
Citation: Khan, M.J.; Khan, M.A.;

Turaev, S.; Malik, S.; El-Sayed, H.;

Ullah, F. A Vehicle-Edge-Cloud

Framework for Computational

Analysis of a Fine-Tuned Deep

Learning Model. Sensors 2024, 24,

2080. https://doi.org/10.3390/

s24072080

Academic Editor: Md Palash Uddin

Received: 20 December 2023

Revised: 2 February 2024

Accepted: 4 February 2024

Published: 25 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Vehicle-Edge-Cloud Framework for Computational Analysis of
a Fine-Tuned Deep Learning Model
M. Jalal Khan 1,2 , Manzoor Ahmed Khan 1,2 , Sherzod Turaev 1,* , Sumbal Malik 1,2 , Hesham El-Sayed 1,2

and Farman Ullah 1

1 College of Information Technology, United Arab Emirates University, Abu Dhabi 15551,
United Arab Emirates; 201990067@uaeu.ac.ae (M.J.K); manzoor-khan@uaeu.ac.ae (M.A.K.);
201990107@uaeu.ac.ae (S.M.); helsayed@uaeu.ac.ae (H.E.-S.); farman@uaeu.ac.ae (F.U.)

2 Emirates Center for Mobility Research (ECMR), United Arab Emirates University,
Abu Dhabi 15551, United Arab Emirates

* Correspondence: sherzod@uaeu.ac.ae

Abstract: The cooperative, connected, and automated mobility (CCAM) infrastructure plays a key role
in understanding and enhancing the environmental perception of autonomous vehicles (AVs) driving
in complex urban settings. However, the deployment of CCAM infrastructure necessitates the efficient
selection of the computational processing layer and deployment of machine learning (ML) and deep
learning (DL) models to achieve greater performance of AVs in complex urban environments. In this
paper, we propose a computational framework and analyze the effectiveness of a custom-trained DL
model (YOLOv8) when deployed in diverse devices and settings at the vehicle-edge-cloud-layered
architecture. Our main focus is to understand the interplay and relationship between the DL model’s
accuracy and execution time during deployment at the layered framework. Therefore, we investigate
the trade-offs between accuracy and time by the deployment process of the YOLOv8 model over each
layer of the computational framework. We consider the CCAM infrastructures, i.e., sensory devices,
computation, and communication at each layer. The findings reveal that the performance metrics
results (e.g., 0.842 mAP@0.5) of deployed DL models remain consistent regardless of the device type
across any layer of the framework. However, we observe that inference times for object detection
tasks tend to decrease when the DL model is subjected to different environmental conditions. For
instance, the Jetson AGX (non-GPU) outperforms the Raspberry Pi (non-GPU) by reducing inference
time by 72%, whereas the Jetson AGX Xavier (GPU) outperforms the Jetson AGX ARMv8 (non-GPU)
by reducing inference time by 90%. A complete average time comparison analysis for the transfer
time, preprocess time, and total time of devices Apple M2 Max, Intel Xeon, Tesla T4, NVIDIA A100,
Tesla V100, etc., is provided in the paper. Our findings direct the researchers and practitioners to
select the most appropriate device type and environment for the deployment of DL models required
for production.

Keywords: autonomous vehicles; deep learning; object detection; transportation

1. Introduction

The transition from traditional to smart roads for realizing an intelligent environment
and enabling autonomous driving (AD) requires a significant shift in how we approach
transportation infrastructure. The conceptual canvas of smart roads represents an inte-
gration of autonomous vehicles (AVs), evolved roadside units (eRSUs), and central data
centers to improve safety, efficiency, and mobility [1,2]. For instance, the cooperative con-
nected and automated mobility (CCAM) infrastructure creates an extended perception
of the road segments [3]. Similarly, we need artificial intelligence (AI) mechanisms for
different decision-making instances to enable AVs to perform critical and non-critical op-
erations during driving. Although it is imperative to deploy trained machine learning

Sensors 2024, 24, 2080. https://doi.org/10.3390/s24072080 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072080
https://doi.org/10.3390/s24072080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6230-1760
https://orcid.org/0000-0002-0319-8126
https://orcid.org/0000-0001-6661-8469
https://orcid.org/0000-0003-2759-3144
https://orcid.org/0000-0002-7488-0915
https://orcid.org/0000-0002-2488-8353
https://doi.org/10.3390/s24072080
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072080?type=check_update&version=1


Sensors 2024, 24, 2080 2 of 17

(ML) and deep learning (DL) models at CCAM infrastructure, it is also necessary to adhere
to deployment instructions and processes when the models are deployed for perception
tasks, i.e., object classification, object detection, object tracking, object segmentation, object
prediction, etc., by the AVs. Moreover, the deployed DL models allow AVs to plan and
update their trajectories, execute acceptable actions, and perform controllable operations.
Therefore, it is highly recommended to deploy a DL model, which is most relevant to the
underlying use case scenarios to maintain the high performance of the AVs.

The existing research works have explored a spectrum of solution approaches and
proposed a plethora of DL-based models for conducting perception tasks in AD, ranging
from single-modal to comprehensive multi-modal perception systems [1,4]. The KITTI [5]
and nuScenes [6] datasets have been instrumental in producing benchmark methods [7,8]
for perceptual operations of AVs. This means that the relevant academic community ded-
icated to this field is rapidly developing systems to enhance AD perception, leveraging
real-world data and leading-edge datasets such as nuScenes, KITTI, and Waymo [9]. For
instance, these systems include SparseFusion [10], CMT-NaiveDETR [11], CBM-Fusion [12],
MSMDFusion-TA [13], Adaptive-Fusion [14], Inter-Frame Fusion [15], etc. These systems
are applied in crucial perceptual tasks like object recognition, motion tracking, and nav-
igational planning. In addition, a selective number of studies e.g., DCNN-Fusion [16],
E-DCNN [17], WM-YOLO [18], etc., have introduced methods to address challenges like
feature mismatches and omissions in object detection to refine the accuracy of percep-
tion. Furthermore, a lightweight YOLOv8-CB [19] enhanced pedestrian detection accuracy.
The system [20] improved the visual capabilities using YOLO-based object detection on
edge computing. In [21], the authors performed object detection on Jetson AGX Xavier in
edge computing. The TF-YOLO detector [22] enhanced pedestrian detection with a novel
transformer–fusion module. The IDLVD-UARSI technique [23] achieved high accuracy in
vehicle detection using remote sensing imagery. In [24], the authors proposed a DL-based
system for face recognition in CCTV images, aiming for high accuracy with minimal human
oversight. In [25], the authors installed a smart camera using YOLOv7-tiny and Deep SORT
on Nvidia Jetson Nano to improve traffic management by detecting vehicles.

