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Abstract: The flexibility and versatility associated with autonomous mobile robots (AMR) have
facilitated their integration into different types of industries and tasks. However, as the main
objective of their implementation on the factory floor is to optimize processes and, consequently,
the time associated with them, it is necessary to take into account the environment and congestion
to which they are subjected. Localization, on the shop floor and in real time, is an important
requirement to optimize the AMRs’ trajectory management, thus avoiding livelocks and deadlocks
during their movements in partnership with manual forklift operators and logistic trains. Threeof
the most commonly used localization techniques in indoor environments (time of flight, angle of
arrival, and time difference of arrival), as well as two of the most commonly used indoor localization
methods in the industry (ultra-wideband, and ultrasound), are presented and compared in this paper.
Furthermore, it identifies and compares three industrial indoor localization solutions: Qorvo, Eliko
Kio, and Marvelmind, implemented in an industrial mobile platform, which is the main contribution
of this paper. These solutions can be applied to both AMRs and other mobile platforms, such as
forklifts and logistic trains. In terms of results, the Marvelmind system, which uses an ultrasound
method, was the best solution.

Keywords: indoor localization systems; localization technologies; sensors; autonomous mobile robots

1. Introduction

To be more competitive, flexible, and productive, nowadays, all companies are model-
ing and investing in their factory floors. The industry is experiencing a new era of high
technological development, so the integration of mobile platforms in industrial processes
and tasks is increasingly common. Currently, all companies are focused on developing
industrial systems that are fully automated and more flexible [1]. This flexibility makes
them suitable to be used in different industrial stages or environments.

Autonomous guided vehicles (AGV) are normally mobile platforms to transport
materials between workstations or warehouses, without guidelines like the magnetic lines,
and their increased use in shop floors is related to their robustness and flexibility [2],
contributing to the increase of efficiency and effectiveness of the production process.
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In modern industries, AMR systems are a very attractive solution to increase the level
of automation in factory logistics [3], so the use of them has become widespread in the last
few decades.

The latest and most modern industries have integrated a hybrid system of mobile
platform types on their factory floors. Manual platforms, such as logistic trains and forklift
trucks, continue to perform their tasks, but with the help of autonomous mobile platforms,
the well-known mobile robots. To have a good interaction between both, especially in
path management, all these platforms must know their position and orientation so that the
movement is safe and smooth [4], this is the main goal of the localization systems.

Indoor localization is a key technology for mobile platforms (MP) [5], such as AMR,
as it enables the platform to determine its position and orientation within an indoor
environment. There are several approaches to indoor localization, each with its own set of
advantages and disadvantages.

As another important point, there are various industrial environments and their
characteristics that must be taken into consideration to have an efficient localization robot
system. Sometimes, a common solution is to use more than one of the technologies
mentioned above and apply a sensor fusion algorithm.

The exchange between localization systems in real time, and consequently, the ex-
change of maps and trajectories, allows the robot to obtain greater stability in estimating its
pose as well as in smoothing its movement on the factory floor. These data, of AMRs’ pose,
are also very important for the robot fleet management algorithm.

This study is a module of a project aiming to integrate autonomous mobile robots
(AMR) within logistical trains. To effectively plan the routes for the AMR, it is imperative
to have accurate information about the positions of the logistic trains.

Considering the previous assumptions, this paper discusses the integration, in an
industrial environment, and the comparison of different indoor localization systems for
mobile platforms. The main goal is the selection of a real-time location system to be
implemented in all mobile platforms of an industrial production line. The detection of the
real location of each vehicle will allow the AMR fleet management software to plan more
efficiently and accurately the AMRs paths, reducing conflicts between different mobile
platforms on the shop floor (AMRs, forklifts, logistical trains, others).

In Section 2, the state-of-the-art indoor localization systems, technologies, and tech-
niques are presented. Section 3 describes the most popular localization technologies and
techniques usually implemented in indoor environments for locating objects and/or per-
sons. Section 4 presents the systematic framework employed to address the research
objectives. Section 5 presents the comparison results achieved with different indoor lo-
calization systems, in an industrial scenario and with an AMR. In this specific section,
it is possible to compare and analyze the results obtained from the different industrial
localization systems and their comparison with ground truth. Finally, some conclusions
and the contribution of this research are presented in Section 6.

This paper stands out from the vast majority of papers in the literature on indoor
localization, as it compares three industrial systems on the market in a quantitative way,
with tests carried out in a real environment, making it easier to choose for future integration.

2. Related Work

Indoor localization refers to the process of determining the location of a device or a
person inside a building or an enclosed space [6]. It is an important technology that has
numerous applications in various industries and sectors, including retail, healthcare [7],
transportation [8], industrial automation [9], public safety [10], and entertainment [11].

The importance of indoor localization lies in the fact that it enables businesses and
organizations to better understand and optimize the movement and behavior of people
and assets within their premises [12]. For example, indoor localization can help a retailer
track customer movement and engagement in its store, a healthcare facility monitor the
location and status of its medical equipment and staff, a transportation company optimize
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the delivery of packages and goods [13], and a factory automate [14] and monitor the
production process [15].

There are different types of indoor localization systems, each using various tech-
nologies and methods to determine the location of a device or a person. Some common
technologies used in indoor localization include radio frequency (RF) signals, wireless tech-
nologies (e.g., WiFi, Bluetooth), ultrasonic (US) signals, and infrared (IR) signals. Geometric
methods [16] such as trilateration and triangulation are often used to calculate the position
of a device based on the distance to multiple reference points [17]. Probabilistic methods
such as Kalman filters and particle filters are also used to estimate the location based on
statistical models and sensor data [14,18].

Regarding AMRs, nowadays, in industry, some technologies can be applied for au-
tonomous mobile platforms localization like the indoor/outdoor Global Positioning System
(GPS) [19,20], 2D/3D sensors, vision systems, and wireless technologies like radio frequency
identification (RFID) tags [21,22] or barcodes [23–25]. They have different characteristics,
namely the accuracy, and therefore, it is important to take into account the purpose of
each robot.

In recent years, machine learning (ML) techniques [26–29] have also been applied to
indoor localization to improve the accuracy and adaptability of the systems.

Concerning the transportation and logistics sectors, indoor localization systems can
be used in warehouses, distribution centers, and other transportation and logistics environ-
ments to track the movement and status of packages [30], vehicles, and personnel. This
can improve the efficiency and accuracy of package delivery [31] and inventory manage-
ment [32], as well as reducing the risk of accidents and errors. For example, an indoor
localization system can help a warehouse worker locate a specific package or pallet more
quickly, or alert a driver when they are approaching a restricted area.

In industrial automation and smart factories, this type of localization system can be
used in factories and other industrial environments to automate and monitor the pro-
duction process. This can improve the efficiency, quality, and safety of manufacturing
operations [33], as well as enable the use of advanced technologies such as robotics [34] and
the Internet of Things (IoT) [35]. For example, an indoor localization system can be used
to track the location and status of manufacturing equipment and materials, or to guide
autonomous vehicles and robots through the factory [18].

One common approach is to use a fixed infrastructure, such as a network of stationary
beacons or sensors [36,37], to determine the platform’s position. The platform can use these
beacons or sensors to triangulate its position based on the strength of the signals it receives
from each beacon [17]. This approach is relatively simple and accurate, but it requires the
installation and maintenance of a fixed infrastructure, which may not be practical in all
situations [36].

Another approach is to use computer vision techniques [38] to localize the robot or
other platform. This can involve using visual features such as roofs [39], corners [40], edges,
textures, or fiducial markers [41] in the environment to determine the robot’s position
and orientation. This approach is generally more flexible and can work in a variety of
environments, but it may be less accurate than other methods, particularly in cluttered or
poorly lit environments.

Another option is to use Inertial Measurement Units (IMUs) to determine the plat-
form’s position and orientation [42]. IMUs are sensors that measure acceleration and
angular velocity and can be used in mobile robotics to track platform movement over time
when integrated with other robot localization systems. This approach is relatively simple
and can work in a variety of environments, but it may be prone to drift over time when
used standalone, leading to errors in the platform’s position estimates [43].

