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Abstract: The accurate prediction of the future trajectories of traffic participants is crucial for enhanc-
ing the safety and decision-making capabilities of autonomous vehicles. Modeling social interactions
among agents and revealing the inherent relationships is crucial for accurate trajectory prediction. In
this context, we propose a goal-guided and interaction-aware state refinement graph attention net-
work (SRGAT) for multi-agent trajectory prediction. This model effectively integrates high-precision
map data and dynamic traffic states and captures long-term temporal dependencies through the
Transformer network. Based on these dependencies, it generates multiple potential goals and Points
of Interest (POIs). Through its dual-branch, multimodal prediction approach, the model not only
proposes various plausible future trajectories associated with these POIs, but also rigorously assesses
the confidence levels of each trajectory. This goal-oriented strategy enables SRGAT to accurately
predict the future movement trajectories of other vehicles in complex traffic scenarios. Tested on the
Argoverse and nuScenes datasets, SRGAT surpasses existing algorithms in key performance metrics
by adeptly integrating past trajectories and current context. This goal-guided approach not only
enhances long-term prediction accuracy, but also ensures its reliability, demonstrating a significant
advancement in trajectory forecasting.

Keywords: autonomous driving; trajectory prediction; attention mechanism; scene feature map

1. Introduction

Trajectory prediction stands as one of the most challenging aspects of autonomous
driving, requiring the model to accurately predict the trajectories of traffic participants
(e.g., vehicles, pedestrians, cyclists, etc.) surrounding the autonomous vehicle [1]. This
process involves numerous potential variables. The emergence of high-definition maps (HD
maps) and datasets from sensors has propelled research in this field [2,3]. Combining map
information and sensor data has become an effective strategy to improve prediction accu-
racy, albeit at the cost of increasing the complexity of the prediction process [4]. Effectively
leveraging this information poses a central challenge in the field of trajectory prediction.

To achieve rapid and accurate trajectory prediction, motion models based on vehicle
physics characteristics have been widely adopted [5,6]. These methods primarily rely on
the vehicle’s past motion states (position, velocity, acceleration, etc.) and employ filtering
and optimization techniques to predict future maneuver strategies, such as Kalman filters
(KFs), Dynamic Bayesian Networks (DBNs), and Hidden Markov Models (HMMs) [7–9].
In comparison to models based on vehicle kinematics, those based on deep learning are
increasingly gaining popularity [10,11]. They excel in extracting hidden dependencies from
contextual time steps, and are particularly adept at capturing long-term features in trajecto-
ries. Alahi et al. [12] pioneered the use of Social-LSTM, incorporating a social pooling layer
to explore interactions among pedestrians. Inspired by this research, many researchers
have started deploying similar model architectures to model social interactions among
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agents. Nachiket et al. [13] introduced convolutional operations in the social pooling layer,
achieving promising experimental results in predicting vehicle trajectories. Sheng et al. [14]
proposed a Graph-based Spatiotemporal Convolutional Network (GSTCN) that utilizes
graph convolutional networks to handle spatial interactions. Given the breakthroughs of
Transformers [15] in natural language processing and their wide-spread adoption for pre-
dicting agent behavior due to their long-term predictive capabilities [16,17], they efficiently
address the memory problem of handling long sequences with attention mechanisms. The
model can directly associate the entirety of input data sequences and context vectors, rather
than being limited to the association with the last hidden states [18]. Syed et al. [19] intro-
duced the Spatiotemporal Graph Transformer (STGT) model, which uses CNN models for
processing environmental image features and employs Transformers for sequence predic-
tion. Mercat et al. [20], by introducing self-attention mechanisms considering interactions
between vehicles, successfully achieved trajectory prediction for multiple vehicle agents.
Roger et al. [21] proposed the AutoBots model, which, through the use of social multi-head
self-attention (MHSA) modules, efficiently performs single-pass forward inference for the
entire future scene, demonstrating high performance in handling complex traffic scenarios
with multi-agent interactions. The adoption of deep learning models like Transformers and
MHSA modules has significantly advanced multi-agent trajectory prediction in complex
traffic scenarios. However, challenges such as the need for real-time adaptability, integrat-
ing dynamic environmental conditions, and reducing model complexity without sacrificing
accuracy, remain areas ripe for future research.