Considering the existing literature and research studies, the processes for computing
and deploying DL-based models across diverse devices in various environments for AVs
using CCAM infrastructure have yet to be fully developed. In this research, we introduce
an innovative computational framework aiming to evaluate DL model deployments and
analyze temporal performance on a range of device types. The motivation for this research
centers on enhancing the performance of AVs in complex urban environments through the
CCAM infrastructure. Specifically, we focus on the efficient deployment of fine-tuned DL
models within CCAM infrastructure, aiming to understand how the accuracy and execution
time of DL models interact and affect the performance when deployed over various devices
across different layers, i.e., vehicle, edge, and cloud of the proposed framework. Devices
such as Raspberry Pi 4 [26], Jetson AGX Xavier [27], Apple M2 Max [28], NVIDIA V100,
Tesla A100, etc., are equipped with and without GPUs using the CCAM infrastructure at
different layers of the framework. Some of the major contributions of this research work
are the following:

• The design and development of an innovative computational framework comprised
of vehicle, edge, and cloud layers inspired by CCAM infrastructure.

• Acquisition of a novel custom-formatted multi-object dataset for perception tasks.
• Deployment of the fine-tuned DL YOLOv8 model over various devices, i.e., Raspberry

Pi 4, Jetson AGX ARMv8, Jetson AGX Xavier, Apple M2 Max, Apple MPS, Intel Xeon
CPU, Tesla T4, NVIDIA A100, and Tesla V100.

• Performance evaluation through metric-based analysis and comparative assessment
of average times for various stages of perception task.

The paper is organized into five sections. Section 2 presents an overview of the
proposed framework, data acquisition, fine-tuning approach, and different layers of the
framework. Section 3 presents the experimental setup, evaluation metrics, and experiments.



Sensors 2024, 24, 2080 3 of 17

Section 4 presents the results and discusses the model performance and time sensitivity
comparison. Section 5 concludes the paper.

2. An Overview of the Proposed Framework

In the conceptual canvas of smart roads, the AVs utilize AD technology to perform
safe navigation and driving. All thanks to the enhancements provided by infrastructures
like CCAM [3], which enrich AV perception and contextual understanding, and support
decision-making operations within AVs. It should be highlighted that the motivation
behind contributing to the proposed computational framework is driven by CCAM in-
frastructure and the need to develop and deploy solutions at different levels for applying
AD technology in complex urban environments. Therefore, this section is dedicated to the
design and detailed description of the proposed computational framework as well as the
necessary infrastructures of CCAM, i.e., sensory devices, communication, and computation
at each layer of the proposed framework. It should also be highlighted that the proposed
computational framework draws from the authors’ practical experience in implementing
these concepts in both Europe and the UAE. Therefore, the readers are directed to [1–3] for
further engagement in these activities.

To handle the dynamic maneuvering of AVs, the ML and DL-based algorithms and
models need to be efficient and accurate. Since the AVs need DL-based models for different
decision-making instances during driving, we present an abstract-level view of the DL
models’ deployment process at the three-layer solution framework to facilitate AVs, as
shown in Figure 1. To understand the solution framework, let us provide a brief overview of
the DL model deployment at three layers, i.e., vehicle layer, edge (roadside) layer, and cloud
(central data-center) layer, for AD at the three different use case scenarios, i.e., congestion,
sharp turn, and roundabout at UAE University, UAE. The solution framework includes
infrastructures, i.e., sensory devices, communication, and computations at each layer.
Furthermore, the framework also includes a gateway (IoT middleware) and middleware
APIs. Similarly, at each layer, the capturing devices in sensory infrastructure are used to
capture data, the network devices and IoT middleware in communication infrastructure
are used to make the data available to DL-based models, the DL models (resting in a
smart decision engine) deployed at devices in the computation infrastructure are used to
perform perception tasks (e.g., object detection, etc.), and the inferences of the perception
tasks (e.g., detected objects) are used to help in decision-making of the AVs. Now that we
have our three-layer solution framework, we capture data from various complex urban
road segments.

2.1. Data Acquisition and Model Fine-Tuning

The data are captured in the form of video clips (data sources) using a high-resolution
camera mounted on a vehicle with a rate of 60fps (frames per second) such that the
resolution is 3840 × 2160. During the data collection process, we captured 14 different video
clips of varying lengths. Figure 2 displays a selection of 10 of these clips, detailing their
durations and illustrating the comprehensive dataset pipeline used for data preparation.
With the data sources in place, we utilized the widely recognized FFmpeg [29] tool to
extract spatial data records, specifically images, from these sources. The sizes of the
original datasets varied due to the differences in the size and duration of the data sources.
Subsequently, we merged these original datasets by collating essential data details, thereby
creating a unified dataset. Consequently, our compiled image dataset is comprised of
15,100 images, where the main objects are cars, persons, motorcycles, and trucks. For data
pre-processing, we rely on data sampling and reduce data volume by focusing on longer-
term changes. Consequently, we obtained 1590 images that were further filtered through
data cleaning and resulted in 1000 images. These images were considered for manual
labeling as some perception tasks (e.g., object detection, etc) require objects along their label
and classes. The dataset consists of five different classes, i.e., cars, pedestrians, motorcyclists,
trucks, and rickshaws. For the DL model, we rely on a well-known split ratio of 70:20:10,



Sensors 2024, 24, 2080 4 of 17

which means 70% data for training, 20% data for validating, and 10% data for testing. It
should be highlighted that we used the same target unseen test dataset for each device of
the computation infrastructure at each layer of the framework. In the following, we provide
the details for the perception task, DL model selection, and hyperparameter fine-tuning.

Congestion Sharp Turn Roundabout

Ve
hi

cl
e 

La
ye

r
Ed

ge
 L

ay
er

Cl
ou

d 
La

ye
r

RSUs in Edge Layer

InternetInternet

Core 
Network

Core 
Network

Cloud 
Platforms

RS
U

 /
 E

dg
e 

/ 
M

EC

Sensory Devices 
Infrastructure

Internet Internet

Transport
Communication 
Infrastructure

Computation 
Infrastructure

Sensory Devices 
Infrastructure

Communication 
Infrastructure

Computation 
Infrastructure RS

U
 /

 E
dg

e 
/ 

M
EC

RSU RSU RSU

Camera, 
etc.

Local 
Network

GPU/Non-
GPU

Camera, 
etc.

Local 
Network

GPU/Non-
GPU

Camera
LiDAR
5G OBU
GPU/Non-GPU

5G OBU

Co
m
pu

te
r

GPU

Figure 1. The proposed computational framework for deep learning model deployments.