Indoor Global Positioning System (GPS) systems are specialized versions of the GPS
and are designed to work in indoor environments, where traditional GPS signals may be
weak or unavailable [44]. These systems use a combination of technologies, such as Wi-Fi,
Bluetooth, or ultra-wideband (UWB), to determine the location of a device or platform
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within an indoor space [45]. These systems are generally more accurate than a traditional
GPS when used in indoor environments [46], but their accuracy can vary depending on the
specific technologies and infrastructure used.

Finally, some indoor localization systems use a combination of these approaches,
combining the strengths of different methods to achieve the best possible accuracy and
flexibility [45]. For example, a robot may use a fusion algorithm to improve its accuracy and
robustness in different environments [47]. However, all these types of localization systems,
techniques, and methods are always subject to propagation problems and reflections of the
signal itself, culminating in delays in its detection and subsequent errors in locating the
object or person. In the chapter on data analysis, Section 5, it will be possible to validate
these phenomena in the different indoor localization systems tested.

To the authors’ knowledge, so far, there is no article with the practical and implemented
comparison of localization systems as highlighted in this article.

3. Localization Techniques and Methods

This section is divided into two subsections. The first discusses some of the most
commonly used methodologies for obtaining the position of a given object or person,
in different environments and in real time. The second subsection lists, describes, and
characterizes some of the technologies that can be found in localization systems.

3.1. Localization Techniques

Several different methods can be used for indoor localization, each with its strengths
and limitations. These methods can be broadly classified into three categories: Trilateration,
Fingerprinting, and Dead Reckoning. This subsection will present three methods—time of
flight (ToF), angle of arrival (AoA), and time difference of arrival (TDoA)—of the trilatera-
tion category.

3.1.1. Time of Flight (ToF)

ToF, or time of arrival (ToA), is a method for measuring the distance between two radio
transceivers [48]. It uses the signal propagation time (⃗∆t), between the transmitter (Tx)
and the receiver (Rx), to determine the distance between them. The ToF value multiplied
by the signal velocity (v) provides the physical distance (Dij) between Tx and Rx (see
Equation (1)).

Dij = (t2 − t1)× v

= ∆⃗t × v
(1)

where t1 is the time when Tx, in pose i, sends a message to the Rx, in pose j. The last
receives the signal at t2, where t2 = t1 + ∆⃗t (⃗∆t is the time taken, by the signal, between Tx
and Rx). So, the distance between the i and j, Dij, can be calculated by Equation (1), where
v represents the speed of the signal.

The principal requirement of the ToF method is the synchronization between transmit-
ters and receivers. The signal bandwidth and the sampling rate affect the system accuracy,
where a low sampling rate (in time) reduces the ToF resolution. In industrial indoor en-
vironments, this type of method may have significant localization errors caused by the
obstacles, that deflect the emitted signals from the transmitter to the receiver.

3.1.2. Angle of Arrival (AoA)

Using multiple receiver antennas [49], more commonly known as antenna arrays, it is
possible to estimate the angle at which the transmitted signal impinges on the receivers;
see Figure 1.
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Figure 1. Angle of arrival method, adapted.

The AoA approach uses this angle αi and the antenna positions (xi, yi), which are
known in advance, to estimate and determine the two-dimensional (2D) (x, y) or three-
dimensional (3D) (x, y, z) position of a transmitter. These data can be used for tracking
or navigation purposes. Equation (2) represents the generic principle to obtain the object
position by the AoA method.

x = di × cos(αi) + xi

y = di × sin(αi) + yi
(2)

and i is the antenna number 1, 2, or 3.
While the distance between the transmitter and receiver increases, the two best-known

features of AoA are the accuracy deterioration of the transmitter’s estimated position and
the hardware is much more expensive and complex than in other techniques.

3.1.3. Time Difference of Arrival (TDoA)

This method measures the difference in TOA at two or more different sensors, in other
words, it exploits the relative position of a mobile transmitter based on the different signal
propagation times of the transmitter and the multiple receivers. To calculate the perfect
location of a transmitter is required, at least, three receivers and a strict synchronization
between them [50]. Unlike ToF techniques where synchronization is needed between
the transmitter and the receiver, in TDoA, only synchronization between the receivers is
required. The signal bandwidth, the sampling rate, and a nondirect line of sight between
the transmitter and the receivers will affect the accuracy of the system.

3.2. Localization Methods

Indoor localization refers to the use of methods to determine the location of a device
or person inside a building or other enclosed structure. Several different technologies can
be used for indoor localization. So in this subsection, will be presented two high-tech and
industrial technologies: ultra-wideband (UWB), and ultrasound (US).

3.2.1. Ultra-Wideband (UWB)

The radio signals can penetrate a variety of materials, although metals and liquids
can interfere with it. So, this immunity to interference from other signals makes the ultra-
wideband very attractive for indoor localization [51]. This radio technology can enable
the very accurate measure of the ToF, leading to centimeter accuracy distance/location
measurement. This system features two methods: passive and active. The first one does
not use a UWB tag and takes advantage only of the signal reflection to obtain the object
or person’s position. In this specific case, it is necessary to know, in advance, where the
system transmitters and receivers are located, to later be able to calculate where the object
or person is, through its intersection in the signals sent and received between transmitters
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and receivers. On the other hand, an active UWB-based positioning system makes use of
a battery-powered UWB tag. In this case, the system locates and tracks the tag, in indoor
environments, by transmitting ultra-short UWB pulses from it to the fixed UWB sensors.
The sensors send the collected data, via a wireless network, to the software platform,
which then analyses, computes, and displays the position of the UWB tag in real-time.
Furthermore, the application of UWB in indoor environments has the advantages of long
battery life for UWB tags, robust flexibility, high data rates, high penetrating power, low
power consumption and transmission, good positioning accuracy and performance, and
little or no interference and multipath effects. In addition, UWB is expensive to scale because
of the need to deploy more UWB sensors in a wide coverage area to improve performance.

3.2.2. Ultrasound (US)

Mostly supported by the ToF technique, US localization technology [52] calculates the
distance between tags and nodes using sound velocity and ultrasound signals. Though the
sound velocity can vary with atmospheric or weather conditions, factors such as humidity
and temperature affect its propagation. However, the implementation of specific filter
algorithms, based on complex signal processing, can reduce the environmental noise and
consequently increase the localization accuracy. To provide system synchronization, usually,
the ultrasound signal is supplemented by radio frequency (RF) pulses.

4. Methodology

This section serves as a comprehensive guide to the research design, data collection
methods, and analytical techniques utilized to ensure the validity, reliability, and robustness
of paper findings. By transparently outlining the steps taken to gather and analyze data, this
section is structured to provide a clear understanding of the research process, allowing for
a critical assessment of the study’s methodology and its implications for the interpretation
of results. Section 4.1, named Testing Scenario and Indoor Localization Systems, presents
the industrial indoor scenario where all the tests were developed and the three used
indoor localization systems. Section 4.2, called Data Acquisition, presents the original
data acquired from each localization system, and the last, called Data Transformation or
Section 4.3, addresses the conversion of the points obtained in the various indoor systems
to the robot’s referential.

4.1. Testing Scenario and Indoor Localization Systems

Nowadays, in mobile robotics, the map is given by natural markers/contours of
the environment, however, for these tests, beacons with a high reflection rate were used,
represented by the brown circles in Figure 2. They assume always the same position, on
the factory floor, so this allows the mobile platform localization system to compare, in real
time, the previous 2D beacon location, saved in a file, and the live position, which is given
by the reflection of the security laser waves.

Figure 2. Test scene. Image exported from Robot Operating System Visualization (RVIZ).
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In this case, the robot localization system only gives relevance to the beacon position
and odometry to estimate its position and orientation. The robot localization system needs
to see at least two beacons, represented by red circles inside the beacons circles, to determine
the exact robot location, with this only giving relevance to odometry.