With the advent of large-scale datasets, the introduction of high-definition maps
(HD maps) and sensor data has brought about breakthroughs in the field of trajectory
prediction [22,23]. In the past, predicting vehicle trajectories primarily relied on the physical
properties of vehicles, such as historical trajectories, speed, acceleration, and the relative
distances to surrounding vehicles. While these methods perform well in simple traffic
environments, the trajectories of vehicles in complex road scenarios are influenced not only
by surrounding vehicles (SVs), but also by lane guidance and spatial constraints imposed
by road boundaries. Therefore, the inclusion of HD maps around the vehicle and its sensor
data in the scope of trajectory prediction has become increasingly necessary.

To enable neural networks to handle HD maps, some studies rasterize map data
and then apply convolutional neural networks (CNNs) to extract features from it [24,25].
Casas et al. [26] utilized a CNN detector to extract features from rasterized maps.
Hong et al. [27] employed high-precision 3D perception and detailed semantic environ-
mental maps. They encoded semantic information through spatial grid encoding and
used deep convolutional models to integrate complex scene contexts. Rasterizing map
data aims to obtain long-range information along the lane direction, requiring a relatively
large perception field, which may lead to significant computational resource waste [28].
Additionally, rasterization processing may result in information loss. Simply inputting
map data into the model might not effectively capture complex information such as road
structures, traffic signs, signals, etc. Therefore, there is a need for a deeper integration of
vehicle trajectories and maps to address these challenges.

Another option is to use vectorized map features. VectorNet [29] vectorizes HD maps
and agents’ trajectories, employing graph neural networks to depict interactions between
traffic participants and road environment, as well as interactions among the participants
themselves. It can effectively capture complex interactions between traffic participants and
structural information in the road environment, avoiding information loss introduced by
rasterization, thus providing a more comprehensive map representation. MTR++ [30] uses a
local self-attention mechanism to capture essential local structural information in vectorized
road maps. This enables the system to more accurately understand and predict the future
movements of multiple agents in complex traffic environments. Liang et al. proposed
LaneGCN [31], which constructs a map node graph and uses a multi-step graph neural
network to encode the map, considering the road’s topological structure. This approach
clarifies the interactions among traffic participants and more accurately represents their
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connection to map structures. However, due to the diverse ways in which actors move,
fixed-size strides cannot effectively model distant-related map features, thereby limiting
predictive performance.

To address the challenges mentioned above, this paper introduces an innovative trajec-
tory prediction framework, which we refer to as “SRGAT” (a goal-guided and interaction-
aware state refinement graph attention network), building upon the LaneGCN [31] baseline
proposed by Liang et al. This framework integrates high-definition maps and vehicle
dynamics, employing lane graph convolution operators to capture complex traffic scenar-
ios. The social encoding component combines 1D CNN with FPN to extract interactions
between vehicles, utilizing a multi-head self-attention mechanism to further understand
social relationships. The model estimates potential target points for vehicles and refines pre-
dictions by incorporating deep contextual information, enhancing prediction accuracy. The
decoder utilizes a recursive feed-forward network and multi-head attention decoder layers
to iteratively predict multimodal future trajectories. Each trajectory is based on a learnable
seed parameter matrix and comes with an associated confidence score, allowing the model
to consider probability distributions. By integrating high-definition maps and agent state
information, dynamic interaction features from the social encoder, as well as advanced
target estimation and trajectory generation strategies, our model ensures high-precision
trajectory prediction in complex traffic situations.

The contributions of this paper can be summarized as follows:

1. Leveraging prior research, our study introduces SRGAT, a cutting-edge trajectory
prediction framework that innovatively merges HD maps with dynamic vehicle data.
This method not only addresses the challenge of fixed stride by adapting to vehicle
context and environmental objectives, but also comprehensively evaluates the road
environment’s influence on trajectory forecasts.

2. Our model significantly boosts the accuracy of trajectory predictions in intricate traffic
scenarios by exploiting HD maps’ spatial constraints and vehicles’ dynamic states,
effectively addressing the challenge of dynamic goal estimation.

3. By introducing a dual-branch multimodal prediction architecture that generates mul-
tiple potential future trajectories and assigns a confidence score to each, the model’s
accuracy and diversity in trajectory prediction in complex traffic situations are signifi-
cantly enhanced. It increases both the accuracy and variety of the predictions.

