB of RAM, and two
Nvidia RTX GeForce 2080Ti graphics cards.

Table 5 presents the time taken by each module to perform its respective tasks, offering
insights into the efficiency of our approach. Tasks requiring only CPU show very short
execution times, all below 1 ms, except for the disparity/depth module (210 ms). While not
ideal, this module is not our primary option for obstacle detection, as it is only used for
traffic lights and long-range pedestrian detection.

Among the GPU modules, instance detection is the most time-consuming, taking
198 ms. Its output is merged with the disparity/depth module’s output (as described in
Section 3.2) for 3D detection of traffic lights and long-range people. Our core obstacle
detection module, the 3D PointPillars detector, runs at an average of 95 ms, which is a
processing rate close to 10 Hz, similar to the frequency of current LiDAR sensors. This
allows for real-time processing. Finally, the CNN-planner module, leveraging a lightweight
ResNet-18 for path generation in each frame, is the fastest module executing in GPU,
requiring only 5 ms. Moreover, these results fulfill the real-time execution demands of our
agents, while also highlighting areas for potential optimization to further improve overall
system performance.



Sensors 2024, 24, 2097 19 of 30

Table 5. Time execution for main modules in hybrid and modular architectures.

Module Module/Algorthm Inputs Outputs Architecture
Average

Execution
Time (ms)

Device

Perception/3D detection PointPillars Point cloud obstacles 3D Modular/Hybrid 95 GPU

Perception/2D detection Mask-RCNN RGB image detections
2D Modular/Hybrid 198 GPU

Perception/Depth ELAS RGB Images obstacles 3D Modular/Hybrid 210 CPU

Planning/Path planning CNN-Planner BEVSFusion local
waypoints Hybrid 5 GPU

Planning/local planner map global
waypoints

local
waypoints Modular 0.61 CPU

Control/Lateral MPC
local

waypoints,
pose

steering
angle Modular/Hybrid 0.5 CPU

Control/Longitudinal PID speed
reference

break,
throttle Modular/Hybrid 0.1 CPU

Decision-Making FSM Obstacles in
the path

speed
reference Modular/Hybrid 0.4 CPU

5.3. Metrics

Autonomous vehicles are heterogeneous and complex systems, orchestrating sensing,
perception, decision making, planning, control, and health management. Evaluating
the performance of these complex systems requires a holistic approach, going beyond
individual evaluation to assess the harmony of the entire system.

Traditionally, unit tests analyze individual components, seeking malfunctions and
quantifying their performance with metrics like accuracy, recall, and precision (e.g., for clas-
sification algorithms [53,54]). Integration tests take a broader perspective, examining
the interplay between two or more components (e.g., obstacle detection and avoidance).
Finally, system tests encompass the entire system, evaluating the harmonious collabo-
ration of all its components [55,56]. However, a standardized methodology for compre-
hensively assessing and comparing the complete performance of autonomous driving
systems remains a challenge. The CARLA Leaderboards offer a standardized benchmark
for evaluating autonomous driving systems, providing diverse sensor configurations and
software architectures.

These leaderboards immerse the autonomous system, or "agent", in simulated urban
environments. Each scenario throws diverse challenges, varying in cityscapes, traffic areas
(highways, urban roads, residential areas, roundabouts, unmarked intersections), route
lengths, traffic density, and weather conditions. Moreover, each route incorporates traffic
situations inspired by the NHTSA’s (National Highway Traffic Safety Administration of
the United States) pre-crash typology [57], encompassing diverse scenarios like:

• Control loss without prior action.
• Obstacle avoidance for unexpected obstacles.
• Negotiation at roundabouts and unmarked intersections.
• Following the lead vehicle’s sudden braking.
• Crossing intersections with a traffic-light-disobeying vehicle.

Leaderboard 2 expands this scenario, adding:

• Lane changes to avoid obstacle blocking lanes.
• Yielding to emergency vehicles.
• Door obstacles (e.g., opened car door).
• Avoiding vehicles invading lanes on bends.



Sensors 2024, 24, 2097 20 of 30

• Maneuvering parking cut-ins and exits.

To evaluate agent performance in each simulated scenario, CARLA Leaderboards
employ a set of quantitative metrics that capture not only route completion but also
adherence to traffic rules and safe driving practices. This metric assesses the entire system’s
performance, transcending mere point-to-destination navigation. It factors in traffic rules,
passenger and pedestrian safety, and the ability to handle both common and unexpected
situations (e.g., occluded obstacles and vehicle control loss).

Key Metrics: Driving Score (DS): The main metric of the leaderboards, calculated as
the product of route completion percentage (Ri) and the infraction penalty (Pi) of the i-th
route, (RiPi). This metric rewards both efficient navigation and adherence to safety regu-
lations. Route Completion (RC): Percentage of the route distance successfully completed
by the agent of the i-th route, (Ri). Infraction Penalty (IP): (∏

ped,veh,...,stop
j (pi

j)
#in f ractionsj).

Aggregates all types of infractions triggered by the agent as a geometric series. Each infrac-
tion reduces the agent’s score, starting from an ideal base of 1.0. Specific infraction types
and their penalty coefficients include:

• Collisions with pedestrians (CP) — 0.50.
• Collisions with other vehicles (CV) — 0.60.
• Collision layout (CL) — 0.65.
• Running a red light (RLI) — 0.70.
• Stop sign infraction (SSI) — 0.80.
• Off-road infraction (ORI) — percentage of the route will not be considered.

Additional Leaderboard 2 Metrics:

• Scenario timeout (ST) — 0.70.
• Failure to maintain minimum speed (MinSI) — 0.70.
• Failure to yield to emergency vehicle (YEI) — 0.70.

Under certain circumstances, the simulation will be automatically terminated, pre-
venting the agent from further progress on the current route. These events include:

• Route deviations (RD);
• Route timeouts (RT);
• Agent blocked (AB).

After all routes are completed, global metrics are calculated as the average of individ-
ual route metrics. The global driving score remains the primary metric for ranking agents
against competitors. By employing comprehensive evaluation frameworks like CARLA
Leaderboards, researchers and developers can gain valuable insights into the strengths
and weaknesses of their autonomous driving systems, ultimately paving the way for safer
and more robust vehicles that perform harmoniously as a whole, not just as a collection
of individual components. For further details on the evaluation and metrics, visit the
leaderboard website (Available at: https://leaderboard.carla.org/#evaluation-and-metrics
(accessed on 5 February 2024)).