The trajectory is composed of waypoints/vertices, blue circles, and edges, which
are assumed to be the connecting paths between the vertices and through which the
autonomous mobile robot moves, the orange splines. All these edges are bidirectional, so
the AMR can move to both sides. Both vertices and edges are associated with a specific ID
number, which is randomly assigned by the trajectory editor module, giving only relevance
to the fact that each vertex and each edge has a unique identification number.

Indoor localization systems can be used for a variety of purposes, such as improving
navigation, providing location-based services, and tracking the movements of people or
objects within a building.

Several factors can affect the accuracy and reliability of indoor localization systems,
including the type of technology used, the layout and environment of the building, and
the accuracy of the underlying maps or reference points. To achieve reliable and accurate
indoor localization, it is often necessary to use a combination of different technologies and
techniques and to carefully calibrate and maintain the system.

Overall, indoor localization systems are an important tool for improving the efficiency,
safety, and experience of people inside buildings, and have many potential applications in
a wide range of industries.

The next subsections introduce and attend to the three industrial localization systems
(Qorvo, Eliko Kio, and Marvelmind) used for the comparison announced by this paper.
One last indoor localization system will be presented, the extended Kalman filter (EKF)
beacons, which is considered the test’s ground truth.

4.1.1. Qorvo

Qorvo’s ultra-wideband technology [53], supported by Decawave’s Impulse Radio,
allows for the location of tags in indoor environments (Figure 3), with high precision and
at a very low cost compared to other solutions on the market, such as Pozyx [54]. Other
main features of this system are secure low-power and low-latency data communication.

Figure 3. Qorvo tag.

4.1.2. Eliko Kio

The KIO system, developed by Eliko [55], is intended for 2D/3D indoor positioning of
mobile UWB tags (Figure 4) in relation to fixed position UWB anchors. Based on the time
of flight measurements of radio pulses traveling between tags and anchors, the 2D location
consists of at least three anchors and one mobile tag. With regard to the 3D location, the
KIO system needs one more anchor. Due to the low intensity of emitted radio signals, KIO
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devices could be used for human tracking, but the positioning frequency decreases when
the number of active tags increases.

Figure 4. Eliko KIO tag.

4.1.3. Marvelmind

The indoor positioning system by Marvelmind robotics [56], Figure 5, uses ultrasound
ranging to find the position of one or more mobile sensor modules, also known as hedge-
hogs. Ultrasound ranging is also used by beacons, the transmitters, to determine their
relative position. Therefore, the Marvelmind system is self-calibrating and the sensor
modules have built-in rechargeable batteries. By the application programming interface
(API), it is possible to choose if a module is a beacon or a hedgehog, which allows for
greater system flexibility. The maximum update rate for tracking a single hedgehog is
16 Hz. However, in addition to ultrasonics, Marvelmind may also incorporate other com-
munication technologies for data transmission and communication between beacons and
tracked objects. Bluetooth and radio frequency communication are commonly used in
conjunction with ultrasonics to enhance the capabilities of indoor positioning systems.

Figure 5. Marvelmind tag.

4.1.4. EKF Beacons—Ground Truth

Table 1 shows a small comparison between the different systems. All the data were
taken from their datasheets.
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The high intensity/reflection of these beacons (Figure 6) and the large number of
samples present on the factory floor gives the robot localization system excellent accuracy
and repeatability, making it the ground truth of these tests. So, in Table 2, it is possible to see
the comparison between the robot position, given by its localization system, in each vertex,
and the vertex position values presented in the trajectory data file. All these values were
taken based on the robot map referential, which typically refers to the coordinate system or
frame of reference used by a robot to represent and navigate within its environment. This
referential is crucial for the robot to understand its position, orientation, and movement
relative to the surrounding space.

Figure 6. Beacon example.

Table 1. Device comparison—some features.

Localization
System Precision Ease of

Deployment
Power

Consumption Scalability Environmental Considerations

Qorvo ±10 cm yes
low power
sleep mode:

15 µA
easy −40 ◦C. . . +85 ◦C

Eliko Kio ±15 cm yes
155 mA in Rx

mode 95 mA in
Tx mode

easy −20. . . +55 ◦C (USB powered device)

Marvelmind ±2 cm yes 900–1000 mAh
3.6 V easy −40 ◦C. . . +50 ◦C

Regarding the integration of indoor localization systems, in industry, has the potential
to improve productivity, efficiency, and safety, as well as to create new opportunities for
innovation and value creation. Therefore, the next subsection exhibited the implementation
of the different systems listed before, either on the AMR or on the industrial scenario.

4.1.5. Industrial Scenario—Systems Integration

To cover the whole robot map area with the different indoor localization systems,
some preliminary tests were carried out that allowed us to conclude the data present in
Table 3.

Figure 7, supported by Figure 2, highlights the distribution of the different localization
systems across the plant floor, the colored rectangles distributed in the image, as well
as the robot trajectories and the beacon map. A trajectory that spans the entire range of
action of the different indoor localization systems was scaled to best evaluate them, because
the greater the distance of the robot to them, the greater the error associated with the
robot’s position.
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Table 2. Ground truth selection process.

Vertex ID 5 6 10

Pose X Y Theta X Y Theta X Y Theta

Map 1.973 6.334 −3.140 −0.017 6.347 3.131 0.783 −4.156 −0.025

Robot 1.977 6.324 −3.131 −0.019 6.357 3.132 0.786 −4.159 −0.023

Diff. 0.004 0.010 0.008 0.002 0.009 0.001 0.003 0.003 0.002

Vertex ID 12 11 15

Pose X Y Theta X Y Theta X Y Theta

Map −3.548 −4.050 3.127 −1.341 −4.100 3.120 −0.746 −2.282 −1.566

Robot −3.525 −4.043 3.127 −1.346 −4.095 3.122 −0.763 −2.281 −1.553

Diff. 0.024 0.007 0.001 0.005 0.005 0.002 0.017 0.001 0.014

Vertex ID 26 16 9

Pose X Y Theta X Y Theta X Y Theta

Map −0.672 0.048 −1.566 −0.445 2.076 −1.566 −1.885 −1.155 −1.545

Robot −0.706 0.047 −1.565 −0.414 2.074 −1.542 −1.903 −1.153 −1.534

Diff. 0.033 0.001 0.001 0.031 0.002 0.024 0.019 0.001 0.011

Vertex ID 33 18 19

Pose X Y Theta X Y Theta X Y Theta

Map −2.504 7.572 −1.566 −2.605 4.198 −1.566 −2.717 1.734 −1.566

Robot −2.482 7.573 −1.556 −2.586 4.204 −1.564 −2.702 1.732 −1.551

Diff. 0.021 0.001 0.011 0.019 0.005 0.002 0.014 0.002 0.015

Vertex ID 14 13 17

Pose X Y Theta X Y Theta X Y Theta

Map −3.011 −0.226 −1.566 −3.597 −2.359 −1.566 −0.294 3.765 3.131

Robot −2.974 −0.227 −1.522 −3.635 −2.363 −1.561 −0.295 3.721 3.136

Diff. 0.036 0.002 0.044 0.038 0.004 0.006 0.001 0.044 0.005

Vertex ID 8 4 3

Pose X Y Theta X Y Theta X Y Theta

Map −1.879 2.897 −1.566 −3.561 9.092 −0.023 −1.524 9.073 3.120

Robot −1.900 2.893 −1.553 −3.560 9.087 0.001 −1.524 9.076 3.123

Diff. 0.021 0.004 0.014 0.001 0.005 0.024 0.000 0.004 0.004

Vertex ID 2 1 31

Pose X Y Theta X Y Theta X Y Theta

Map 0.674 9.022 3.120 3.257 8.948 3.114 0.438 8.106 3.131

Robot 0.662 9.033 3.120 3.256 8.927 3.121 0.438 8.076 −3.132

Diff. 0.012 0.012 0.001 0.001 0.021 0.007 0.000 0.030 6.263

Vertex ID 7

Pose X Y Theta

Map −1.879 5.051 −1.578

Robot −1.865 5.053 −1.549

Diff. 0.013 0.002 0.030
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Table 3. Minimum number of tags per localization system.