Data Source Original Datasets

Capturing

Capturing

Capturing

Collected Dataset
~ 15100 Images

Data Integration

Data Retrieval

Re
le

va
nt

 R
ec

or
ds

 
Se

le
ct

io
n

Formatted Dataset 
for ML/DL Models 

Duration: 58:49
Dimention: 3840x2160
Size: 9.31 GB

1

5

6
7
8
9

10

26:05

11:16

40:51

12:31

17:02

2
3
4 13:54

28:05

40:51

21:11

3529
.
.
.

1271
.
.
.

2451

Target Dataset
1590 Images

Pre-Processed Dataset
1000 Images

Data Cleaning
Data Annotation

Figure 2. The proposed pipeline for data preparation.

In AVs, the perception system performs many different tasks such as object detection,
tracking, segmentation, and prediction. In object detection, the object detector’s decision is
based on the deep-layered learning of the model. However, the selection of a DL model is
not easy and mostly depends on the underlying use case scenarios [4]. In this research work,
we choose the state-of-the-art (SOTA) DL-based You Only Look Once (YOLOv8) model [30]
to perform object detection. The YOLO family has a huge history and YOLOv8 (released
on 10 January 2023) comes with five different versions. The architecture of YOLOv8 is
shown in Figure 3. Moreover, it has been used for traffic object detection [31] in traffic
environments [32]. Now that we have our pre-processed dataset and DL-based YOLOv8
model, we perform the benchmarking of different instances of the model by training and



Sensors 2024, 24, 2080 5 of 17

hyperparameter tuning. In this connection, we consider the following hyperparameters:
SGD, Adam, RMSProp, and AdamW, categorized as optimizers; 16 and 32, categorized as
batch sizes; and 100, 150, and 200, categorized as epochs. The configuration of the AdamW-
based YOLOv8 model outperforms all other configurations. Therefore, we select the
AdamW optimizer, a batch size of 32, and 200 epochs as the optimal configuration for our
custom-trained fine-tuned YOLOv8s model for the object detection-based perception task.
Now that we have our fine-tuned DL-based YOLOv8s model, we start deploying it at each
layer of the proposed computational framework.

2.2. The Vehicle Layer

The vehicle layer comprises several key components that enable the AV to navigate
roads by capturing the environment, which is crucial for the perception tasks. The following
are three key components of the vehicle layer. In the sensory infrastructure, our starting
point is the camera sensor, although options like LiDAR, radar, and other sensory devices
are also available. We use the camera sensor to capture the objects over the road. The
spatial data are recorded at 30 fps; therefore, the capture time for every image on average is
equal to 34.34 ms. It is important to highlight that each sensory device captures the road
data in a different format. In the communication infrastructure, dedicated short-range
communication (DSRC) and cellular technology (LTE-5G) are used to transmit (receive)
captured spatial data to (from) the edge layer. It is worth noting that if a computationally
powerful gateway device, e.g., Jetson Xavier AGX, etc., is available at AV, then there
is no need to transmit the data for inferencing to the edge layer. In our use case, we
bypass the communication infrastructure when the data are immediately available to
the deployed DL-based YOLOv8s model on the same device. However, we utilize the
communication infrastructure when transmitting spatial data to the Google Cloud via
the Ethernet interface for another deployed DL YOLOvs model at the edge layer and
cloud layer. In the computation layer, we focus on two different types of devices: those
with and without GPU capabilities, i.e., Jetson AGX and Raspberry Pi 4. It is important
to highlight that Jetson AGX comes with both GPU and non-GPU capabilities; therefore,
we use both available options. However, Raspberry Pi 4 (RPi) only comes with non-
GPU capabilities. Hence, these devices make three different platforms for the DL model
deployment. These devices are also considered gateway devices for the vehicle, performing
upstream operations to provide drivable environmental scenes (spatial data) to the edge
layer and cloud layer.

Now that we have infrastructures in the framework, we deploy our custom-trained
DL-based YOLOv8s model on Jetson (GPU) and RPi (non-GPU) devices to facilitate the
object detection task for the vehicle’s perception system. The computation devices will
leverage the trained YOLOv8s model to detect objects in the road segment, creating a
perception of the road. The created perception of the road is then transferred to the vehicle.
For instance, a pedestrian is moving on a road segment. The vehicle will use the provided
perception and depending on the driving condition and road segment in that specific region,
it performs the object detection task and provides inference. Based on the inference, the
vehicle will perform informed decision-making. The vehicle decision to utilize perception
from the vehicle layer (onboard perception system) or edge layer (on-road perception
system) depends on various factors, including the complexity of the environment, the
desired level of redundancy and robustness, and the specific use case or application of
the autonomous vehicle. In some scenarios, such as highly dynamic or congested urban
environments, the additional perception data from the edge layer can provide external
information and enhance the overall perception capabilities of the vehicle. Now that we
have a working principle at the vehicle layer, we need to see if the vehicle transfers the
capture data to the nearest edge server. In the following, we discuss the edge layer.



Sensors 2024, 24, 2080 6 of 17

Input

Conv

Conv

Conv

C2f

C2f

Conv

C2f

Conv

C2f

SPPF

Detect

Upsample

Concat

C2f

C2f

Upsample

Concat

C2f

Concat

Conv

Conv

C2f

Concat

Detect

Detect

YOLOv8 Head

Backbone

Figure 3. The state-of-the-art deep learning YOLOv8 model architecture.

2.3. The Edge Layer

The second layer of our proposed computational framework is the edge layer, which
includes similar key components. The eRSUs of the edge layer play a crucial role in
enabling AD technology. In the sensory infrastructure, we have the option to use and
mount various sensors, i.e., camera, LiDAR, radar, etc. to capture data of a road segment in
a specific region. At the edge layer, the eRSU creates a perception of a road segment or a
digital twin of a region. This means that the sensory data captured on eRSUs is used to
create a robust perception system for AVs and the required ingredients to create perception
through the sensory data rely on the types of sensors. It is important to highlight that
a perception system through sensory data can be created at both the vehicle layer and
edge layer. Moreover, the captured spatial records can also be transferred (received) to
(from) the upper and lower layers of the framework. In this research, we rely on the data
captured by the camera device in the sensory infrastructure at the vehicle layer. Therefore,
we do not capture data directly at this layer. The main reason behind this approach is to
provide a fair comparison to the deployed custom-trained DL-based YOLOv8s models by
providing the same dataset. In the communication infrastructure, the sensory devices are
connected through switches, routers, Ethernet (local network), etc., and the communication
is performed through either the core network or the Internet. The LTE and 5G cellular
technologies are used to receive captured data from the vehicle layer. However, if the
spatial data are captured at the edge layer, then these communication technologies forward
the captured data to the vehicle and cloud layers. This means the eRSUs in the edge layer
transmit the raw sensory data of the road segments to AVs and the data centers in the cloud.