To evaluate an agent’s performance, it must be submitted to the online evaluator
(Available at: https://eval.ai/web/challenges/challenge-page/2098/overview (accessed
on 5 February 2024)). The specific routes and the cities used are secret and confidential.
For Leaderboard 1, 10 routes are chosen and each is evaluated 10 times under varying
lighting and weather conditions. Each route is roughly 1 km long, meaning an agent
completing all routes at 100% would cover approximately 100 km in total. Leaderboard 2
features increased difficulty compared to Leaderboard 1, with routes 10 times longer and
presenting more complex scenarios. Agents must navigate these scenarios, including
overtaking obstacles or yielding to emergency vehicles.

5.4. Datasets

To train the diverse components of our autonomous driving agents, we generated
three comprehensive datasets. These datasets were created using CARLA simulator ver-

https://leaderboard.carla.org/#evaluation-and-metrics
https://eval.ai/web/challenges/challenge-page/2098/overview


Sensors 2024, 24, 2097 21 of 30

sion 0.9.13 under a range of lighting and weather conditions (day, night, rain, fog) and
across distinct urban environments in the CARLA towns: Town01, Town3, Town4, Town06,
and Town12. These environments encompass downtown areas, residential neighborhoods,
rural landscapes, and diverse vegetation.

• Instance Segmentation Dataset: We constructed a dataset of 20,000 RGB images with
variable resolutions ranging from 800 × 800 to 1400 × 1400 pixels. These images
encompass seven object classes: car, bicycle, pedestrian, red traffic light, yellow traffic
light, green traffic light, and stop sign.
For labeling, we employed a semi-automatic approach for cars, bicycles, pedestrians,
and stop signs, leveraging sensor instances provided by the CARLA simulator. Traffic
lights and stencil stop signs, however, required manual annotation for greater accuracy.
All annotations were stored in the COCO format. Finally, we trained a Mask-RCNN
model implemented in mmdetection (Available at: https://github.com/open-mmlab/
mmdetection (accessed on 5 February 2024)) for object detection and segmentation.
Figure 9 showcases examples of detections achieved with our trained model. Our
Instance Segmentation Dataset is available online (Available at: https://github.com/
luis2r/Instance-segmentatio-CARLA (accessed on 22 January 2024)).

• Three-Dimensional Object Detection Dataset: This dataset comprises 5000 point
clouds annotated with pose (relative to the ego car), height, length, width, and ori-
entation for all cars, bicycles, and pedestrians. We leveraged the privileged sensor
objects within the simulator to perform this automatic annotation. The data were
subsequently saved in the KITTI format for compatibility with popular object de-
tection algorithms. Using this dataset, we trained a PointPillars model adapted for
our specific needs, implemented in the mmdetection3d framework (Available at:
https://github.com/open-mmlab/mmdetection3d (accessed on 22 January 2024)).

• Path Planner Training Dataset: To train the path planner, we leveraged a privileged
agent and the previously described sensors to collect approximately 300,000 frames.
This agent granted access to ground-truth path information and provided error-free
GPS and IMU data facilitating precise navigation. The point clouds from the LiDAR
and stereo cameras were then projected and rasterized into 700 × 700 RGB images
in the bird’s-eye view space. High-level commands like “left”, “right”, “straight”,
and “lane follow” were transformed to the ego coordinate system using the command
pose, then rasterized within the bird’s-eye image in the same way as pointclouds but
with color-coded points for commands (red for left, blue for right, white for straight,
and green for lane follow). The ground-truth road path consisted of 200 waypoints
spaced 20 cm apart, originating at the center of the ego car.
To simulate potential navigation errors and enhance error recovery learning, we
introduced Gaussian noise to the steering wheel inputs in 50% of the routes used for
dataset collection.

5.5. Results on CARLA Leaderboards

This section presents the performance of our modular and hybrid CaRINA agent
architectures on the CARLA Leaderboards, demonstrating their effectiveness in both map-
based and mapless navigation tasks. To validate our models, we utilized the leaderboards
provided by the CARLA team (Leaderboard 1 and Leaderboard 2). We employed the Track
MAP from the two benchmarks to assess our modular architecture, and the Track SENSORS
were used to evaluate our hybrid architecture, which does not require a map for navigation.

Navigation using Map (Leaderboard 1 and 2 Track MAP): We employed our modu-
lar CaRINA stack for map-based navigation using OpenDRIVE format as mentioned in
previous sections.

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
https://github.com/luis2r/Instance-segmentatio-CARLA
https://github.com/luis2r/Instance-segmentatio-CARLA
https://github.com/open-mmlab/mmdetection3d


Sensors 2024, 24, 2097 22 of 30

Figure 9. Our instance detection dataset includes annotations of eight classes: car, pedestrian, bicycle,
stop sign, red traffic light, yellow traffic light, green traffic light, and emergency vehicle in different
urban environments and weather conditions.

Table 6 illustrates the results for Leaderboard 1 on the track MAP. On the Track MAP,
we secured third place in the driving score metric (DS = 41.56) and the highest score in
route completion (RC = 86.03) among all competitors using our modular pipeline. These
achievements highlight the combined strength of our CaRINA modules.

Table 7 shows the evaluation in the track MAP of Leaderboard 2. We achieved second
place in the driving score (DS = 1.14) and route completion (RC = 3.65%), only narrowly
surpassed by another modular architecture. Importantly, our off-road infraction penalty
in this track (ORI = 0.0) emphasizes the seamless navigation facilitated by the map. This
compares favorably to all methods on both Leaderboard 1 and 2 Track MAP, where some
map-based approaches based on TF++ [58] and MMFN [20] also achieve an ORI = 0.0.

Table 6. Results: CARLA Leaderboard 1, Track MAP.