Localization System Minimum Tags/Beacons Number Detection Type

Qorvo 5 Tags

Eliko Kio 4 Tags

Marvelmind 4 Tags

EKF Beacons (AMR) 2 Beacons

Figure 7. Sensors distribution in the industrial environment.

In the previous figure, the Eliko Kio system is illustrated by the four red rectangles, two
of them at the center of the image and the others on each side. Regarding the Marvelmind
system, it was possible to cover all the scene areas with only four tags, illustrated by the
yellow rectangles. The only system where it was essential to use another tag was the Qorvo
system, exemplified by five green rectangles, where four of them have a similar position
to Marvelmind system tags. All these tags, regardless of the location system they are
associated with, are both in the same referential.

4.1.6. Autonomous Mobile Robot—Systems Integration

On the mobile platform, as it is possible to see in Figure 8, each tag has a specific
position and all of them were powered by a portable power bank.

To be able to compare the positions obtained by the ground truth and the different
indoor localization systems, it was necessary to match the positions of the sick laser with
each of the onboard tags. In this way, Table 4 represents the transformations of beacons
data, in each vertex as described in Table 2 on robot row, to the three localization systems
used in this case. These conversions were based on Equations (3) and (4).

XNew = cos(ThetaBeacons)× ∆⃗X + XBeacons (3)

where XNew corresponds to the new X value of the new point, XBeacons represents the X
value of the original point, and ∆⃗X is the modulus of the difference between the last two
values. The last parameter of the equation, ThetaBeacons, assumes the angle, in radians,
between the robot referential and the map referential in the original point.

YNew = sin(ThetaBeacons)× ∆⃗X + YBeacons (4)

here, YNew corresponds to the new Y value of the new point, and YBeacons represents the
Y value of the original point. The last two parameters, ThetaBeacons and ∆⃗X, are the same
exposed in the last equation because the sensors were aligned by the X referential.
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Table 4. Beacons data conversion.

Localization
Systems

Vertex ID 5 6 10

Delta X X Y X Y X Y

Marvelmind 0.215 1.762 6.322 −0.234 6.359 1.001 −4.164

Qorvo 0.16 1.817 6.322 −0.179 6.358 0.946 −4.163

Eliko Kio 0.455 1.522 6.319 −0.474 6.361 1.241 −4.170

Localization
Systems

Vertex ID 12 11 15

Delta X X Y X Y X Y

Marvelmind 0.215 −3.740 −4.040 −1.561 −4.091 −0.759 −2.496

Qorvo 0.16 −3.685 −4.040 −1.506 −4.092 −0.760 −2.441

Eliko Kio 0.455 −3.980 −4.036 −1.801 −4.086 −0.754 −2.736

Localization
Systems

Vertex ID 26 16 9

Delta X X Y X Y X Y

Marvelmind 0.215 −0.704 −0.168 −0.408 1.859 −1.895 −1.368

Qorvo 0.16 −0.705 −0.113 −0.409 1.914 −1.897 −1.313

Eliko Kio 0.455 −0.703 −0.408 −0.401 1.619 −1.887 −1.608

Localization
Systems

Vertex ID 33 18 19

Delta X X Y X Y X Y

Marvelmind 0.215 −2.479 7.358 −2.584 3.989 −2.698 1.517

Qorvo 0.16 −2.480 7.413 −2.585 4.044 −2.699 1.572

Eliko Kio 0.455 −2.476 7.118 −2.583 3.749 −2.693 1.277

Localization
Systems

Vertex ID 14 13 17

Delta X X Y X Y X Y

Marvelmind 0.215 −2.964 −0.442 −3.633 −2.578 −0.510 3.722

Qorvo 0.16 −2.967 −0.387 −3.634 −2.523 −0.455 3.722

Eliko Kio 0.455 −2.952 −0.682 −3.631 −2.818 −0.750 3.724

Localization
Systems

Vertex ID 8 4 3

Delta X X Y X Y X Y

Marvelmind 0.215 −1.896 2.678 −3.345 9.087 −1.739 9.080

Qorvo 0.16 −1.897 2.733 −3.400 9.087 −1.684 9.079

Eliko Kio 0.455 −1.892 2.438 −3.105 9.087 −1.979 9.085

Localization
Systems

Vertex ID 2 1 31

Delta X X Y X Y X Y

Marvelmind 0.215 0.447 9.038 3.041 8.931 0.223 8.074

Qorvo 0.16 0.502 9.037 3.096 8.930 0.278 8.075

Eliko Kio 0.455 0.207 9.043 2.801 8.936 −0.017 8.072

Localization
Systems

Vertex ID 7

Delta X X Y

Marvelmind 0.215 −1.861 4.838

Qorvo 0.16 −1.862 4.893

Eliko Kio 0.455 −1.855 4.598
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Figure 8. Mobile platform sensors integration—system’s architecture.

4.2. Data Acquisition

This subsection exposes the robot pose received by each localization system in each
vertex from the robot’s map and their correspondence to the beacon data.

4.2.1. Beacons Data

Table 5 shows the average, the standard deviation, and the maximum and minimum
values of the AMR localization system in each vertex.

Table 5. AMR localization system—Beacons data.

Vertex ID 5 6 10

Data X Y Theta X Y Theta X Y Theta

AVG 1.977 6.324 −3.131 −0.019 6.357 3.132 0.786 −4.159 −0.023

Std. Deviation 0.001 0.001 0.000 0.002 0.001 0.000 0.002 0.001 0.000

Max 1.979 6.327 −3.131 −0.014 6.358 3.132 0.788 −4.157 −0.023

Min 1.975 6.323 −3.131 −0.021 6.355 3.131 0.782 −4.160 −0.024

Diff. 0.003 0.004 0.000 0.007 0.003 0.001 0.006 0.004 0.001

Vertex ID 12 11 15

Data X Y Theta X Y Theta X Y Theta

AVG −3.525 −4.043 3.127 −1.346 −4.095 3.122 −0.763 −2.281 −1.553

Std. Deviation 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.002 0.000

Max −3.522 −4.042 3.127 −1.345 −4.094 3.122 −0.758 −2.274 −1.553

Min −3.526 −4.044 3.126 −1.349 −4.095 3.122 −0.764 −2.283 −1.553

Diff. 0.004 0.002 0.002 0.004 0.001 0.000 0.006 0.009 0.001
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Table 5. Cont.