4. We conducted evaluations of the proposed model on both Argoverse and nuScenes
datasets and engaged in a detailed comparison with the current state-of-the-art meth-
ods. The results demonstrate that our model exhibits substantial performance im-
provements over these methods across a range of critical performance metrics.

The remainder of this paper is organized as follows: Section 2 defines the problem of
trajectory prediction. Section 3 details the data processing methods. Section 4 describes the
network structure of the algorithm and presents the training details. Section 5 discusses the
experimental setup, results, and comparisons with existing methods. Finally, conclusions
are drawn in Section 6.

2. Problem Formulation

We assume that by observing traffic participants and their environment, it is possible to
capture precise historical motion paths and high-resolution map data in a two-dimensional
coordinate system. Specifically, for the ith agent in all n traffic participants, we can col-
lect a series of state observations Si

obs = [si
−T+1, si

−T+2, . . . , si
0], i ∈ [0, n − 1] within a

certain time frame {−T + 1,−T + 2, . . . , 0}, where si
t = (xi

t, yi
t, vi

x,t, vi
y,t, ai, oi

t), consisting
of the x, y coordinate, velocity, agent type and orientation in a global Cartesian coordi-
nate as features at time step t. A corresponding high-definition map m was added to
establish a complete scene. The scene information set m = {Y, A} can be divided into a
lane node feature matrix Y and an adjacency matrix set {Ai}i∈{pre,suc,left,right}. The node
matrix Y = (xj, yj, headingj, turnj, tra f j, intersectj), j ∈ Nnode represents the lane geome-
try feature and adjacency matrix represents the topology connections between different
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nodes. The meaning of each matrix in m will be further explained in Section 3. The
goal of this research is to predict the agent’s future states Sout = [s1, s2, . . . , st]. With the
current map, past states of the agent, and the states of other agents known, we aim to
define the probability distribution of the agent’s future states, p(Sout|m, Sobs, SO

obs), where
SO

obs indicates the observed states of other agents and Sego
obs stands for ego agents when

i = 0. Our model offers K modes of potential future trajectory sets {{Sout,k}}k∈[0,K−1] =

{{(S1
k , S2

k , . . . , ST
k )}}k∈[0,K−1] for each agent.

3. Data Preprocessing

In the process of map information preprocessing, we first transform the map metadata
from the Argoverse dataset into a vectorized map data representation. This approach
primarily represents the map data as a graph structure, aiming to characterize a set of
lanes and their connectivity. The course of the roads is represented by the two-dimensional
coordinates of discretized road centerlines. To better utilize the relationship between the
road and the ego vehicle, we adopt a 2D Cartesian coordinate system with the ego vehicle
at the origin and the forward direction as the x-axis. The two-dimensional coordinates of
the centerlines serve as the nodes of the graph, forming a series of 2D bird’s eye viewpoints
arranged according to lane direction. For any two directly accessible lanes, we define
four types of connectivity—predecessor, successor, left neighbor, and right neighbor—and
encode these connections as edge information in the graph, as shown in Figure 1.

Figure 1. Visualization of data preprocessing for the SRGAT model. The left side presents the
structured data inputs for agents. The right side demonstrates the conversion of map metadata into a
vectorized road network graph, oriented on a 2D Cartesian plane with the ego vehicle at the center.

Specifically, lanes that can be directly accessed are considered neighboring predeces-
sors and successors, while left and right neighbors are defined as the spatially nearest lane
nodes on adjacent lanes to the left and right, measured by Euclidean distance. We represent
lane nodes with V ∈ RN×2(can be seen as part of Y), where Nnode is the number of lane
nodes, and the ith row of V represents the BEV coordinates of the ith node. We use four
adjacency matrices {Ai}i∈{pre,suc,left,right} to represent the connectivity, where Ai ∈ RN×N .
The element in the jth row and kth column of Ai is denoted by Ai,jk. If node k is a type i
neighbor of node j, then Ai,jk = 1.