Team Method DS RC IP CP CV CL RLI SSI ORI RD RT AB

Anonymous Map TF++ 61.17 81.81 0.70 0.01 0.99 0.00 0.08 0.00 0.00 0.00 0.00 0.55

mmfn MMFN+(TPlanner) 1 59.85 82.81 0.71 0.01 0.59 0.00 0.51 0.00 0.00 0.00 0.62 0.06

LRM 2023 CaRINA agent 41.56 86.03 0.52 0.08 0.38 0.13 1.6 0.03 0.00 0.04 0.05 1.29

RaphaeL GRI-based
DRL [59] 33.78 57.44 0.57 0.00 3.36 0.50 0.52 0.00 1.52 1.47 0.23 0.80

mmfn MMFN [20] 22.80 47.22 0.63 0.09 0.67 0.05 1.07 0.00 0.45 0.00 0.00 1003.88

RobeSafe
research
group

Techs4AgeCar+ [60] 18.75 75.11 0.28 1.52 2.37 1.27 1.22 0.00 0.59 0.17 0.01 1.28

ERDOS Pylot [61] 16.70 48.63 0.50 1.18 0.79 0.01 0.95 0.00 0.01 0.44 0.10 3.30

LRM 2019 CaRINA [10] 15.55 40.63 0.47 1.06 3.35 1.79 0.28 0.00 3.28 0.34 0.00 7.26

1 Available at: https://github.com/Kin-Zhang/mmfn (accessed on 2 January 2024).

https://github.com/Kin-Zhang/mmfn


Sensors 2024, 24, 2097 23 of 30

Table 7. Results: CARLA challenge 2023. CARLA leaderboard 2, Track MAP.

Team Method DS RC IP CP CV CL RLI SSI ORI RD RT AB YEI ST MinSI

Kyber-E2E Kyber-E2E 3.11 5.28 0.67 0.36 0.63 0.27 0.09 0.09 0.01 0.00 0.09 0.09 0.00 0.54 0.00

LRM 2023 CaRINA
agent 1.14 3.65 0.46 0.00 2.89 1.31 0.00 0.53 0.00 0.13 1.31 1.18 0.00 2.10 0.00

Mapless Navigation (Leaderboard 1 and 2 Track SENSORS): We evaluated our hy-
brid CaRINA stack for mapless navigation.

Table 8 illustrates the results for leaderboard 1. In the Track SENSORS, our hybrid
CaRINA agent achieved a route completion score of 85.01%, surpassing other autonomous
driving methods primarily based on end-to-end learning. We also obtained a high driving
score (DS = 35.36) compared to similar approaches (WOR [62], MaRLn [63], NEAT [64],
AIM-MT [64], TransFuser [65], CNN-Planner [66], Learning by Cheating [67], CILRS [68],
CaRINA 2019 [10]).

Table 9 presents the results for Leaderboard 2 on Track SENSORS, where our perfor-
mance dominated the leaderboard with a driving score (DS) of 1.232 and a route completion
(RC) of 9.55%, showcasing a significant difference, more than twice that of the second place’s
performance. This highlights the effectiveness and competitiveness of our hybrid architec-
ture for mapless navigation, surpassing the state-of-the-art end-to-end learning method
zero-shot TF++ (variation of the TF++ method [58]).

Leaderboard 2 was used for the 2023 CARLA Challenge. We achieved first place in
the Track SENSORS and second place in the Track MAP categories of the 2023 CARLA
Challenge, with our modular and hybrid CaRINA agent versions, respectively. Two videos
demonstrate the perception and navigation capabilities of our CaRINA agent on Leaderboard 2
(see videos 1 and 2 (available at: https://bit.ly/3PAyDfo (accessed on 5 February 2024),
https://bit.ly/3Vx5Tbj) (accessed on 5 February 2024) for demonstrations).

Table 8. Results: CARLA Leaderboard 1, Track SENSORS.

Team Method DS RC IP CP CV CL RLI SSI ORI RD RT AB

Interfuser ReasonNet [15] 79.95 89.89 0.89 0.02 0.13 0.01 0.08 0.00 0.04 0.00 0.01 0.33

Interfuser InterFuser [16] 76.18 88.23 0.84 0.04 0.37 0.14 0.22 0.00 0.13 0.00 0.01 0.43

PPX TCP [17] 75.14 85.63 0.87 0.00 0.32 0.00 0.09 0.00 0.04 0.00 0.00 0.54

DP TF++ WP
Ensemble [58] 66.32 78.57 0.84 0.00 0.50 0.00 0.01 0.00 0.12 0.00 0.00 0.71

WOR LAV [69] 61.85 94.46 0.64 0.04 0.70 0.02 0.17 0.00 0.25 0.09 0.04 0.10

Attention
Fields TF++ WP [58] 61.57 77.66 0.81 0.02 0.41 0.00 0.03 0.00 0.08 0.00 0.00 0.71

DP TransFuser [65,70] 61.18 86.69 0.71 0.04 0.81 0.01 0.05 0.00 0.23 0.00 0.01 0.43

Attention
Fields

Latent
TransFuser [65,70] 45.20 66.31 0.72 0.02 1.11 0.02 0.05 0.00 0.16 0.00 0.04 1.82

RaphaeL GRIAD [59] 36.79 61.85 0.60 0.00 2.77 0.41 0.48 0.00 1.39 1.11 0.34 0.84

LRM 2023 CaRINA hybrid 35.36 85.01 0.45 0.02 4.95 0.22 1.67 0.12 0.45 1.54 0.02 0.45

WOR World on Rails [62] 31.37 57.65 0.56 0.61 1.35 1.02 0.79 0.00 0.96 1.69 0.00 0.47

MaRLn MaRLn [63] 24.98 46.97 0.52 0.00 2.33 2.47 0.55 0.00 1.82 1.44 0.79 0.94

Attention
Fields NEAT [64] 21.83 41.71 0.65 0.04 0.74 0.62 0.70 0.00 2.68 0.00 0.00 5.22

SDV AIM-MT [64] 19.38 67.02 0.39 0.18 1.53 0.12 1.55 0.00 0.35 0.00 0.01 2.11

SDV TransFuser
(CVPR 2021) [65] 16.93 51.82 0.42 0.91 1.09 0.19 1.26 0.00 0.57 0.00 0.01 1.96

https://bit.ly/3PAyDfo
https://bit.ly/3Vx5Tbj


Sensors 2024, 24, 2097 24 of 30

Table 8. Cont.