Vertex ID 26 16 9

Data X Y Theta X Y Theta X Y Theta

AVG −0.706 0.047 −1.565 −0.414 2.074 −1.542 −1.903 −1.153 −1.534

Std. Deviation 0.001 0.001 0.000 0.004 0.001 0.000 0.002 0.001 0.000

Max −0.703 0.050 −1.565 −0.409 2.074 −1.541 −1.899 −1.148 −1.534

Min −0.706 0.045 −1.565 −0.425 2.072 −1.544 −1.905 −1.155 −1.535

Diff. 0.003 0.005 0.001 0.017 0.003 0.002 0.006 0.007 0.001

Vertex ID 33 18 19

Data X Y Theta X Y Theta X Y Theta

AVG −2.482 7.573 −1.556 −2.586 4.204 −1.564 −2.702 1.732 −1.551

Std. Deviation 0.003 0.002 0.000 0.003 0.002 0.000 0.001 0.002 0.000

Max −2.479 7.575 −1.555 −2.582 4.206 −1.563 −2.700 1.734 −1.551

Min −2.490 7.565 −1.557 −2.594 4.196 −1.564 −2.706 1.725 −1.552

Diff. 0.011 0.010 0.001 0.012 0.010 0.001 0.005 0.009 0.001

Vertex ID 14 13 17

Data X Y Theta X Y Theta X Y Theta

AVG −2.974 −0.227 −1.522 −3.635 −2.363 −1.561 −0.295 3.721 3.136

Std. Deviation 0.002 0.001 0.000 0.002 0.003 0.001 0.002 0.000 0.000

Max −2.973 −0.226 −1.522 −3.630 −2.352 −1.560 −0.293 3.721 3.136

Min −2.979 −0.231 −1.523 −3.638 −2.366 −1.564 −0.301 3.720 3.136

Diff. 0.007 0.005 0.000 0.008 0.014 0.004 0.008 0.002 0.000

Vertex ID 8 4 3

Data X Y Theta X Y Theta X Y Theta

AVG −1.900 2.893 −1.553 −3.560 9.087 0.001 −1.524 9.076 3.123

Std. Deviation 0.001 0.002 0.000 0.001 0.004 0.000 0.001 0.001 0.000

Max −1.897 2.898 −1.552 −3.557 9.091 0.001 −1.520 9.078 3.124

Min −1.902 2.891 −1.553 −3.561 9.075 0.001 −1.525 9.075 3.123

Diff. 0.005 0.007 0.000 0.003 0.016 0.001 0.005 0.002 0.000

Vertex ID 2 1 31

Data X Y Theta X Y Theta X Y Theta

AVG 0.662 9.033 3.120 3.256 8.927 3.121 0.438 8.076 −3.132

Std. Deviation 0.003 0.001 0.000 0.002 0.005 0.001 0.002 0.001 0.000

Max 0.672 9.035 3.121 3.258 8.939 3.122 0.440 8.081 −3.131

Min 0.659 9.030 3.120 3.251 8.921 3.120 0.432 8.075 −3.132

Diff. 0.013 0.004 0.001 0.008 0.017 0.002 0.008 0.006 0.001

Vertex ID 7

Data X Y Theta

AVG −1.865 5.053 −1.549

Std. Deviation 0.001 0.001 0.000

Max −1.864 5.056 −1.548

Min −1.866 5.052 −1.549

Diff. 0.003 0.004 0.000

4.2.2. Marvelmind

Table 6 shows the average, the standard deviation, and the maximum and minimum
values of the Marvelmind localization system in each vertex.
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Table 6. Indoor localization system—Marvelmind data.

Vertex ID 5 6 10

Data X Y Z X Y Z X Y Z

AVG 10.698 −3.511 2.540 11.381 −1.710 2.572 1.125 0.213 2.609

Std. Deviation 0.004 0.005 0.014 0.016 0.006 0.018 0.023 0.068 0.020

Max 10.712 −3.506 2.548 11.471 −1.702 2.667 1.160 0.310 2.690

Min 10.697 −3.520 2.538 11.360 −1.744 2.547 1.090 0.140 2.580

Diff. 0.015 0.014 0.01 0.111 0.042 0.120 0.070 0.170 0.110

Vertex ID 12 11 15

Data X Y Z X Y Z X Y Z

AVG 2.955 4.993 2.659 2.157 2.857 2.643 3.097 1.486 2.543

Std. Deviation 0.004 0.010 0.002 0.001 0.002 0.001 0.002 0.005 0.004

Max 2.968 5.019 2.663 2.160 2.863 2.646 3.103 1.516 2.548

Min 2.948 4.980 2.654 2.155 2.852 2.641 3.093 1.481 2.525

Diff. 0.020 0.039 0.009 0.005 0.011 0.005 0.01 0.035 0.023

Vertex ID 26 16 9

Data X Y Z X Y Z X Y Z

AVG 5.120 0.704 2.605 7.255 −0.098 2.472 4.492 2.170 2.515

Std. Deviation 0.003 0.001 0.005 0.028 0.062 0.017 0.013 0.006 0.014

Max 5.120 0.706 2.612 7.268 −0.086 2.475 4.543 2.192 2.581

Min 5.117 0.703 2.602 7.202 −0.108 2.469 4.446 2.159 2.493

Diff. 0.003 0.003 0.01 0.066 0.022 0.006 0.097 0.033 0.088

Vertex ID 33 18 19

Data X Y Z X Y Z X Y Z

AVG 12.744 −0.035 2.580 9.652 1.055 2.450 7.408 1.970 2.421

Std. Deviation 0.004 0.003 0.004 0.001 0.018 0.010 0.005 0.017 0.011

Max 12.757 −0.031 2.591 9.654 1.132 2.466 7.444 2.066 2.454

Min 12.739 −0.042 2.575 9.649 1.035 2.405 7.405 1.960 2.353

Diff. 0.018 0.011 0.016 0.005 0.097 0.061 0.039 0.106 0.101

Vertex ID 14 13 17

Data X Y Z X Y Z X Y Z

AVG 5.702 2.912 2.524 3.927 4.211 2.618 9.010 −0.568 2.412

Std. Deviation 0.005 0.013 0.003 0.003 0.004 0.002 0.015 0.007 0.035

Max 5.718 2.951 2.530 3.938 4.224 2.625 9.057 −0.561 2.518

Min 5.688 2.877 2.515 3.919 4.204 2.611 9.001 −0.601 2.382

Diff. 0.03 0.074 0.015 0.019 0.02 0.014 0.056 0.04 0.136

Vertex ID 8 4 3

Data X Y Z X Y Z X Y Z

AVG 8.223 0.827 2.402 14.735 −0.132 2.777 14.394 −1.192 2.767

Std. Deviation 0.001 0.002 0.004 0.001 0.004 0.001 0.020 0.048 0.011

Max 8.226 0.832 2.425 14.735 −0.132 2.777 14.504 −1.164 2.848

Min 8.216 0.821 2.393 14.733 −0.143 2.775 14.364 −1.528 2.760

Diff. 0.01 0.011 0.032 0.002 0.011 0.002 0.14 0.364 0.088
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Table 6. Cont.

Vertex ID 2 1 31

Data X Y Z X Y Z X Y Z

AVG 13.660 −3.194 2.739 12.736 −5.578 2.805 12.801 −2.727 2.685

Std. Deviation 0.017 0.016 0.003 0.045 0.017 0.004 0.028 0.011 0.017

Max 13.676 −3.183 2.752 12.873 −5.563 2.810 12.826 −2.683 2.698

Min 13.565 −3.284 2.734 12.696 −5.631 2.792 12.678 −2.740 2.615

Diff. 0.111 0.101 0.018 0.177 0.068 0.018 0.148 0.057 0.083

Vertex ID 7

Data X Y Z

AVG 10.212 0.222 2.437

Std. Deviation 0.001 0.002 0.002

Max 10.213 0.228 2.442

Min 10.210 0.217 2.433

Diff. 0.003 0.011 0.009

In Figure 9, it is possible to see the correspondence points between the converted
beacons data to the Marvelmind robot tag position (blue points) and the received original
Marvelmind data (red circles).

Figure 9. Marvelmind 2D Points Correspondence.

4.2.3. Eliko Kio

Table 7 shows the average, the standard deviation, and the maximum and minimum
values of the Eliko Kio localization system in each vertex.

Table 7. Indoor localization system—Eliko Kio data.

Vertex ID 5 6 10

Data X Y X Y X Y

AVG 10.743 −3.547 11.569 −1.664 0.805 −0.273

Std. Deviation 0.036 0.025 0.028 0.042 0.049 0.014

Max 10.820 −3.500 11.620 −1.590 0.870 −0.240

Min 10.630 −3.630 11.530 −1.740 0.630 −0.300

Diff. 0.19 0.13 0.09 0.15 0.24 0.06
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Table 7. Cont.