In the preprocessing of trajectory information, participants located within a specific
Euclidean distance from the ego vehicle (which is set to 10 m in our experiments) are exclu-
sively considered to reduce the algorithm’s complexity. To better leverage the relationship
between participants and the road (especially the road centerlines) in the environment,
all participant trajectory position information need to be represented in terms of relative
position to nearby road centerlines. The input for participant n is a series of relative dis-
placements: ∆vt

n = vt
n − vt−1

n , where vt
n represents the state vector, taking into account the

participant’s type (pedestrian, vehicle, cyclist). This representation method further utilizes
the symmetry of the problem and avoids the disruption of learning due to changes in the
ego vehicle’s absolute position coordinates during subsequent training.
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4. Structure of SRGAT Model
4.1. Model Framework

This section presents the network architecture utilized for trajectory prediction, as
illustrated in Figure 2. It comprises three main components: the Encoder, Goal Areas
Estimation, and Trajectory Decoding and Generation. The Encoder encompasses a scenario
encoder and a social encoder. The scenario encoder processes high-precision map data,
converting them into relevant information such as road layouts and geometric shapes. The
social encoder processes the historical trajectories of vehicles, using a one-dimensional
convolutional network to extract interaction features, and employing Transformer layers
to assimilate behavioral patterns of different vehicles. The Goal Area Estimation predicts
vehicle destinations using Transformer encoder embeddings to improve precision. The
GoICrop mechanism refines this by focusing on crucial trajectory segments, reducing the
impact of poor anchor generation on stability. The Trajectory Decoder then constructs the
predicted paths, integrating these estimates with dynamic behavior for accurate forecasts.

Figure 2. Schematic of the SRGAT model for vehicle trajectory prediction. The Encoder phase
assesses the scene via agent nodes and transforms lane graphs into vectorized maps. Subsequent
processing by the scenario and social encoders refines these data. Goal Areas Estimation then projects
potential destinations, incorporating context into actor dynamics with the help of auxiliary losses.
The culmination is the Trajectory Output, which synthesizes predictions using Multi-Agent Behavior
(MAB) and Time Encoding (MABD) informed by initial seed parameters.

4.2. Encoder

In this section, the main task is to acquire the historical states and environmental
features of traffic participants within a scene, learn structured map representations, and
then fuse the information of traffic participants with HD map data.

4.2.1. Scenario Encoder

To initiate the encoding process of scenarios, we first input lane map data into a graph
convolutional network for feature extraction. It considers the size, orientation, and position



Sensors 2024, 24, 2065 6 of 17

of the lane graph nodes when encoding their information, leading to a defined set of
features for these nodes:

Y = [y1, y2, . . . , yk] (1)

yi = MLPshape(vend
i − vstart

i ) + MLPloc(vi) (2)

where MLP denotes a multi-layer perceptron with subscripts indicating shape and location.
Additionally, vi represents the position of the ith lane node, vstart

i and vend
i are the coordi-

nates of the start and end points of node i, respectively, and yi is the feature of the ith graph
node. To implicitly capture the directional information carried between graph nodes and
seize the long-distance road information relied upon by vehicles during their journey, we
employed the LaneConv operator:

F = YW0 + ∑
i∈{left,right}

AiYWi +
C

∑
C=1

(Akc
preYWpre,kc + Akc

sucYWsuc,kc) (3)

where F is the aggregated graph node feature, C is the dilation size, and Ai and Wi are
the adjacency matrices and weight matrices corresponding to the ith type of connection,
respectively. Apre, Asuc, Aleft, and Aright represent connections from a node to its immedi-

ately preceding, succeeding, left, and right nodes, respectively. Akc
pre denotes the k power

of Apre, allowing lane graph node features to propagate information along the lane graph
for kc steps, where k is a hyperparameter. With the utilization of graph convolutional
networks and LaneConv, the scenario encoder effectively captures spatial relationships and
directional information between lane nodes, enabling the creation of informative graph
node features.