Team Method DS RC IP CP CV CL RLI SSI ORI RD RT AB

LRM-B CNN-Planner [66] 15.40 50.05 0.41 0.08 4.67 0.42 0.35 0.00 2.78 0.12 0.00 4.63

LBC Learning by
Cheating [67] 8.94 17.54 0.73 0.00 0.40 1.16 0.71 0.00 1.52 0.03 0.00 4.69

Attention Fields CILRS [68] 5.37 14.40 0.55 2.69 1.48 2.35 1.62 0.00 4.55 4.14 0.00 4.28

LRM 2019 CaRINA [10] 4.56 23.80 0.41 0.01 7.56 51.52 20.64 0.00 14.32 0.00 0.00 10,055.99

Table 9. Results: CARLA challenge 2023. CARLA leaderboard 2, Track SENSORS.

Team Method DS RC IP CP CV CL RLI SSI ORI RD RT AB YEI ST MinSI

LRM 2023 CaRINA
hybrid 1.23 9.55 0.31 0.25 1.64 0.25 0.25 0.40 0.43 0.10 0.30 0.60 0.10 1.20 0.15

Tuebingen_AI Zero-shot
TF++ [58] 0.58 8.53 0.38 0.17 1.80 0.51 0.00 3.76 0.35 0.06 0.56 0.51 0.00 2.19 0.17

CARLA baseline 0.25 15.20 0.10 1.23 2.49 0.79 0.03 0.94 0.47 0.50 0.00 0.13 0.13 0.69 0.19

5.6. Analysis and Discussion

The results in the previous section were obtained from the official CARLA Leaderboard.
However, it is important to note that we only have access to the final scores for each metric,
lacking additional details regarding the vehicle’s performance in individual traffic scenarios
and their respective impacts on the overall score. In this section, we analyze the results
based on both leaderboard scores and offline experiments conducted on a local machine.
Through the insights gained from these offline experiments, we can draw conclusions about
the performance of the modular and hybrid autonomous driving architecture.

5.6.1. Modular Architecture

We assessed the modular navigation architecture on the MAP track in Leaderboards 1
and 2. In both cases, our RC (Route Completion) scores surpassed those of any other
technique, indicating that our vehicles completed more trajectory segments than competing
agents. Nevertheless, our agent incurred a lower IP (infraction penalty) than the top
two agents with the highest DS (driving score). This outcome is primarily influenced by
two types of infractions, namely RLI (running red light) and AB (agent blocked), as the
remaining infraction metrics show no significant difference from the top two agents in
Leaderboard 1.

In the first case (RLI), the complexity of the road network layout (especially the
intersections) poses a significant challenge in correctly associating the traffic light with the
vehicle’s current trajectory. Consequently, as the vehicle approaches the intersection, it may
either pass the location where it should stop and wait for the traffic light or fail to detect it
through its cameras. Certain road geometries and traffic light configurations in this scenario
can cause the detector to struggle in identifying the traffic light’s status or associating it
with the vehicle’s trajectory, especially when it deviates from the planned path.

During navigation and interaction at intersections, the agent repeatedly correlates
the detected traffic lights with the planned path to consider only those signals directly
affecting the agent’s mission. Addressing this issue would require enhancing the robust-
ness of the intersection algorithm to variations and uncertainties. However, achieving
generalization across numerous scenarios proves challenging. Another consequence is that
delays in crossing intersections can result in penalties, potentially leading to collisions.
Offline experiments revealed the particular difficulty the agent faced in this scenario. We
adopted a conservative navigation strategy characterized by smooth speed adjustments and
continuous monitoring of nearby obstacles, triggering emergency braking at the detection
of imminent collisions based on the current vehicle planning and trajectory predictions of
nearby obstacles. While successful on most routes, this approach has limitations, especially



Sensors 2024, 24, 2097 25 of 30

at busy intersections. Therefore, expediting vehicle decision-making and execution would
be a potential solution to overcome current limitations.

In the second scenario, the vehicle struggles to pass an obstacle (e.g., object or another
vehicle) that is stationary in its lane. Both situations concern the scene understanding within
the perceptual system and decision making. Specifically, the second scenario presents an
additional challenge when there is oncoming traffic in the opposite lane. In this case,
in addition to recognizing the need for a lane change, the vehicle must also identify a gap
in the traffic and promptly react to enter the gap. In offline experiments, we observed that
due to the conservative driving style adopted, the vehicle is not always swift enough to
enter a gap before the next approaching vehicle arrives.

Finally, it is worth noting that, despite having the highest RC among the agents on the
leaderboard, the CV (collision with vehicles) is significantly lower than that of the other
agents. This result emphasizes the effectiveness of the perception and decision-making
systems in detecting and avoiding collisions with other vehicles.

5.6.2. Hybrid Architecture

We assessed the hybrid architecture on the SENSORS track of Leaderboards 1 and 2.
The “CaRINA hybrid” agent achieved significant route completion (RC), securing the sixth
and first positions in Leaderboards 1 and 2, respectively. These outcomes are similar to
those on the MAP track. However, in this track, the vehicle operates without access to map
information, relying entirely on data-driven path planning. However, the considerable
number of collisions with other vehicles (CV) significantly impacted the performance of
the navigation architecture.

Based on offline experiments, we listed two scenarios that potentially affected the
perception and navigation system, increasing the number of collisions with other vehicles.
In the first scenario, lane changes were initiated due to potential obstructions in the current
driving lane, such as other vehicles or objects. We observed that the data-driven path plan-
ning demonstrated superior adaptability, estimating lane-change trajectories in a broader
range of scenarios compared to the modular navigation pipeline. However, the execution
of these maneuvers resulted in more collisions with oncoming traffic in the opposite lane.
The execution of lane change maneuvers also adopted a conservative approach with a
gradual speed change profile and constant monitoring of collisions with nearby obstacles.
Thus, the delay in completing the maneuver resulted in collisions in which other vehicles
hit the agent’s side or rear, or the vehicle hit obstacles that approached while executing the
maneuver. This behavior manifested in two additional metrics, apart from CV: AB (agent
blocked), which is lower than the modular architecture due to the vehicle executing more
lane-change and overtake maneuvers, and RD (route deviation), which occurs because the
vehicle struggles to return to its trajectory after some collisions.