Vertex ID 12 11 15

Data X Y X Y X Y

AVG 2.859 5.335 1.925 2.776 2.557 1.239

Std. Deviation 0.016 0.010 0.013 0.028 0.015 0.021

Max 2.880 5.360 1.960 2.860 2.590 1.270

Min 2.820 5.310 1.890 2.740 2.520 1.170

Diff. 0.06 0.05 0.07 0.12 0.07 0.1

Vertex ID 26 16 9

Data X Y X Y X Y

AVG 4.842 0.431 6.591 −0.601 3.975 1.965

Std. Deviation 0.008 0.010 0.009 0.007 0.008 0.014

Max 4.860 0.460 6.620 −0.590 3.990 1.990

Min 4.820 0.410 6.570 −0.610 3.960 1.930

Diff. 0.04 0.05 0.05 0.02 0.03 0.06

Vertex ID 33 18 19

Data X Y X Y X Y

AVG 12.696 −0.295 9.486 1.001 7.161 2.003

Std. Deviation 0.011 0.013 0.012 0.013 0.011 0.054

Max 12.720 −0.250 9.510 1.020 7.180 2.120

Min 12.660 −0.320 9.460 0.970 7.150 1.950

Diff. 0.06 0.07 0.05 0.05 0.03 0.17

Vertex ID 14 13 17

Data X Y X Y X Y

AVG 5.344 2.682 3.693 4.382 9.054 −0.480

Std. Deviation 0.006 0.030 0.013 0.047 0.010 0.014

Max 5.350 2.730 3.720 4.450 9.070 −0.460

Min 5.330 2.620 3.670 4.300 9.030 −0.520

Diff. 0.02 0.11 0.05 0.15 0.04 0.06

Vertex ID 8 4 3

Data X Y X Y X Y

AVG 7.957 0.766 15.037 −0.423 14.773 −1.055

Std. Deviation 0.012 0.019 0.092 0.039 0.033 0.055

Max 7.990 0.840 15.070 −0.210 14.840 −0.890

Min 7.940 0.740 14.500 −0.470 14.730 −1.210

Diff. 0.05 0.1 0.57 0.26 0.11 0.32

Vertex ID 2 1 31

Data X Y X Y X Y

AVG 14.165 −2.815 12.957 −5.610 13.078 −2.688

Std. Deviation 0.005 0.009 0.025 0.013 0.035 0.041

Max 14.170 −2.800 13.000 −5.590 13.150 −2.610

Min 14.160 −2.830 12.910 −5.640 13.010 −2.770

Diff. 0.01 0.03 0.09 0.05 0.14 0.16

Vertex ID 7

Data X Y

AVG 9.863 −0.221

Std. Deviation 0.013 0.011

Max 9.890 −0.190

Min 9.820 −0.240

Diff. 0.07 0.05
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In Figure 10, it is possible to see the correspondence points between the converted
beacons data to the Eliko Kio robot tag position (blue points) and the received original
Eliko Kio data (red circles).

Figure 10. Eliko Kio 2D Points Correspondence.

4.2.4. Qorvo

Table 8 shows the average, the standard deviation, and the maximum and minimum
values of the Qorvo localization system in each vertex.

Table 8. Indoor localization system—Qorvo Data.

Vertex ID 5 6 10

Data X Y X Y X Y

AVG 10.269 −2.818 11.070 −1.371 0.567 −0.165

Std. Deviation 0.235 0.117 0.153 0.124 0.113 0.144

Max 10.897 −2.383 11.741 −1.492 0.742 0.326

Min 10.025 −3.253 10.934 −1.254 0.341 −0.474

Diff. 0.872 0.87 0.807 0.238 0.401 0.8

Vertex ID 12 11 15

Data X Y X Y X Y

AVG 2.824 4.662 2.214 2.924 3.285 1.605

Std. Deviation 0.036 0.093 0.014 0.025 0.092 0.050

Max 2.978 5.232 2.252 2.992 3.503 1.705

Min 2.753 4.764 2.179 2.857 3.140 1.284

Diff. 0.225 0.468 0.073 0.135 0.363 0.421

Vertex ID 26 16 9

Data X Y X Y X Y

AVG 5.453 0.881 7.195 −0.020 4.676 2.359

Std. Deviation 0.016 0.034 0.018 0.032 0.081 0.048

Max 5.519 1.083 7.306 0.182 4.782 2.42

Min 5.385 0.787 7.148 −0.266 4.553 2.224

Diff. 0.134 0.296 0.158 0.448 0.229 0.196

Vertex ID 33 18 19

Data X Y X Y X Y

AVG 12.197 −0.002 9.607 1.294 6.762 2.596

Std. Deviation 0.121 0.148 0.091 0.059 0.052 0.088
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Table 8. Cont.

Max 12.395 0.285 9.852 1.385 6.854 2.734

Min 11.941 −0.196 9.341 1.213 6.551 2.346

Diff. 0.454 0.481 0.511 0.172 0.303 0.388

Vertex ID 14 13 17

Data X Y X Y X Y

AVG 5.544 3.475 4.194 4.275 8.555 −0.187

Std. Deviation 0.103 0.095 0.096 0.082 0.045 0.023

Max 5.648 3.546 4.341 4.451 8.594 −0.146

Min 5.384 3.354 4.023 4.123 8.503 −0.321

Diff. 0.264 0.192 0.318 0.328 0.091 0.175

Vertex ID 8 4 3

Data X Y X Y X Y

AVG 7.858 1.060 14.537 −0.129 13.874 −1.662

Std. Deviation 0.012 0.019 0.042 0.078 0.025 0.031

Max 7.921 1.086 14.795 0.235 14.234 −1.587

Min 7.536 1.042 14.203 −0.421 13.678 −1.753

Diff. 0.385 0.044 0.592 0.656 0.556 0.166

Vertex ID 2 1 31

Data X Y X Y X Y

AVG 12.966 −3.821 12.457 −4.917 12.579 −2.395

Std. Deviation 0.034 0.017 0.045 0.061 0.036 0.054

Max 13.029 −3.754 12.789 −4.863 12.754 −2.152

Min 12.753 −4.24 12.124 −5.512 12.452 −2.421

Diff. 0.276 0.486 0.665 0.649 0.302 0.269

Vertex ID 7

Data X Y

AVG 10.164 0.122

Std. Deviation 0.028 0.036

Max 10.251 0.156

Min 10.031 0.063

Diff. 0.22 0.093

In Figure 11, it is possible to see the correspondence points between the converted
beacons data to the Qorvo robot tag position (blue points) and the received original Qorvo
data (red circles).

Figure 11. Qorvo 2D points correspondence.
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4.3. Data Transformation

This subsection will present the transformation matrix, which concerns the conversion
of the points in each location system’s referential to their coordinates in the robot’s map
referential. It will also be possible to observe, through figures, the approximation of the
original points of each location system to the respective values acquired by ground truth.

After acquiring the various sets of points, in the different references, the next calcula-
tion would be to calculate the respective transform between them (Marvelmind to ground
truth, Eliko Kio to ground truth, and Qorvo to ground truth). Based on the least squares
(LS) approximation and with the help of MatLab, the following transformation matrices
and respective errors, in each of the coordinates, were obtained.

4.3.1. Marvelmind

Equations (5)–(7) represent the transformation matrix from the Marvelmind referential
to the Beacons referential, the ground truth referential.

2D Translation Matrix =

[
1.6779
−4.9422

]
(5)

2D Rotation Matrix =

[
−0.3206 −0.9472
0.9472 −0.3206

]
(6)

Angle = 252.535◦ (7)

In Figure 12, it is possible to see the aligned points to the Marvelmind localization
system. The blue points represent the converted robot position points, acquired from
the robot location system, to the Marvelmind robot tag position. The red circles are the
original robot location points, acquired from the Marvelmind system, transformed to the
robot location system referential; see Table 9. Comparing these to types of points, after the
conversion, it is possible to obtain the coordinate errors exposed in Table 10.

Figure 12. Marvelmind 2D points aligned.
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Table 9. Indoor localization system—Marvelmind new points.

Vertex ID 5 6 10

Data X Y X Y X Y

New Point 1.573 6.317 −0.352 6.386 1.115 −3.945

Vertex ID 12 11 15

Data X Y X Y X Y

New Point −3.999 −3.744 −1.720 −3.815 −0.723 −2.485

Vertex ID 26 16 9

Data X Y X Y X Y

New Point −0.631 −0.318 −0.556 1.961 −1.818 −1.383

Vertex ID 33 18 19

Data X Y X Y X Y

New Point −2.375 7.140 −2.416 3.862 −2.563 1.443

Vertex ID 14 13 17

Data X Y X Y X Y

New Point −2.909 −0.475 −3.570 −2.573 −0.673 3.774

Vertex ID 8 4 3

Data X Y X Y X Y

New Point −1.742 2.582 −2.922 9.057 −1.808 9.074

Vertex ID 2 1 31

Data X Y X Y X Y

New Point 0.323 9.021 2.878 8.910 0.156 8.057

Vertex ID 7

Data X Y

New Point −1.807 4.660

Table 10. Marvelmind localization system—errors.