We maintain the same approach in the computation infrastructure by using two
different types of devices: GPU-based and non-GPU-based for computational processes
and operations. To gain a fair comparison for the deployed DL-based YOLOv8s models,
we select a single computational device that has both GPU and non-GPU capabilities.
Moreover, we avoid using the Jetson AGX at the edge layer for similar reasons. Therefore,
we select the Apple M2 MAX as the edge server because it has both GPU and non-GPU



Sensors 2024, 24, 2080 7 of 17

capabilities. Now that we have infrastructures at the edge layer, we deploy the custom-
trained YOLOv8s model at the edge server. The edge server receives the spatial data from
the vehicle layer and leverages the trained YOLOv8s model deployed at the edge layer to
perform perception tasks, i.e., object detection. Once the objects are detected, the inferences
are utilized within the edge layer and shared with the vehicles at the vehicle layer. This
means that the eRSU creates a perception of the road in the form of object detection and the
inference of object detection is provided to the AVs depending on the underlying use case
scenarios, i.e., whether the AVs want to use their own perception system or would like to
use eRSU’s perception system. Now that we have a working principle at the edge layer, we
move to the cloud layer and describe its role in the overall framework. In the following, we
discuss the cloud layer of the framework.

2.4. The Cloud Layer

The third and last layer of our computational framework is referred to as the cloud
layer. The operations are offloaded to the cloud layer if the vehicle layer and edge layer
are occupied or if the underlying use-case scenarios require substantial computational
resources for intensive critical and non-critical applications. A sensory infrastructure is not
necessary since we do not need to perform data capturing at this layer. However, if there is
a specific requirement, i.e., monitoring, etc., then the data can be utilized for analysis and
processing. When the cloud servers (central data centers) receive the spatial data, they start
data pre-processing operations (in the case of raw data). It is important to highlight that
we apply data mining techniques to perform data sampling and pre-processing to make
data usable for the deployed DL-based YOLOv8s models. Once the spatial data are ready
at the cloud layer, the data center transmits the processed sensory data to the eRSUs of the
edge layer, which further share them with AVs to help in their decision-making activities.
Here, we describe how to utilize the external perception created by the eRSU in the edge
layer. The communication is performed through the internet. The external perception of the
targeted road segment is created and can be transmitted to AVs for critical and non-critical
applications, for instance, the applications for avoiding collisions, emergency situations,
advanced warnings, etc.

It is worth mentioning that the success of such applications is incomplete without
the use and application of DL-based algorithms and models. In this connection, we have
deployed custom-trained DL-based YOLOv8s models for the object detection task of the
perception system. We continue with the same approach in the computation infrastructure
by using two different types of devices: GPU-based and non-GPU-based for computational
processes and operations. The main reason behind this approach is to provide a fair compar-
ison of the deployed YOLOv8s models and provide a holistic approach to computational
comparison. In this connection, we select the Google platform since it has both GPU and
non-GPU devices and fulfills our requirements. From the Google platform, we select Intel
Xeon as a non-GPU-based device and NVIDIA Tesla V100, NVIDIA A100, and Tesla T4
as GPU-based devices. Using these computationally intensive devices, the cloud layer
enables different critical and non-critical applications for AD technology. Now that we
have detailed our proposed framework, we will discuss the experimental setup for the
object detection-based perception task and the results of the fine-tuned DL-based YOLOv8
model deployed across various device types at each layer of the computational framework.

3. Experiments

We performed experiments using the custom-trained fine-tuned YOLOv8s DL model
and deployed it over various devices across each layer of the proposed computational
framework. For the device type, we considered GPU and non-GPU-based devices at the
vehicle layer, edge layer, and cloud layer. In the following, we will provide details for our
experimental setup, evaluation metrics, and results.



Sensors 2024, 24, 2080 8 of 17

3.1. Experimental Setup

The experiments and deployments were carried out at each layer of the proposed
framework. A complete list of platforms, devices, device types, and memory against each
layer is provided in Table 1. At the vehicle layer, we deployed the fine-tuned YOLOv8s
model over Raspberry Pi 4 and Jetson AGX devices. At the edge layer, we deployed the
fine-tuned YOLOv8s model over Apple M2 Max devices. At the cloud layer, we deployed
the fine-tuned YOLOv8s model over different devices from Google Cloud accessed through
Google Colab Pro platform. The cloud layer devices were accessed through Google Chrome
(version 117.0) installed in a physical machine of Intel Quad-Core i7@ 3.4 GHz with 32 GB
NVIDIA GeForce GTX 680MX Graphics and a 27-inch (2560 × 1440) build-in Display. The
software stack included Python v.3.11.4 (the newest major release), and its rich family
of libraries, e.g., PyTorch, glob, etc. The DL-based YOLOv8s models were implemented
through the Ultralytics package [33] using the latest version of Python programming
language. The DL models were trained on an image size of 640 × 640, and different
configurations were applied during the hyperparameter fine-tuning stage.

Table 1. The experimental setup for various devices at different layers.

Layers Platforms Devices Device Type Memory

Cloud Layer

Google Cloud Tesla V100 GPU 16 GB
Google Cloud NVIDIA A100 GPU 40 GB
Google Cloud Tesla T4 GPU 15 GB
Google Cloud Intel Xeon non-GPU 16 GB

Edge Layer Apple MPS GPU 32 GB
Apple M2 Max non-GPU 32 GB

Vehicle Layer
Jetson AGX Xavier GPU 16 GB
Jetson AGX ARMv8 non-GPU 16 GB
Raspberry Pi 4 Cortex-A72 non-GPU 08 GB

3.2. Evaluation Metrics

In this section, we focus on evaluation standards for measuring the performance of our
custom-trained fine-tuned DL-based YOLOv8s model. For this, we rely on the well-studied
fundamental components of the confusion matrix from the field of machine learning. These
components are TP (true positive), FP (false positive), TN (true negative), and FN (false
negative). They are used to measure the performance of a model, i.e., how accurately a
model distinguishes between the classes. The different combinations and relationships of
these components result in other important evaluation metrics, i.e., precision, recall, F1 score,
intersection-over-union (IoU), mean average precision (mAP), etc., which lead us to another level
of understanding the holistic view of our model’s reliability and generalization capability.

Precision. Precision answers the following basic question: How many positive predic-
tions were actually correct from all positive predictions made by the model? To answer this,
we rely on precision in Equation (1):

Precision =
TP

TP + FP
(1)

Recall. Recall answers the following basic question: How many actual positive
instances were correctly predicted by the model from all actual positive instances in the data?
To answer this, we rely on recall in Equation (2):

Recall =
TP

TP + FN
(2)



Sensors 2024, 24, 2080 9 of 17

F1 score. The F1 score answers the following basic question: How well does the
model balance between its precision and recall? To answer this, we rely on the F1 score in
Equation (3):

F1 = 2 × Precision × Recall
Precision + Recall

(3)

Mean average precision (mAP). mAP answers the following basic question: How
consistently accurate are the model’s predictions across different recall levels and all classes?
To answer this, we rely on mAP in Equation (4):

mAP =
1
N

N

∑
i=1

APi (4)

where N represents the set of classes, i.e., car, motorcyclist, pedestrian, rickshaw, and
truck, and APi represents the average precision of class i. It is worth noting that the AP
for each class relies on the IoU criterion and its thresholds (a common threshold in object
detection is 0.5 (50%)). Hence, mAP@0.5 evaluates the performance’s DL model at 50% of
the detected bounding box overlap to the ground truth bounding box. Now that we have
the most important evaluation standards, we present our experimental results and provide
a discussion to equip the readers with a comprehensive understanding.