In the second scenario, the focus is on intersections, particularly when the vehicle
fails to adhere to a red light signal. The vehicle approaches the intersection and attempts
to cross it, but in most instances, it fails to avoid collisions with oncoming traffic. In cer-
tain situations, the vehicle stops midway through the intersection while trying to evade
collisions and complete the maneuver. However, this behavior also results in the blockage
of the vehicle (AB), contributing to intersection deadlock, or the vehicle running over road
layouts (CL) and incurring off-road infractions (ORI).

5.6.3. Comparison and Final Remarks

The results in the previous sections provided a comprehensive assessment of the
performance of modular and hybrid architectures for autonomous navigation. The use of
the CARLA simulator and Leaderboards 1 and 2 enabled a quantitative and qualitative
evaluation of both approaches, providing valuable insights into their strengths and weak-
nesses. Accordingly, this section presents a brief overview of the results and observations
related to both navigation strategies proposed in this paper.



Sensors 2024, 24, 2097 26 of 30

The primary distinction between both approaches lies in their methodology. While
the modular architecture relies on parsing the OpenDrive map to estimate trajectories and
navigate, the hybrid approach employs a mapless data-driven path planning technique
to guide the vehicle to its destination. Furthermore, the route completion (RC) of both
approaches showed similarities across both leaderboards. This suggests the efficacy of
the data-driven method in estimating trajectories in diverse urban scenarios, a notable
challenge given the unfamiliarity of testing cities within the CARLA simulator. These cities
feature different road network layouts and city landscapes. Additionally, the evaluation
involved navigating under varying weather and light conditions, significantly impacting
the performance of vision-based algorithms. The sensor fusion adopted in the data-driven
approach, using images and point cloud, contributes to making the method more robust to
adverse conditions, improving its adaptability and generalization.

Table 5 highlights a significant contrast between the modular and hybrid architectures,
specifically in the frequency of trajectory planning. The modular approach generates
trajectories using map information at a higher rate compared to the deep learning model
in the hybrid architecture. Nonetheless, the frequency of the deep learning model is
deemed adequate, considering the architecture’s time requirements during simulation.
This divergence is caused by the simplicity of obtaining reference trajectories for navigation
from a pre-existing map provided in the competition simulation. In contrast, the hybrid
model employs sensory information to generate trajectories in an online and more reactive
manner. This characteristic enabled the hybrid architecture to generalize effectively in
scenarios demanding quick reactions, such as encountering obstacles in the vehicle’s path
and addressing inconsistencies in map interpretation. This adaptability is evident in the AB
(agent blocked) metric values on Leaderboards 1 and 2, where the hybrid vehicle (SENSORS
track) outperformed the modular agent (MAP track). An additional noteworthy point is the
performance variance in scenarios with obstacles on Leaderboard 2, which presents more
complex scenarios than Leaderboard 1. In this context, the hybrid vehicle demonstrated
superior performance compared to the modular agent, even covering a more extended
route and encountering a broader range of scenarios.

Another important observation concerning the two approaches and the CARLA chal-
lenge is the complexity of the diverse driving scenarios. Apart from requiring effective
perception, decision making, and planning systems, the challenge demands swift responses
from the vehicle. For instance, when the vehicle needs to change lanes with traffic in
the adjacent lane, it must identify a gap and react promptly. The offline experiments
demonstrated various scenarios where the system’s components correctly identified these
situations. However, the vehicle was not quick enough to execute maneuvers safely, re-
sulting in collisions and other traffic infractions. We adopted a conservative driving style,
which demands more time to react to scenarios involving interactions with other traffic
participants. The smooth acceleration change curve led to dangerous situations, given that
the behavior of other vehicles was designed to present complex and challenging scenarios
for the autonomous agent. For example, in certain situations, due to lane changes or sudden
brakes of the ego-vehicle (CaRINA agent), the surrounding vehicles collide with the rear of
the ego-vehicle, as they were not designed to stop in such scenarios.

6. Conclusions

Our research not only proposes a versatile autonomous driving architecture, but also
implements a robust approach to navigation. By blending the strengths of map-based
and mapless paradigms within a unified framework. Integrating modularity with end-
to-end path planning resulted in a holistic system that excels in both navigation styles.
Modular simplicity facilitates transparent debugging and efficient issue identification,
fostering continuous performance improvement. Our trajectory planning, despite using
a minimalistic module compared to complex competitor models, competes impressively,
exemplified by our route completion score in all tracks.



Sensors 2024, 24, 2097 27 of 30

Training with a smaller dataset not only allows for focused problem debugging,
but also fosters enhanced system interpretability through task-specific algorithms. This
design permits a more efficient and effective development process. Ultimately, the success
of the CaRINA agent, evident in its first-place in CADCH 2023 track SENSORS and second
place in track MAP, testifies to the effectiveness and adaptability of our hybrid architecture.

Challenges and Future Work

Despite the success of our models, we identified areas for improvement.
For traffic light detection, our strategy relies on the position of traffic lights to deter-

mine where to stop, but there may be configurations in unknown cities on the test server
that we have not considered, leading to potential issues with our traffic light detection
system. Our current reliance on traffic light position may not generalize to all scenarios.
Exploring end-to-end or hybrid architectures for traffic light detection could address this
limitation. Despite the success of our methods, we observe infractions, related to collision
avoidance, especially in the area of collisions with vehicles. This is primarily due to lane
changes requested by high-level commands (lane change left, lane change right), becom-
ing hazardous when other high-speed vehicles are using the targeted lanes during lane
changes. A potential solution could involve a new model and controller considering the
other surrounding vehicle velocities or training an algorithm to adapt the speed during
lane changes, particularly when other cars are traveling at high speeds.

It is important to acknowledge that a simple linear motion model has limitations. It
may not accurately capture complex maneuvers or sudden changes in an object’s direction.
Therefore, we acknowledge the need for exploring more sophisticated prediction models in
future work, potentially incorporating acceleration data or historical movement patterns.