Vertex ID 5 6 10

Data X Y X Y X Y

Diff. −0.189 −0.005 −0.118 0.027 0.114 0.219

Vertex ID 12 11 15

Data X Y X Y X Y

Diff. −0.259 0.296 −0.159 0.276 0.036 0.011

Vertex ID 26 16 9

Data X Y X Y X Y

Diff. 0.073 −0.150 −0.148 0.102 0.077 −0.015

Vertex ID 33 18 19

Data X Y X Y X Y

Diff. 0.104 −0.218 0.168 −0.127 0.135 −0.074

Vertex ID 14 13 17

Data X Y X Y X Y

Diff. 0.055 −0.033 0.063 0.005 −0.163 0.052

Vertex ID 8 4 3

Data X Y X Y X Y

Diff. 0.154 −0.097 0.423 −0.030 −0.069 −0.006

Vertex ID 2 1 31

Data X Y X Y X Y

Diff. −0.124 −0.017 −0.163 −0.021 −0.067 −0.017

Vertex ID 7

Data X Y

Diff. 0.054 −0.179
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4.3.2. Eliko Kio

Equations (8)–(10) represent the transformation matrix from the Eliko Kio referential
to the Beacons referential, the ground truth referential.

2D Translation Matrix =

[
1.3654
−5.0303

]
(8)

2D Rotation Matrix =

[
−0.3060 −0.9520
0.9520 −0.3060

]
(9)

Angle = 253.213◦ (10)

In Figure 13, it is possible to see the aligned points to the Eliko Kio localization system.
The blue points represent the converted robot position points, acquired from the robot
location system, to the Eliko Kio robot tag position. The red circles are the original robot
location points, acquired from the Eliko Kio system, transformed to the robot location
system referential; see Table 11. Comparing these to types of points, after the conversion, it
is possible to obtain the coordinate errors exposed in Table 12.

Figure 13. Eliko Kio 2D points aligned.

Table 11. Indoor localization system—Eliko Kio new points.

Vertex ID 5 6 10

Data X Y X Y X Y

New Point 1.455 6.283 −0.591 6.493 1.379 −4.180

Vertex ID 12 11 15

Data X Y X Y X Y

New Point −4.589 −3.941 −1.867 −4.047 −0.597 −2.975

Vertex ID 26 16 9

Data X Y X Y X Y

New Point −0.527 −0.553 −0.080 1.428 −1.722 −1.847

Vertex ID 33 18 19

Data X Y X Y X Y

New Point −2.239 7.147 −2.491 3.694 −2.733 1.174
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Table 11. Cont.

Vertex ID 14 13 17

Data X Y X Y X Y

New Point −2.823 −0.764 −3.937 −2.856 −0.949 3.736

Vertex ID 8 4 3

Data X Y X Y X Y

New Point −1.799 2.311 −2.834 9.415 −2.151 9.357

Vertex ID 2 1 31

Data X Y X Y X Y

New Point −0.290 9.317 2.741 9.022 −0.078 8.243

Vertex ID 7

Data X Y

New Point −1.443 4.427

Table 12. Eliko Kio localization system—errors.

Vertex ID 5 6 10

Data X Y X Y X Y

Diff. −0.068 −0.036 −0.117 0.132 0.138 −0.010

Vertex ID 12 11 15

Data X Y X Y X Y

Diff. −0.609 0.095 −0.066 0.039 0.157 −0.239

Vertex ID 26 16 9

Data X Y X Y X Y

Diff. 0.176 −0.145 0.322 −0.191 0.165 −0.239

Vertex ID 33 18 19

Data X Y X Y X Y

Diff. 0.237 0.029 0.092 −0.055 −0.040 −0.103

Vertex ID 14 13 17

Data X Y X Y X Y

Diff. 0.129 −0.082 −0.306 −0.038 −0.199 0.012

Vertex ID 8 4 3

Data X Y X Y X Y

Diff. 0.093 −0.128 0.271 0.328 −0.172 0.272

Vertex ID 2 1 31

Data X Y X Y X Y

Diff. −0.497 0.274 −0.060 0.086 −0.061 0.171

Vertex ID 7

Data X Y

Diff. 0.412 −0.171

4.3.3. Qorvo

Equations (11)–(13) represent the transformation matrix from the Qorvo referential
to the Beacons referential, the ground truth referential.

2D Translation Matrix =

[
1.8242
−4.6445

]
(11)

2D Rotation Matrix =

[
−0.3297 −0.9441
0.9441 −0.3297

]
(12)

Angle = 252.609◦ (13)
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In Figure 14, it is possible to see the aligned points to the Qorvo localization system.
The blue points represent the converted robot position points, acquired from the robot
location system, to the Qorvo robot tag position. The red circles are the original robot
location points, acquired from the Qorvo system, transformed to the robot location system
referential; see Table 13. Comparing these to types of points, after the conversion, it is
possible to obtain the coordinate errors exposed in Table 14.

Figure 14. Qorvo 2D points aligned.

Table 13. Indoor localization system—Qorvo new points.

Vertex ID 5 6 10

Data X Y X Y X Y

New Point 1.099 5.979 −0.531 6.259 1.793 −4.055

Vertex ID 12 11 15

Data X Y X Y X Y

New Point −3.508 −3.516 −1.666 −3.518 −0.774 −2.072

Vertex ID 26 16 9

Data X Y X Y X Y

New Point −0.805 0.213 −0.529 2.155 −1.945 −1.008

Vertex ID 33 18 19

Data X Y X Y X Y

New Point −2.195 6.871 −2.565 3.999 −2.856 0.884

Vertex ID 14 13 17

Data X Y X Y X Y

New Point −3.284 −0.556 −3.595 −2.095 −0.820 3.494

Vertex ID 8 4 3

Data X Y X Y X Y

New Point −1.767 2.425 −2.847 9.122 −1.181 9.002

Vertex ID 2 1 31

Data X Y X Y X Y

New Point 1.157 8.856 2.359 8.737 −0.062 8.021

Vertex ID 7

Data X Y

New Point −1.642 4.911
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Table 14. Qorvo localization system—errors.

Vertex ID 5 6 10

Data X Y X Y X Y

Diff. −0.718 −0.343 −0.352 −0.100 0.847 0.108

Vertex ID 12 11 15

Data X Y X Y X Y

Diff. 0.177 0.525 −0.160 0.574 −0.014 0.369

Vertex ID 26 16 9

Data X Y X Y X Y

Diff. −0.100 0.326 −0.120 0.241 −0.048 0.305

Vertex ID 33 18 19

Data X Y X Y X Y

Diff. 0.285 −0.542 0.020 −0.045 −0.157 −0.689

Vertex ID 14 13 17

Data X Y X Y X Y

Diff. −0.317 −0.169 0.040 0.429 −0.365 −0.228

Vertex ID 8 4 3

Data X Y X Y X Y

Diff. 0.130 −0.308 0.553 0.035 0.503 −0.077

Vertex ID 2 1 31

Data X Y X Y X Y

Diff. 0.655 −0.181 −0.737 −0.193 −0.340 −0.054

Vertex ID 7

Data X Y

Diff. 0.220 0.018

5. Results

In the results section of this paper, the research outcomes are unveiled, providing a
detailed account of the data obtained through meticulous analysis. This section serves as a
culmination of the study’s investigative efforts, presenting a comprehensive depiction of
the key findings about the research questions and objectives outlined earlier.

After presenting the results obtained with the different indoor localization systems
and comparing the respective error values in each map point with the ground truth used
(see Table 15), it can be stated that the Marvelmind system contains less error than Eliko
Kio and Qorvo systems, being, in this environment and study scenario, the most accurate
and precise module.

Table 15. Indoor localization systems—error points comparison.