4. Results and Discussions

The purpose of conducting a series of experiments is to investigate the behaviors of
custom-trained and fine-tuned DL models deployed over different devices (those having
GPU and non-GPU capabilities) across different layers of the proposed framework. In this
section, we discuss the obtained results of the experiments. We evaluated the performance
of object detection tasks at different layers, i.e., vehicle, edge, and cloud. The following
uniform setting and configuration are used for the experiments. All experiments were
conducted on the same custom dataset (as discussed in Section 2.1) and used the same
fine-tuned YOLOv8 model (as discussed in Section 2.1) with configuration, i.e., AdamW
optimizer, a batch size of 32, and 200 epochs. In the following, we discuss the findings
concluded from the experimental results presented in Table 2.

Table 2. Performance metrics for the fine-tuned deep learning model on different devices.

Layers Devices Objects Precision Recall mAP@0.5 mAP@0.5:0.95

Cloud Layer
Edge Layer

Vehicle Layer

GPUs and
non-GPUs

car 0.842 0.901 0.938 0.724
motorcyclist 0.868 0.877 0.916 0.655
pedestrian 0.700 0.693 0.739 0.430
rickshaw 0.881 0.759 0.826 0.614
truck 0.783 0.716 0.794 0.583

Note: At each layer, the same fine-tuned deep learning model is deployed for both GPU and non-GPU devices
with the following parameters. Dataset: custom-formatted; model: YOLOv8s; optimizer: AdamW; batch size: 32;
epochs: 200.

4.1. Model Performance Analysis

The experimental results show that the performance of the model for detection-based
perception tasks at each layer either with GPU or non-GPU-based devices resulted in the
same performance. It is evident from the results that the performance values of metrics
such as precision, recall, mAP@0.5, and mAP@0.5:0.95 are the same for all object classes.
For instance, the performance metric values, i.e., precision (0.84), recall (0.90), mAP@0.5
(0.93), and mAP@0.5:0.95 (0.72) for detecting a car object will remain the same regardless of
deploying the same model over any type of device and across any layer of the framework.
The main reason behind such behavior of the deployed model is its performance in object
detection over the same set of data, using the same weights of the fine-tuned YOLOv8s
model. Therefore, we conclude that this research addressed the gap in investigating the



Sensors 2024, 24, 2080 10 of 17

performance of deployed DL models over low and high-resourceful devices across different
layers of the proposed framework. Our findings confirm that a DL model deployed over
any device in any layer of the hierarchical framework would not lose performance in terms
of accuracy, precision, and recall.

To provide a more comprehensive understanding of the findings, a graphical repre-
sentation is created to evaluate the DL model performance. Now, we present the precision–
recall (PR) curves shown in Figure 4. These curves help in understanding the trade-off
between precision and recall for different threshold values. From Figure 4, it should be
noted that at each layer, i.e., vehicle, edge, and cloud, the mAP@0.5 is 0.842, which means
the deployed YOLOv8s model performed object detection with the same performance. A
granular insight can be obtained by looking at the class-level performance of the model,
i.e., car (0.93), motorcyclist (0.91), pedestrian (0.73), rickshaw (0.82), and truck (0.79). Hence,
we confirm by the graphical representation of PR curves, that the deployment of DL models
is not affected by the device types across any layer of the framework.

Figure 4. Precision–recall curves at each layer of the framework.

4.2. Time Sensitivity Analysis

The purpose of investigating and comparing time under this section is to find if the
detection time is consistent across each layer and any device, regardless of the GPU or
non-GPU device type. In Table 2, we observed that the deployed model’s performance is
consistent at each layer of the framework. The mAP@0.5 remains constant, regardless of the
framework’s layer and device type. Now we show the time comparison of the deployed
deep learning model across various devices in Table 3. Since the image capture rate is 30 fps,
the average capture time is 33.34 ms. It is important to highlight that—for comparison of
time—we rely on the average statistical tool. Therefore, these times are given in the form of
averages. Based on the device type, the preprocessing time varies from 1.27 ms to 15.04 ms.
The Raspberry Pi device takes a longer time for preprocessing, whereas the Apple M2 Max
takes less time to preprocess the spatial data. The lowest preprocessing time for a device in
the cloud layer is 2.8 ms.

At the inference time, the prediction is performed from 6.4 ms on a Tesla V100 GPU
to 3225.4 ms on a Raspberry Pi 4 CPU. Hence, the Tesla V100 GPU takes less time for
inferencing, whereas, less capable devices, like the Raspberry Pi 4 CPU, are slower. The
main reason behind this behavior is that Raspberry Pi 4 CPUs are used as gateway devices
over vehicles, whereas Tesla V100 GPUs are used as cloud server devices in the cloud layer.
Before discussing the total time provided in the table, we look at the transfer time of the
images to the edge and cloud layer. Transfer time is relevant for the edge and cloud layers
but not for the vehicle layer as the data are captured at the vehicle layer, which eliminates
the need for data transfer. When the images are captured at the vehicle layer, they need to
be transferred to the edge servers and cloud servers for the deployed models at those layers.
Transfer times differ between GPU and non-GPU devices; GPUs have higher upload and
download times due to their intensive processing. It is also important to highlight that the
images can be captured with the help of a Raspberry Pi 4-associated camera and a Jetson



Sensors 2024, 24, 2080 11 of 17

AGX-associated camera at the vehicle layer. Similarly, if we want to capture the images at
the edge layer, then the sensory infrastructure of the edge with local sensors will avoid the
use of the transfer time by processing the images directly. In any case, the transfer time
for both of these device types at the vehicle layer remains zero as we are not required to
transfer the data. We directly utilize the data for preprocessing and inferences. However,
in the case of edge and cloud layers, we need to upload (transfer) the data. Therefore, we
use Google Cloud Storage and connect through the Google API. Using the Google API,
we were able to find the upload and download images to the Google Cloud Storage and
find the transfer time of the images. To find the total time taken by a deployed model,
we rely on the capture, transfer, preprocess, and inference times. The total time taken
ranges from 122.9 ms to 3273.8 ms. Our findings confirm that a DL model deployed over
any framework’s layer and across any device would consume different times for object
detection-based perception of the AVs. In the following, we provide a detailed comparison
and discussion of the average preprocess time, average inference time, average transfer
time, and average total time for object detection tasks.