Author Contributions: Conceptualization, L.A.R. and I.P.G.; methodology, L.A.R. and I.P.G.; soft-
ware, L.A.R., I.P.G., J.A.R.d.S. and C.A.P.; validation, L.A.R.; data curation, L.A.R.; writing—original
draft preparation, L.A.R. and I.P.G.; writing—review and editing, L.A.R., I.P.G., J.A.R.d.S., C.A.P.,
D.F.W. and F.S.O.; visualization, L.A.R. and I.P.G.; supervision, D.F.W. and F.S.O.; project administra-
tion, D.F.W. and F.S.O.; funding acquisition, D.F.W. and F.S.O. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by São Paulo Research Foundation (FAPESP) to the researchers
Iago Pachêco Gomes under grant number 2019/27301-7 and Júnior Anderson Rodrigues da Silva
under grant number 2018/19732-5, and Rota 2030 Program, Linha V (FUNDEP) to the researcher
Luis Alberto Rosero under grant number 27192.02.01/2020.10-00.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Chib, P.S.; Singh, P. Recent advancements in end-to-end autonomous driving using deep learning: A survey. IEEE Trans. Intell.

Veh. 2023, 9, 103–118. [CrossRef]
2. Teng, S.; Hu, X.; Deng, P.; Li, B.; Li, Y.; Ai, Y.; Yang, D.; Li, L.; Xuanyuan, Z.; Zhu, F.; et al. Motion planning for autonomous

driving: The state of the art and future perspectives. IEEE Trans. Intell. Veh. 2023, 8, 3692–3711. [CrossRef]
3. Tampuu, A.; Matiisen, T.; Semikin, M.; Fishman, D.; Muhammad, N. A survey of end-to-end driving: Architectures and training

methods. IEEE Trans. Neural Networks Learn. Syst. 2020, 33, 1364–1384. [CrossRef] [PubMed]
4. Jo, K.; Kim, J.; Kim, D.; Jang, C.; Sunwoo, M. Development of autonomous car—Part II: A case study on the implementation of an

autonomous driving system based on distributed architecture. IEEE Trans. Ind. Electron. 2015, 62, 5119–5132. [CrossRef]
5. Liu, S.; Li, L.; Tang, J.; Wu, S.; Gaudiot, J.L. Creating Autonomous Vehicle Systems; Morgan & Claypool Publishers: San Rafael, CA,

USA, 2017; Volume 6, pp. i–186.

http://doi.org/10.1109/TIV.2023.3318070
http://dx.doi.org/10.1109/TIV.2023.3274536
http://dx.doi.org/10.1109/TNNLS.2020.3043505
http://www.ncbi.nlm.nih.gov/pubmed/33373304
http://dx.doi.org/10.1109/TIE.2015.2410258


Sensors 2024, 24, 2097 28 of 30

6. Chen, L.; Wu, P.; Chitta, K.; Jaeger, B.; Geiger, A.; Li, H. End-to-end autonomous driving: Challenges and frontiers. arXiv 2023,
arXiv:2306.16927.

7. Kalra, N.; Paddock, S.M. Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle
reliability? Transp. Res. Part A Policy Pract. 2016, 94, 182–193. [CrossRef]

8. Koopman, P.; Wagner, M. Challenges in autonomous vehicle testing and validation. SAE Int. J. Transp. Saf. 2016, 4, 15–24.
[CrossRef]

9. Huang, W.; Wang, K.; Lv, Y.; Zhu, F. Autonomous vehicles testing methods review. In Proceedings of the 2016 IEEE 19th Interna-
tional Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; IEEE: Piscataway, NJ,
USA, 2016; pp. 163–168.

10. Rosero, L.A.; Gomes, I.P.; da Silva, J.A.R.; dos Santos, T.C.; Nakamura, A.T.M.; Amaro, J.; Wolf, D.F.; Osório, F.S. A Software
Architecture for Autonomous Vehicles: Team LRM-B Entry in the First CARLA Autonomous Driving Challenge. arXiv 2020,
arXiv:2010.12598.

11. Taş, Ö.Ş.; Salscheider, N.O.; Poggenhans, F.; Wirges, S.; Bandera, C.; Zofka, M.R.; Strauss, T.; Zöllner, J.M.; Stiller, C. Making
Bertha Cooperate–Team AnnieWAY’s Entry to the 2016 Grand Cooperative Driving Challenge. IEEE Trans. Intell. Transp. Syst.
2018, 19, 1262–1276. [CrossRef]

12. Fan, H.; Zhu, F.; Liu, C.; Zhang, L.; Zhuang, L.; Li, D.; Zhu, W.; Hu, J.; Li, H.; Kong, Q. Baidu apollo em motion planner. arXiv
2018, arXiv:1807.08048.

13. Autoware. Architecture Overview. Available online: https://autowarefoundation.github.io/autoware-documentation/main/
design/autoware-architecture (accessed on 23 January 2024).

14. Wei, J.; Snider, J.M.; Kim, J.; Dolan, J.M.; Rajkumar, R.; Litkouhi, B. Towards a viable autonomous driving research platform. In
Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 763–770.

15. Shao, H.; Wang, L.; Chen, R.; Waslander, S.L.; Li, H.; Liu, Y. ReasonNet: End-to-End Driving With Temporal and Global Reasoning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada,
17–24 June 2023; pp. 13723–13733.

16. Shao, H.; Wang, L.; Chen, R.; Li, H.; Liu, Y. Safety-Enhanced Autonomous Driving Using Interpretable Sensor Fusion Transformer.
In Proceedings of the 6th Conference on Robot Learning, Auckland, New Zealand, 14–18 December 2023; Volume 205, pp. 726–737.

17. Wu, P.; Jia, X.; Chen, L.; Yan, J.; Li, H.; Qiao, Y. Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A
Simple yet Strong Baseline. In Proceedings of the NeurIPS, New Orleans, LA, USA, 28 November–9 December 2022.

18. Casas, S.; Sadat, A.; Urtasun, R. Mp3: A unified model to map, perceive, predict and plan. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14403–14412.

19. Xiao, Y.; Codevilla, F.; Gurram, A.; Urfalioglu, O.; López, A.M. Multimodal End-to-End Autonomous Driving. IEEE Trans. Intell.
Transp. Syst. 2022, 23, 537–547. [CrossRef]

20. Zhang, Q.; Tang, M.; Geng, R.; Chen, F.; Xin, R.; Wang, L. MMFN: Multi-Modal-Fusion-Net for End-to-End Driving. In Proceedings
of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 8638–8643.