4.2.2. Social Encoder

To encode the social interactions among traffic participants, which are crucial for
understanding and predicting their behavior, we employ a one-dimensional convolutional
neural network (1D CNN). As shown in Figure 3, the network processes the trajectory
information of dynamic objects Sobs. The 1D CNN architecture consists of multiple scales of
convolutional layer groups, each featuring two residual blocks with a stride of 2, enabling
the model to capture a wide range of temporal patterns. A feature pyramid network
(FPN) [32] is utilized to integrate feature maps of different scales, obtaining the final feature
tensor through additional residual blocks. The above process can be expressed as follows:

Aemb = FPN(conv1d(Sobs)) (4)

FPN = conv1d1(conv1d2(conv1d3())) (5)

Each convolutional layer in the network employs a 3 × 3 kernel size, outputting
128 feature channels, followed by layer normalization and ReLU activation function. This
configuration is designed to capture the nuances of dynamic object behavior in detail.
After encoding the scene and trajectory information, we relatively obtain a 2D feature
matrix Aemb from Formula (4), where each row Aemb,i represents the features of the i
participant, and a 2D feature matrix Y as mentioned above, where each row Yi represents
the features of the ith lane node. To merge social and environmental information, we
utilize the Transformer Fusion Layer. This layer combines the dynamic impact of actors on
lanes and the real-time feedback of lanes on actor behavior, subsequently enhancing the
interaction between actors and the map through a Transformer encoder. Specifically, we
first combine the features of actors Aemb,i with those of surrounding lane nodes Yi through
a spatial attention mechanism, forming a weighted feature representation Wi, enriched
with each lane node’s characteristics. Then, this module integrates the updated features
Y′

i of lane nodes with the features Aemb,i of actor nodes to reflect the real-time impact of
lane information on actor behavior. This process not only captures the current traffic state
of lane nodes, but also encodes the influence of traffic flow on these lanes. Consequently,
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it ensures the model’s ability to comprehensively understand and predict the potential
behaviors of actors in specific traffic environments.

Figure 3. Encoding process of the SRGAT model, capturing past trajectories and environmental
features for traffic scenario analysis.

4.3. Goal Areas’ Estimation

To accurately capture and predict the complexity of driving behaviors, it is crucial
to avoid oversimplification and accuracy loss in trajectory prediction. We are committed
to optimizing our model, ensuring that the predicted trajectories closely match the actual
trajectories. After processing through the encoder, the data flow toward the Transformer
Fusion Layer, which includes a module for locating target areas. Due to the stochastic and
multimodal nature of driving behaviors, we employ multi-target prediction when locating
target areas. Initially, we select the most confident target point from the predicted target
set as the predicted goal, considering the vehicle’s motion history and current driving
environment. Which can be expressed as

GP = FFN(TransformerEncoder(type_encoding(Aemb, Y))) (6)

where GP is a 2D matrix in which GPi can be seen as a representation of the likely intended
endpoint of the prediction trajectories. Before being processed by the Transformer encoder,
Aemb and Y were type-encoded the same way as mentioned in ViLT [33]. This process
approximates the vehicle’s destination with the highest probability. By cropping the map
to create a target area, we ensure that the vehicle’s final position is more likely to be within
this optimized, relatively smaller area. This approach addresses the uncertainty in endpoint
prediction and enhances the accuracy of the prediction, making it more likely for the
vehicle’s actual position to appear within this smaller area of focus, rather than relying on
potentially fluctuating target points.

Based on these predicted target points, we implicitly construct a model of future
interactions among actors using the GoICrop [28] technique, which can be expressed
as follows:

GP′ = GOICrop(GP, Y) = ϕ1

(
GPW0 + ∑

j
ϕ2
(
concat(GPW1, ∆i,j, yj)W2

))
W3 (7)

∆i,j = ϕ(MLP(vi − vj)) (8)

while GP′ ∈ RB×K×2 is the feature of the ith actor, B refers to batch size and K is the
number of prediction modes, ϕi is layer normalization process, Wi serves as weights, and yj
is the jth lane node feature.This process serves as spatial distance-based attention and
updates the goal area lane nodes’ features back to the actors, enhancing the model’s ability
to capture complex driving behaviors.
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This Region of Interest (ROI) filtering method allows us to precisely determine poten-
tial target points for each actor and predict their possible future interactions. This strategy
significantly enhances the model’s ability to understand and predict actor behaviors in
complex traffic scenarios.