Vertex ID 5 6 10

Localization
Systems X Y X Y X Y

Marvelmind −0.189 −0.005 −0.118 0.027 0.114 0.219

Qorvo −0.718 −0.343 −0.352 −0.100 0.847 0.108

Eliko Kio −0.068 −0.036 −0.117 0.132 0.138 −0.010

Vertex ID 12 11 15

Localization
Systems X Y X Y X Y

Marvelmind −0.259 0.296 −0.159 0.276 0.036 0.011

Qorvo 0.177 0.525 −0.160 0.574 −0.014 0.369

Eliko Kio −0.609 0.095 −0.066 0.039 0.157 −0.239
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Table 15. Cont.

Vertex ID 26 16 9

Localization
Systems X Y X Y X Y

Marvelmind 0.073 −0.150 −0.148 0.102 0.077 −0.015

Qorvo −0.100 0.326 −0.120 0.241 −0.048 0.305

Eliko Kio 0.176 −0.145 0.322 −0.191 0.165 −0.239

Vertex ID 33 18 19

Localization
Systems X Y X Y X Y

Marvelmind 0.104 −0.218 0.168 −0.127 0.135 −0.074

Qorvo 0.285 −0.542 0.020 −0.045 −0.157 −0.689

Eliko Kio 0.237 0.029 0.092 −0.055 −0.040 −0.103

Vertex ID 14 13 17

Localization
Systems X Y X Y X Y

Marvelmind 0.055 −0.033 0.063 0.005 −0.163 0.052

Qorvo −0.317 −0.169 0.040 0.429 −0.365 −0.228

Eliko Kio 0.129 −0.082 −0.306 −0.038 −0.199 0.012

Vertex ID 8 4 3

Localization
Systems X Y X Y X Y

Marvelmind 0.154 −0.097 0.423 −0.030 −0.069 −0.006

Qorvo 0.130 −0.308 0.553 0.035 0.503 −0.077

Eliko Kio 0.093 −0.128 0.271 0.328 −0.172 0.272

Vertex ID 2 1 31

Localization
Systems X Y X Y X Y

Marvelmind −0.124 −0.017 −0.163 −0.021 −0.067 −0.017

Qorvo 0.655 −0.181 −0.737 −0.193 −0.340 −0.054

Eliko Kio −0.497 0.274 −0.060 0.086 −0.061 0.171

Vertex ID 7

Localization
Systems X Y

Marvelmind 0.054 −0.179

Qorvo 0.220 0.018

Eliko Kio 0.412 −0.171

The blue dots, in Figure 15, refer to the Marvelmind indoor localization system. They
are the closest to the point of origin (0, 0), presented by the symbol ∗, alluding to ground
truth values, thus assuming that it is the best-tested indoor localization system. The
+ symbols, in red, refer to the Eliko KIO localization system, and the x symbols refer to the
Qorvo localization system.



Sensors 2024, 24, 2095 27 of 33

Figure 15. Two-dimensional error points comparison.

A more detailed and illustrative analysis is presented in Figure 16, illustrating more
intuitively the difference, in terms of distance allusive to ground truth values, of the three
used systems at each of the vertices.

Figure 16. Two-dimensional converted points comparison.

Table 16 presents the best indoor localization system, in each vertex, which is high-
lighted with the respective color, according to the image caption in Figure 16. The blue
color, alluding to Marvelmind, is the most repeated throughout the table, confirming it as
the best system of the three selected.
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Table 16. Euclidean distances to ground truth System.

Vertex ID 5 6 10

Localization
Systems X Y X Y X Y

Marvelmind 0.189 0.121 0.247

Qorvo 0.796 0.366 0.854

Eliko Kio 0.077 0.176 0.138

Vertex ID 12 11 15

Localization
Systems X Y X Y X Y

Marvelmind 0.393 0.318 0.038

Qorvo 0.554 0.596 0.369

Eliko Kio 0.616 0.077 0.286

Vertex ID 26 16 9

Localization
Systems X Y X Y X Y

Marvelmind 0.167 0.180 0.078

Qorvo 0.341 0.269 0.309

Eliko Kio 0.228 0.374 0.290

Vertex ID 33 18 19

Localization
Systems X Y X Y X Y

Marvelmind 0.242 0.211 0.154

Qorvo 0.612 0.049 0.707

Eliko Kio 0.239 0.107 0.110

Vertex ID 14 13 17

Localization
Systems X Y X Y X Y

Marvelmind 0.064 0.063 0.171

Qorvo 0.359 0.431 0.430

Eliko Kio 0.153 0.308 0.199

Vertex ID 8 4 3

Localization
Systems X Y X Y X Y

Marvelmind 0.182 0.424 0.069

Qorvo 0.334 0.554 0.509

Eliko Kio 0.158 0.425 0.322

Vertex ID 2 1 31

Localization
Systems X Y X Y X Y

Marvelmind 0.125 0.164 0.069

Qorvo 0.679 0.762 0.344

Eliko Kio 0.567 0.105 0.182

Vertex ID 7

Localization
Systems X Y

Marvelmind 0.187

Qorvo 0.221

Eliko Kio 0.446

However, it is always necessary to take into account that there are always areas of the
map where the different systems have difficulty in having precision, and even accuracy, in
locating the AMR, leading to the so-called outliers. These critical points have to do with
the positioning or distribution of the different modules, the various location systems, as
well as the proximity of the AMR to industrial machinery and surrounding structures of
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the scenario itself, consisting mostly of iron, eventually influencing the signal propagation
and the radio wave reflections.

In summary, there are several approaches to indoor localization for autonomous
mobile robots and other different mobile platforms, each with its own set of advantages
and disadvantages. The best approach for a given application will depend on the specific
requirements and constraints of the environment and the accuracy can vary depending
on the specific technologies and infrastructure used. After this analysis, it is possible to
conclude that the Marvelmind system is the most accurate and the one that can cover
a larger working area with the least number of tags. However, it is the most expensive
system of all presented. As far as our case study is concerned, that is, for real-time
detection of mobile platforms, such as AMRs, forklifts, or even logistics trains in industrial
environments, any of the three systems will work, because they all have satisfactory results
with errors below half a meter, which will always allow for safe, accurate, and optimized
path planning for all AMRs.

6. Conclusions

This article tests three industrial indoor localization solutions: Qorvo, Eliko Kio, and
Marvelmind, supported by two indoor localization methods: ultra-wideband (Qorvo
and Eliko Kio) and Uultrasound (Marvelmind). A multicomparison between these three
different indoor localization systems and a robot localization system (ground truth) was
proposed. To optimize the data obtained by each system, the data acquired by the AMR
location system were previously transformed to the position of each of the tags integrated
on top of the AMR. Finally, an approximation was used, through MATLAB, using the
method of least squares, of the points obtained by each localization system to the respective.
It was possible to conclude that the Marvelmind system is the most accurate, but, for our
proposal, any of the other systems could be used, because they all have errors below half
a meter, which will always allow for safe, accurate, and optimized path planning for all
AMRs when planning the paths for the different robots, taking into account the position of
the different mobile platforms on the factory floor that are not managed by the robot fleet
manager (forklifts, logistics trains).

A seminal contribution of this work lies in its comprehensive examination of three
industrial localization systems in real time, coupled with a sophisticated and in-depth
analysis. By systematically comparing and contrasting these disparate systems, this study
endeavors to unearth nuanced insights into their respective functionalities. The intricate
examination of real-time industrial localization not only elucidates the dynamic landscape
of these technologies but also underscores their practical implications and potential ad-
vancements. This analytical approach offers a multifaceted perspective, fostering a deeper
understanding of the intricate interplay between diverse industrial localization systems
and providing a foundation for informed decision making in the realm of contemporary
technological applications. Various quantitative and qualitative results of the different
systems were presented, which could help readers make a future choice when purchasing
an indoor localization system on the market.

As future work, it will be interesting to validate one of these indoor localization
systems integrated into different forklifts or logistic trains and interaction with the TEA*
Algorithm, the AMRs path planning algorithm, in real time and in a real environment.
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GPS Global Positioning System
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MDPI Multidisciplinary Digital Publishing Institute
ML Machine Learning
MP Mobile Platform
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TDoA Time Difference of Arrival
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3D Three-Dimensional
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