Table 3. Time comparison of the deployed deep learning model over different devices.

Layers Platforms Devices Capture Transfer Preprocess Inference Total

Cloud Layer

Google Tesla V100 33.34 2009.56 4.47 6.401 2053.77
Google NVIDIA A100 33.34 2009.56 5.34 7.223 2055.46
Google Tesla T4 33.34 2009.56 2.80 17.456 2063.16
Google Intel Xeon 33.34 1918.86 5.68 503.75 2461.63

Edge Layer Apple MPS 33.34 2009.56 5.256 14.108 2062.26
Apple M2 Max 33.34 1918.86 1.27 90.60 2044.08

Vehicle Layer
Jetson AGX Xavier 33.34 0 5.57 84.03 122.94
Jetson AGX ARMv8 33.34 0 11.01 892.51 936.86
Raspberry Pi Cortex-A72 33.34 0 15.04 3225.46 3273.84

To further discuss the results of the preprocessing, the results are presented in graphical
form in Figure 5. For the preprocessing, YOLOv8s takes an image, resizes it, and provides
padding to make a square shape of the image. Then, the pixel values of the image are
normalized using Normalize and converted into a tensor using ToTensor. For resizing
and padding, the model utilizes the corresponding Resize and Pad classes. An obvious
question arises as to why a DL model needs to preprocess the spatial data when it has
already been preprocessed at the data acquisition and pre-processing times, as discussed in
Section 2.1. Based on the provided technical descriptions, we justify the preprocessing time
taken by our deployed model during the object detection task. This means that, even if we
have the spatial dataset in custom-formatted pre-processed form, the DL model would still
consume time over the preprocessing stage during the detection process. In Figure 5, the
experimental results show the comparison of the average preprocess time taken by various
devices at each layer. As it is evident from the figure, the D1 device (Raspberry Pi 4) at
the vehicle layer has the highest preprocessing time of 15.04 ms due to low computational
resources at the machine. Similarly, the D2 (Jetson AGX ARMv8) device consumes the
second-highest preprocessing time of 11.01 ms. For the same reasons, these devices, located
at the vehicle layer, consume huge preprocessing times. However, if we look at the devices
from D3 to D6 mounted at the vehicle, edge, and cloud layers of the framework, they
almost consume the same preprocessing time. Therefore, the results conclude that the
preprocessing time can be reduced at the vehicle layer by choosing a GPU-based device.
For instance, the D4 (Jetson AGX Xavier) device took the same time as the D5 (NVIDIA
A100 GPU) and D6 (Apple MPS GPU) devices mounted at the cloud and edge layers.



Sensors 2024, 24, 2080 12 of 17

Figure 5. Comparison of the average preprocess time by device type.

Now that we have analyzed the preprocessing time, we discuss the results of the model
inference time shown in Figure 6. The inference time is the time taken by the model to
take an image and provide the prediction results. In our case, we focus on object detection
tasks in the perception system of the AVs. Therefore, the inference time calculates the
detection time from capturing an image to drawing bounding boxes over the objects in the
image. Moreover, the inference time plays a vital role in AD. In our case, the AVs need to
make real-time object detections while driving on the road to make safe maneuvers. In
Figure 6, the experimental results show that inference time is taken by all devices at each
layer of the framework. It is evident that D1 (Raspberry Pi 4), a non-GPU-based device,
takes the highest inference time of 3225.5 ms followed by D2 (Jetson AGX ARMv8), another
non-GPU-based device, which takes 892.5 ms. It is also important to highlight that both
of these devices are non-GPU and mounted at the AVs in the vehicle layer. To perform
detection using non-GPU devices at the cloud layer, we can rely on devices like D3 (Intel
Xeon), which takes almost six times less than that of Raspberry Pi 4 and two times less than
Jetson AGX. Furthermore, our findings also confirm the concept of edge computing that if
the model is deployed over the edge that is close to the vehicle to detect the object over the
road, then the time taken by inference can significantly be reduced. As can be seen, the use
of a non-GPU-based edge server, i.e., D4 (Apple M2 Max), can reduce the detection time
by five times. On the other hand, if a GPU-based device, i.e., D5 (Jetson AGX Xavier), is
available at the vehicle layer, then it will consume an equivalent time in comparison to the
edge server. From devices D6 to D9, our experimental results show that GPU-based devices
outperform other devices. This means that the GPU configured computational intensive
devices are the ideal choice for finding the inferences of the objects.

Now that we have analyzed the inference time, we start with the analysis of the
average transfer time. The transfer time refers to the time that is taken by either uploading
or downloading the spatial data. To perform this set of experiments, we rely on the
standard storage available from the Google platform, i.e., Google Cloud Storage. The main
reason behind using this storage is the availability of Google Cloud API for upstream and
downstream tasks. To understand the working principle of transfer time, let us consider
two different scenarios: (1) data captured at the vehicle layer; and (2) data captured at the
edge layer. In the first scenario, assume a vehicle with limited computational power to
deploy a DL model at the vehicle layer. In this case, the first step is that the vehicle needs
to capture the data via a camera sensor associated either with Raspberry Pi 4 or Jetson
AGX. After capturing the data via an RPi camera, the vehicle needs to upload the images to
the nearest edge device as the edge layer. The upload from Raspberry Pi 4 and download
at the edge device occur at different times as shown in Figure 7, which also includes a
representation of various other devices and the diverse timing for uploads and downloads



Sensors 2024, 24, 2080 13 of 17

for each image in the dataset. The upload time for any device exceeds the download time.
Moreover, the variation in times indicates the network fluctuation during the upload and
download processes. The average transfer time taken by these devices is shown in Figure 8.
Raspberry Pi 4 takes 1918.9 ms to upload the images to the edge server. Similarly, if the data
are captured by a Jetson-based camera device, then the Jetson takes 2009.6 ms to upload
the images from the vehicle to the edge server. On the other hand, the edge server needs to
download the uploaded images from its local cloud for object detection-based perception
tasks of the AVs. It is important to note that for a fair comparison, we also utilized the
Google Cloud Storage at the edge layer. As can be seen in Figure 8, the edge server takes
1442.9 ms to download the images for the perception task of AVs.

Figure 6. Comparison of the average inference time by device type.

Figure 7. Comparison of transfer time (uploading and downloading of images).