21. Cai, P.; Wang, S.; Sun, Y.; Liu, M. Probabilistic end-to-end vehicle navigation in complex dynamic environments with multimodal
sensor fusion. IEEE Robot. Autom. Lett. 2020, 5, 4218–4224. [CrossRef]

22. Vitelli, M.; Chang, Y.; Ye, Y.; Ferreira, A.; Wołczyk, M.; Osiński, B.; Niendorf, M.; Grimmett, H.; Huang, Q.; Jain, A.; et al. Safetynet:
Safe planning for real-world self-driving vehicles using machine-learned policies. In Proceedings of the 2022 International
Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022;
pp. 897–904.

23. Song, S.; Hu, X.; Yu, J.; Bai, L.; Chen, L. Learning a deep motion planning model for autonomous driving. In Proceedings
of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 1137–1142.

24. Moraes, G.; Mozart, A.; Azevedo, P.; Piumbini, M.; Cardoso, V.B.; Oliveira-Santos, T.; De Souza, A.F.; Badue, C. Image-Based
Real-Time Path Generation Using Deep Neural Networks. In Proceedings of the 2020 International Joint Conference on Neural
Networks (IJCNN), Glasgow, UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8.

25. Wang, D.; Wang, C.; Wang, Y.; Wang, H.; Pei, F. An autonomous driving approach based on trajectory learning using deep neural
networks. Int. J. Automot. Technol. 2021, 22, 1517–1528. [CrossRef]

26. Hu, S.; Chen, L.; Wu, P.; Li, H.; Yan, J.; Tao, D. St-p3: End-to-end vision-based autonomous driving via spatial-temporal feature
learning. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 533–549.

27. Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving
urban vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]

28. Katrakazas, C.; Quddus, M.; Chen, W.H.; Deka, L. Real-time motion planning methods for autonomous on-road driving:
State-of-the-art and future research directions. Transp. Res. Part C Emerg. Technol. 2015, 60, 416–442. [CrossRef]

29. Yang, K.; Tang, X.; Li, J.; Wang, H.; Zhong, G.; Chen, J.; Cao, D. Uncertainties in Onboard Algorithms for Autonomous Vehicles:
Challenges, Mitigation, and Perspectives. IEEE Trans. Intell. Transp. Syst. 2023, 24, 8963–8987. [CrossRef]

http://dx.doi.org/10.1016/j.tra.2016.09.010
http://dx.doi.org/10.4271/2016-01-0128
http://dx.doi.org/10.1109/TITS.2017.2749974
https://autowarefoundation.github.io/autoware-documentation/main/design/autoware-architecture
https://autowarefoundation.github.io/autoware-documentation/main/design/autoware-architecture
http://dx.doi.org/10.1109/TITS.2020.3013234
http://dx.doi.org/10.1109/LRA.2020.2994027
http://dx.doi.org/10.1007/s12239-021-0131-2
http://dx.doi.org/10.1109/TIV.2016.2578706
http://dx.doi.org/10.1016/j.trc.2015.09.011
http://dx.doi.org/10.1109/TITS.2023.3270887


Sensors 2024, 24, 2097 29 of 30

30. Gomes, I.P.; Wolf, D.F. Health monitoring system for autonomous vehicles using dynamic Bayesian networks for diagnosis and
prognosis. J. Intell. Robot. Syst. 2021, 101, 1–21. [CrossRef]

31. Xu, Z.; Xiao, X.; Warnell, G.; Nair, A.; Stone, P. Machine learning methods for local motion planning: A study of end-to-end vs.
parameter learning. In Proceedings of the 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR),
New York City, NY, USA, 25–27 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 217–222.

32. Reda, M.; Onsy, A.; Ghanbari, A.; Haikal, A.Y. Path planning algorithms in the autonomous driving system: A comprehensive
review. Robot. Auton. Syst. 2024, 174, 104630. [CrossRef]

33. Wang, Z.; Wu, Y.; Niu, Q. Multi-sensor fusion in automated driving: A survey. IEEE Access 2019, 8, 2847–2868. [CrossRef]
34. Fayyad, J.; Jaradat, M.A.; Gruyer, D.; Najjaran, H. Deep learning sensor fusion for autonomous vehicle perception and localization:

A review. Sensors 2020, 20, 4220. [CrossRef]
35. Yeong, D.J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and sensor fusion technology in autonomous vehicles: A review.

Sensors 2021, 21, 2140. [CrossRef] [PubMed]
36. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating

System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5.
37. Van Brummelen, J.; O’Brien, M.; Gruyer, D.; Najjaran, H. Autonomous vehicle perception: The technology of today and tomorrow.

Transp. Res. Part Emerg. Technol. 2018, 89, 384–406. [CrossRef]
38. OpenDRIVE. ASAM OpenDRIVE 1.8.0. 2023. Available online: https://www.asam.net/standards/detail/opendrive (accessed

on 27 January 2024).
39. Diaz-Diaz, A.; Ocaña, M.; Llamazares, Á.; Gómez-Huélamo, C.; Revenga, P.; Bergasa, L.M. Hd maps: Exploiting opendrive

potential for path planning and map monitoring. In Proceedings of the 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen,
Germany, 4–9 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1211–1217.

40. Dupuis, M.; Strobl, M.; Grezlikowski, H. OpenDRIVE 2010 and Beyond–Status and Future of the de facto Standard for the
Description of Road Networks. In Proceedings of the Driving Simulation Conference Europe, Paris, France, 9–10 September 2010;
pp. 231–242.

41. Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.; Hoffmann, G.; et al.,
Stanley: The Robot That Won the DARPA Grand Challenge. In The 2005 DARPA Grand Challenge: The Great Robot Race; Buehler,
M., Iagnemma, K., Singh, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–43. [CrossRef]

42. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017.

43. Geiger, A.; Roser, M.; Urtasun, R. Efficient Large-Scale Stereo Matching. In Proceedings of the Asian Conference on Computer
Vision (ACCV), Queenstown, New Zealand, 8–12 November 2010.

44. Hirschmüller, H.; Buder, M.; Ernst, I. Memory efficient semi-global matching. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
2012, I-3, 371–376. [CrossRef]

45. Xu, G.; Wang, X.; Ding, X.; Yang, X. Iterative Geometry Encoding Volume for Stereo Matching. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 21919–21928.

46. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast Encoders for Object Detection From Point
Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, 15–20 June 2019.

47. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE
International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468.

48. Lima, P.F.; Trincavelli, M.; Mårtensson, J.; Wahlberg, B. Clothoid-based model predictive control for autonomous driving. In
Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; IEEE: Piscataway, NJ, USA, 2015;
pp. 2983–2990.

49. Fraichard, T.; Scheuer, A. From Reeds and Shepp’s to continuous-curvature paths. IEEE Trans. Robot. 2004, 20, 1025–1035.
[CrossRef]

50. Obayashi, M.; Uto, K.; Takano, G. Appropriate overtaking motion generating method using predictive control with suit-
able car dynamics. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA,
12–14 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 4992–4997.

51. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

52. Zhu, H. Software Design Methodology: From Principles to Architectural Styles; Elsevier: Amsterdam, The Netherlands, 2005.
53. Hossin, M.; Sulaiman, M. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag.

Process 2015, 5, 1.
54. Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2018, 17, 168–192. [CrossRef]
55. Jorgensen, P.C. Software Testing: A Craftsman’s Approach; CRC Press: Boca Raton, FL, USA, 2018.
56. Lewis, W.E. Software Testing and Continuous Quality Improvement; CRC Press: Boca Raton, FL, USA, 2017.
57. United-States, National Highway Traffic Safety Administration Pre-Crash Scenario Typology for Crash Avoidance Research.

Available online: https://www.nhtsa.gov/sites/nhtsa.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf
(accessed on 30 January 2024).

http://dx.doi.org/10.1007/s10846-020-01293-y
http://dx.doi.org/10.1016/j.robot.2024.104630
http://dx.doi.org/10.1109/ACCESS.2019.2962554
http://dx.doi.org/10.3390/s20154220
http://dx.doi.org/10.3390/s21062140
http://www.ncbi.nlm.nih.gov/pubmed/33803889
http://dx.doi.org/10.1016/j.trc.2018.02.012
https://www.asam.net/standards/detail/opendrive
http://dx.doi.org/10.1007/978-3-540-73429-1_1
http://dx.doi.org/10.5194/isprsannals-I-3-371-2012
http://dx.doi.org/10.1109/TRO.2004.833789
http://dx.doi.org/10.1016/j.aci.2018.08.003
https://www.nhtsa.gov/sites/nhtsa.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf


Sensors 2024, 24, 2097 30 of 30

58. Jaeger, B.; Chitta, K.; Geiger, A. Hidden Biases of End-to-End Driving Models. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023.

59. Chekroun, R.; Toromanoff, M.; Hornauer, S.; Moutarde, F. GRI: General Reinforced Imitation and Its Application to Vision-Based
Autonomous Driving. Robotics 2023, 12, 127. [CrossRef]

60. Gómez-Huélamo, C.; Diaz-Diaz, A.; Araluce, J.; Ortiz, M.E.; Gutiérrez, R.; Arango, F.; Llamazares, Á.; Bergasa, L.M. How to
build and validate a safe and reliable Autonomous Driving stack? A ROS based software modular architecture baseline. In
Proceedings of the 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, 4–9 June 2022; IEEE: Piscataway, NJ, USA,
2022; pp. 1282–1289.

61. Gog, I.; Kalra, S.; Schafhalter, P.; Wright, M.A.; Gonzalez, J.E.; Stoica, I. Pylot: A modular platform for exploring latency-accuracy
tradeoffs in autonomous vehicles. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA),
Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 8806–8813.

62. Chen, D.; Koltun, V.; Krähenbühl, P. Learning to drive from a world on rails. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 15590–15599.

63. Toromanoff, M.; Wirbel, E.; Moutarde, F. End-to-End Model-Free Reinforcement Learning for Urban Driving Using Implicit
Affordances. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA,
USA, 13–19 June 2020.

64. Chitta, K.; Prakash, A.; Geiger, A. NEAT: Neural Attention Fields for End-to-End Autonomous Driving. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 15793–15803.

65. Prakash, A.; Chitta, K.; Geiger, A. Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 7077–7087.

66. Rosero, L.; Silva, J.; Wolf, D.; Osório, F. CNN-Planner: A neural path planner based on sensor fusion in the bird’s eye view
representation space for mapless autonomous driving. In Proceedings of the 2022 Latin American Robotics Symposium (LARS),
2022 Brazilian Symposium on Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE), São Bernardo do Campo,
Brazil, 18–21 October 2022; pp. 181–186.

67. Chen, D.; Zhou, B.; Koltun, V.; Krähenbühl, P. Learning by Cheating. In Proceedings of the Conference on Robot Learning,
30 October–1 November 2020; Volume 100, pp. 66–75.

68. Codevilla, F.; Santana, E.; Lopez, A.M.; Gaidon, A. Exploring the Limitations of Behavior Cloning for Autonomous Driv-
ing. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea,
27 October–2 November 2019.

69. Chen, D.; Krähenbühl, P. Learning from all vehicles. In Proceedings of the CVPR, New Orleans, LA, USA, 18–24 June 2022.
70. Chitta, K.; Prakash, A.; Jaeger, B.; Yu, Z.; Renz, K.; Geiger, A. TransFuser: Imitation with Transformer-Based Sensor Fusion for

Autonomous Driving. Pattern Anal. Mach. Intell. 2023, 45, 12878–12895. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/robotics12050127
http://dx.doi.org/10.1109/TPAMI.2022.3200245

	Introduction
	Related Works
	Modular Navigation Architecture
	End-to-End Autonomous Driving
	Data-Driven Path Planning

	Proposed Modular Pipeline
	Mapping and Path Planning
	OpenDRIVE
	Path Planning

	Perception
	Risk Assessment
	Decision Making
	Control
	Localization

	Hybrid Architecture for Mapless Autonomous Driving
	Experiments and Results
	Experimental Setup
	Time Execution Results
	Metrics
	Datasets
	Results on CARLA Leaderboards
	Analysis and Discussion
	Modular Architecture
	Hybrid Architecture
	Comparison and Final Remarks


	Conclusions
	References