In the second scenario, we consider that the data are captured at the edge layer using a
camera sensor mounted on the eRSU. After capturing the data, the eRSU is provided with
different options to process the data and perform object detection. The first option is that
the object detection can be performed over the edge servers at the edge layer. Therefore, we
do not need to transfer the images to other layers of the framework. However, if the edge
servers are not capable of deploying the DL models, then we need to transfer the data to
other devices either at the vehicle or cloud layer. Therefore, the edge server takes 2053.2 ms
to upload images to Google Cloud. The second option is that the vehicle downloads the
data from the eRSU. For the vehicle, the download time at Raspberry Pi 4 is 1133.3 ms,
and at Jetson AGX, it is 1152.9 ms. Since we considered the same network, the download
time for the cloud server will be similar to the download time of the edge server shown



Sensors 2024, 24, 2080 14 of 17

in Figure 8. Regardless of where the images are captured, if the underlying layer is not
capable of detecting the objects due to limited computation and resources (e.g., the use
of non-GPU devices in the vehicle and edge layer), it will upload the images to the cloud
for object detection. The upload times can be taken from Figure 8; however, there will be
no download time for cloud servers as the cloud will receive the images and perform the
object detection within the cloud.

Figure 8. Comparison of average transfer time.

Now that we have analyzed the transfer time, we start with the analysis of the total
average time taken by the deployed DL model. The total average time refers to the total
time that is taken from capturing the data to detecting the objects in the data. Therefore,
to investigate the impact of total average time, we considered non-GPU and GPU-based
devices at each layer of the framework as shown in Figure 9. At the vehicle layer, a non-GPU
device takes 2105.3 ms to perform object detection. Whereas, a GPU-based device takes
122.9 ms to perform object detection. Therefore, the results conclude that the GPU-based
devices outperform non-GPU-based, achieving a 94% reduction in the total time taken for
the object detection task. At the edge layer, a non-GPU device takes 2044.1 ms to perform
object detection. Whereas, a GPU-based device takes 2062.3 ms to perform object detection.
Therefore, we conclude that regardless of any device type at the edge layer, the object
detection task consumes the same amount of time. At the cloud layer, a non-GPU device
takes 2461.6 ms to perform object detection. Whereas, a GPU-based device takes 2057.5 ms
to perform object detection. Therefore, the experimental results conclude that GPU-based
devices outperform non-GPU-based devices, achieving a 17% reduction in the total time
taken for the object detection task. It is important to highlight that the reason behind the
significant reduction in the total average time from capturing the data to inferencing the
objects at the vehicle layer is attributed to leveraging gateway devices for capturing the
spatial data at the AVs. Moreover, one of the crucial findings of these experiments is that
during the utilization of a non-GPU-based device at the vehicle layer, it is recommended to
transfer the data to the nearest edge server for object detection tasks. This is because any
computational device mounted at the edge layer, i.e., a non-GPU or a GPU-based device,
outperforms the total time taken by the gateway device of the vehicle layer.



Sensors 2024, 24, 2080 15 of 17

Figure 9. Comparison between the total average times (from capturing the image to inferring
the object).

5. Conclusions

The rapid developments in CCAM infrastructures for AVs have achieved significant
milestones. In this research paper, we presented a computational framework for analyzing
the deployment of a custom-trained fine-tuned DL YOLOv8 model across different devices
at the vehicle-edge-cloud layered architecture. We addressed a scientific research gap by
investigating the performance of the deployed DL models over low and high-resourceful
devices across different layers of the proposed framework. Our results conclude that the
GPU-based devices outperform non-GPU-based devices, achieving a 94% reduction in
the total average time taken for the object detection task at the vehicle layer. In addition,
we confirmed that the choice of the device type is not important for the deployment
of DL models at the edge layer. Moreover, our experimental results showed that GPU-
based devices outperform non-GPU-based devices, achieving a 17% reduction in the total
average time taken for the object detection task at the cloud layer of the framework. The
findings of our research work may help the relevant research community in finding less
computationally demanding devices suitable for specific levels from a vehicle-edge-cloud-
layered framework.

Author Contributions: Conceptualization, M.J.K. and M.A.K.; investigation, M.J.K. and M.A.K.;
methodology, M.J.K., M.A.K. and S.T.; project administration, M.J.K., M.A.K., S.T. and H.E.-S.;
supervision, M.A.K., S.T. and H.E.-S.; writing—original draft, M.J.K.; writing—review and editing,
M.J.K., M.A.K., S.T., S.M., H.E.-S. and F.U. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is partially supported by the Emirates Center of Mobility Research (ECMR)
UAEU, Sandooq Al Watan, the UAEU-ZU research project, and the ASPIRE Award for Research
Excellence (AARE20-368).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The custom road dataset is available at Zenodo (https://zenodo.org/
records/10610036) (accessed on 2 February 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Khan, M.A.; Sayed, H.E.; Malik, S.; Zia, T.; Khan, J.; Alkaabi, N.; Ignatious, H. Level-5 autonomous driving—Are we there yet?

A review of research literature. Acm Comput. Surv. (CSUR) 2022, 55, 27. [CrossRef]
2. Khan, M.A. Intelligent environment enabling autonomous driving. IEEE Access 2021, 9, 32997–33017. [CrossRef]
3. Khan, M.J.; Khan, M.A.; Ullah, O.; Malik, S.; Iqbal, F.; El-Sayed, H.; Turaev, S. Augmenting CCAM Infrastructure for Creating

Smart Roads and Enabling Autonomous Driving. Remote Sens. 2023, 15, 922. [CrossRef]

https://zenodo.org/records/10610036
https://zenodo.org/records/10610036
http://doi.org/10.1145/3485767
http://dx.doi.org/10.1109/ACCESS.2021.3059652
http://dx.doi.org/10.3390/rs15040922


Sensors 2024, 24, 2080 16 of 17

4. Mao, J.; Shi, S.; Wang, X.; Li, H. 3D object detection for autonomous driving: A comprehensive survey. Int. J. Comput. Vis. 2023,
131, 1909–1963. [CrossRef]

5. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

6. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuscenes:
A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11621–11631.

7. The KITTI Vision Benchmark Suite. Available online: https://www.cvlibs.net/datasets/kitti/ (accessed on 30 October 2023).
8. nuScenes. Available online: https://www.nuscenes.org/nuscenes (accessed on 30 October 2023).
9. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in

perception for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2446–2454.

10. Xie, Y.; Xu, C.; Rakotosaona, M.J.; Rim, P.; Tombari, F.; Keutzer, K.; Tomizuka, M.; Zhan, W. SparseFusion: Fusing Multi-Modal
Sparse Representations for Multi-Sensor 3D Object Detection. arXiv 2023. arXiv:2304.14340.

11. Yan, J.; Liu, Y.; Sun, J.; Jia, F.; Li, S.; Wang, T.; Zhang, X. Cross Modal Transformer via Coordinates Encoding for 3D Object
Dectection. arXiv 2023. arXiv:2301.01283.

12. Song, Z.; Xie, T.; Zhang, H.; Wen, F.; Li, J. A Spatial Calibration Method for Robust Cooperative Perception. arXiv 2023.
arXiv:2304.12033.

13. Jiao, Y.; Jie, Z.; Chen, S.; Chen, J.; Ma, L.; Jiang, Y.G. MSMDfusion: Fusing lidar and camera at multiple scales with multi-depth
seeds for 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Vancouver, BC, Canada, 17–24 June 2023; pp. 21643–21652.

14. Liu, S.; Yu, B.; Tang, J.; Zhu, Y.; Liu, X. Communication challenges in infrastructure-vehicle cooperative autonomous driving:
A field deployment perspective. IEEE Wirel. Commun. 2022, 29, 126–131. [CrossRef]

15. Liu, S.; Wang, J.; Wang, Z.; Yu, B.; Hu, W.; Liu, Y.; Tang, J.; Song, S.L.; Liu, C.; Hu, Y. Brief industry paper: The necessity of
adaptive data fusion in infrastructure-augmented autonomous driving system. In Proceedings of the 2022 IEEE 28th Real-Time
and Embedded Technology and Applications Symposium (RTAS), IEEE, Milano, Italy, 4–6 May 2022; pp. 293–296.

16. Zeng, X.; Wang, Z.; Hu, Y. Enabling efficient deep convolutional neural network-based sensor fusion for autonomous driving.
In Proceedings of the 59th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 10–14 July 2022; pp. 283–288.

17. LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional networks and applications in vision. In Proceedings of the 2010 IEEE
International Symposium on Circuits and Systems, IEEE, Paris, France, 30 May–2 June 2010; pp. 253–256.

18. Kim, J.; Kim, J.; Cho, J. An advanced object classification strategy using YOLO through camera and LiDAR sensor fusion. In
Proceedings of the 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS), IEEE, Gold
Coast, QLD, Australia, 16–18 December 2019; pp. 1–5.

19. Liu, Q.; Ye, H.; Wang, S.; Xu, Z. YOLOv8-CB: Dense Pedestrian Detection Algorithm Based on In-Vehicle Camera. Electronics 2024,
13, 236. [CrossRef]

20. Ma, M.Y.; Shen, S.E.; Huang, Y.C. Enhancing UAV Visual Landing Recognition with YOLO’s Object Detection by Onboard Edge
Computing. Sensors 2023, 23, 8999. [CrossRef]

21. Pääkkönen, P.; Pakkala, D. Evaluation of Human Pose Recognition and Object Detection Technologies and Architecture for
Situation-Aware Robotics Applications in Edge Computing Environment. IEEE Access 2023, 11, 92735–92751. [CrossRef]

22. Chen, Y.; Ye, J.; Wan, X. TF-YOLO: A Transformer–Fusion-Based YOLO Detector for Multimodal Pedestrian Detection in
Autonomous Driving Scenes. World Electr. Veh. J. 2023, 14, 352. [CrossRef]

23. Ragab, M.; Abdushkour, H.A.; Khadidos, A.O.; Alshareef, A.M.; Alyoubi, K.H.; Khadidos, A.O. Improved Deep Learning-Based
Vehicle Detection for Urban Applications Using Remote Sensing Imagery. Remote Sens. 2023, 15, 4747. [CrossRef]

24. Ullah, R.; Hayat, H.; Siddiqui, A.A.; Siddiqui, U.A.; Khan, J.; Ullah, F.; Hassan, S.; Hasan, L.; Albattah, W.; Islam, M.; et al.
A real-time framework for human face detection and recognition in cctv images. Math. Probl. Eng. 2022, 2022, 3276704. [CrossRef]

25. Elmanaa, I.; Sabri, M.A.; Abouch, Y.; Aarab, A. Efficient Roundabout Supervision: Real-Time Vehicle Detection and Tracking on
Nvidia Jetson Nano. Appl. Sci. 2023, 13, 7416. [CrossRef]

26. Buy a Raspberry Pi 4 Model B – Raspberry Pi. Available online: https://www.raspberrypi.com/products/raspberry-pi-4-model-
b/ (accessed on 12 July 2023).

27. Jetson Xavier Series | NVIDIA. Available online: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
jetson-xavier-series/ (accessed on 12 July 2023).

28. MacBook Pro (16-inch, 2023)—Technical Specifications (AE). Available online: https://support.apple.com/kb/SP890?locale=en_
AE (accessed on 12 July 2023).

29. FFmpeg. Available online: https://ffmpeg.org/ (accessed on 10 August 2023).
30. ultralytics/ultralytics: NEW—YOLOv8 in PyTorch > ONNX > OpenVINO > CoreML > TFLite. Available online: https://github.

com/ultralytics/ultralytics (accessed on 10 August 2023).
31. Lin, B.Y.; Huang, C.S.; Lin, J.M.; Liu, P.H.; Lai, K.T. Traffic Object Detection in Virtual Environments. In Proceedings of the 2023

International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), IEEE, Pingtung, Taiwan, 17–19 July 2023; pp. 245–246.

http://dx.doi.org/10.1007/s11263-023-01790-1
https://www.cvlibs.net/datasets/kitti/
https://www.nuscenes.org/nuscenes
http://dx.doi.org/10.1109/MWC.005.2100539
http://dx.doi.org/10.3390/electronics13010236
http://dx.doi.org/10.3390/s23218999
http://dx.doi.org/10.1109/ACCESS.2023.3308600
http://dx.doi.org/10.3390/wevj14120352
http://dx.doi.org/10.3390/rs15194747
http://dx.doi.org/10.1155/2022/3276704
http://dx.doi.org/10.3390/app13137416
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://support.apple.com/kb/SP890?locale=en_AE
https://support.apple.com/kb/SP890?locale=en_AE
https://ffmpeg.org/
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics


Sensors 2024, 24, 2080 17 of 17

32. Afdhal, A.; Saddami, K.; Sugiarto, S.; Fuadi, Z.; Nasaruddin, N. Real-Time Object Detection Performance of YOLOv8 Models for
Self-Driving Cars in a Mixed Traffic Environment. In Proceedings of the 2023 2nd International Conference on Computer System,
Information Technology, and Electrical Engineering (COSITE), IEEE, Banda Aceh, Indonesia, 2–3 August 2023; pp. 260–265.

33. ultralytics · PyPI. Available online: https://pypi.org/project/ultralytics/ (accessed on 10 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://pypi.org/project/ultralytics/

	Introduction
	An Overview of the Proposed Framework
	Data Acquisition and Model Fine-Tuning
	The Vehicle Layer
	The Edge Layer
	The Cloud Layer

	Experiments 
	Experimental Setup
	Evaluation Metrics

	Results and Discussions
	Model Performance Analysis
	Time Sensitivity Analysis

	Conclusions
	References