Finally, we use the updated vehicle features GP′ as input to generate K confidence
scores as matrix C ∈ RB×K. Both of them will be used in the decoding process to predict
final future trajectories. Similar to LaneGCN, it can be generated simply by MLP:

C = ReLU(MLP(LinearRes(GP′))) (9)

LinearRes() = GN(Linear(ReLU(GN(Linear()))) (10)

where GN( ) stands for GroupNorm. A dual-branch multimodal prediction architecture
is employed, where one branch is responsible for estimating possible trajectories, and
the other for assigning confidence scores to these trajectories. Figure 4 is a schematic
diagram illustrating the model’s prediction of vehicle trajectories at an intersection and their
associated confidence scores, where the green lines represent the predicted trajectories, the
green stars indicate the predicted goals and the confidence scores for different trajectories
are denoted by the numerical values along the paths. The following loss function is used to
assess and optimize the accuracy of the predicted trajectories:

L1 = α1Lcls_end + β1Lreg_end + ρ1Lreg_mid (11)

where α1, β1, and ρ1 serve as weights. By combining multi-target prediction and GoICrop
technology, the model can precisely predict future trajectories among multiple possibilities.

Figure 4. Predictive trajectory paths with associated confidence scores for an autonomous vehicle at
an intersection. The encoding process captures past trajectories and environmental features for traffic
scenario analysis.

4.4. Trajectory Decoding and Generation

The decoder of our model is designed to leverage the high-dimensional features
extracted at earlier stages and generate accurate multimodal future trajectory predictions.
This approach ensures the model’s capability to anticipate various potential pathways,
enhancing the reliability of the predictions. To produce K ∈ N distinct predictions from
the same input scenario, the model initially employs K learnable seed parameter matrices
Qi ∈ R(dk ,T), where T denotes the prediction time steps, and i ∈ {1, . . . , K}. By replicating
each Qi across the agent dimension, a new input tensor of dimension R(dk ,M,T) is created,
enabling the model to generate specific predicted trajectories for each agent at every time
step, thereby effectively realizing diversified trajectory predictions for the same scenario.

The decoding process begins with handling the time dimension, employing a multi-
head attention-based decoder (MABD) layer to process the encoder’s output GP′ and the
encoded seed parameters Qi. For n agents, this process can be denoted as

H′
0 = MABD(Qi, GP′

n) (12)
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MABD(Cn, GP′
n) = LayerNorm(H + rFFN(H)) (13)

H = LayerNorm(H′ + MHSA(H′, GP′
n, GP′

n)) (14)

H′ = LayerNorm(MHSA(Cn)) (15)

where H′
0 is the output tensor, MHSA represents the multi-head self-attention mechanism,

and rFFN is a residual feed-forward network. These components work together, allowing
the MABD layer to efficiently process and decode time-series data, generating precise
future trajectory predictions for each agent.

To ensure social consistency among the set elements in future scenarios, it is essential
to process each time slice of H′

0. Specifically, for the agent state set H′
0τ at some future

time step τ, the decoder processes each element h′
0τ using a multi-head attention block

(MAB) layer.
H′

0τ = MAB(h′0τ) (16)

The decoder repeats these operations Ldec times, with each iteration that updates the
output tensor H′

0 progressively refining the prediction for each agent at future time steps.
In decoding, different learnable seed parameters Qi and additional context information mi
are used, repeating c times, resulting in a four-dimensional tensor O ∈ R(dk×M×T×c), con-
taining all possible predictions. Finally, this output tensor can be element-wise processed
through a ReLU activation function to produce the final output representation.

4.5. Training Details

The training process is divided into two stages: the target prediction stage and the
regression stage. During the target prediction stage, we have adopted K mode endpoints’
estimations GP′ = {gk

n,end}k∈[0,k−1] and their confidence scores C = {ck
n,end}k∈[0,k−1], where

gk
n,end is the k-th predicted goal coordinates and ck

n,end is the k-th predicted goal confidence
of the n-th actor. Our objective is to identify the positive target whose Euclidean distance to
the ground truth trajectory endpoint is minimized. We employ a sum of classification and
regression losses to train this stage. Given a predicted target, we aim to find the positive
target with the minimum Euclidean distance to the ground truth trajectory endpoint. For
classification, we utilize a maximum margin loss:

Lcls_end =
1

N(E − 1)

N

∑
n=1

k̂

∑
k=k̂

max(0, ck(n,end)
+ ϵ − ĉk(n,end)

) (17)

where N represents the total number of traffic participants, and ϵ = 0.2 is the margin
boundary. For the regression task, a smooth L1 loss is applied to all positive trajectory
prediction steps:

Lreg_end =
1
N

N

∑
n=1

reg(gk̂n ,end − a∗(n,end)) (18)

where ak̂n ,end is the ground truth BEV coordinates of the n actor’s trajectory endpoint,
k̂n denotes the n element, and reg() is the smooth L1 loss. Additionally, we attempt
to incorporate a “single-target prediction” module at the midpoint of each trajectory to
aggregate map features, assisting in the prediction of the endpoint target and overall
trajectory. Similarly, for each actor, a residual MLP is applied to regress a middle target.
The loss for this module is given by

Lreg_mid =
1
N

N

∑
n=1

reg(g(n,mid) − a∗(n,mid)) (19)
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where a∗(n,end) represents the ground truth BEV coordinates at the midpoint of the n actor’s
trajectory. The total loss for the target prediction stage is

L1 = α1Lcls_end + β1Lreg_end + ρ1Lreg_mid (20)

we set the weights of α1, β1, and ρ1 to 1, 0.2, and 0.1 in the experimental phase. In the
regression stage, for classification, we employ a boundary loss Lcls similar to the one used
in the target prediction stage. For regression tasks, the smooth L1 loss is similarly utilized
and applied to all positive trajectory prediction steps:

Lreg =
1

NT

N

∑
n=1

T

∑
t=1

reg(ak̂
(n,t) − a∗(n,t)) (21)

where ak̂
(n,t) represents the predicted positive BEV coordinates of actor n at time step t,

while a∗(n,t) represents a ground truth one.
Moreover, to emphasize the importance of the endpoint, we introduce a loss term that

imposes a penalty at the endpoint:

Lend =
1
N

N

∑
n=1

reg(ak̂
(n,end) − a∗(n,end)) (22)

The final training loss function is a weighted sum of these loss terms:

L2 = α2Lcls + β2Lreg + ρ2Lend (23)

5. Performance Evaluation and Comparative Analysis
5.1. Experiment Setup

All the program tasks were conducted on Python 3.9, and the deep learning framework
was based on PyTorch version 1.13. We train our model on a computer system equipped
with an Intel(R) Xeon(R) Platinum 8358P CPU and an NVIDIA A40 GPU. Our predictive
framework was evaluated on the extensive Argoverse motion prediction dataset, which
provides trajectories for agent vehicles alongside high-definition map data. This dataset
encompasses over 324,557 scenarios collected from Pittsburgh and Miami, segmented into
training, validation, and test sets with 205,942, 39,472, and 78,143 samples, respectively. All
training and validation scenarios consist of five-second sequences sampled at 10 Hz. In
the trajectory prediction challenge hosted by Argoverse, the first 2 s of historical trajectory
data are made available. Given the initial two-second observations, the Argoverse motion
prediction challenge entails predicting the future three-second movement of agent vehicles.
The dataset furnishes actor data as trajectories spanning 20 time steps; map data include a
set of lane centerlines and their connectivity.

In addition to the Argoverse dataset, we also conducted evaluations on the nuScenes
Prediction dataset [34], a self-driving car dataset collected in Boston and Singapore. It
contains 1000 scenes, each lasting 20 s, with ground truth annotations and HD maps.
Vehicles in nuScenes have manually annotated 3D bounding boxes, which are published
at 2 Hz. The prediction task involves using the previous 2 s of object history and the
map to predict the next 6 s. We employed the standard split from the nuScenes software
(version 1.3) kit for our tests.

After data preprocessing, the relevant input features and desired outputs were ex-
tracted from both the training sets of Argoverse and nuScenes. The parameters of the
network model were set according to the specifications outlined in Table 1.
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Table 1. The configuration of model parameters.

Hyperparameter Value

Learning Rate 10−2, 10−3, 10−4, 10−5

Epoch Number 50
Batch Size 64

Self-Attention Unit Number 128
Activation ReLU

Number of attentions 4

5.2. Evaluation Metrics

This study evaluates experimental outcomes based on fundamental forecasting pa-
rameters and assessment metrics, focusing on unimodal (K = 1) and multimodal (K = 6)
prediction outcomes. In instances where the model generates more than K trajectories, only
the predictions with the top K probability scores are considered. The evaluation metrics
include the minimum average displacement error (minADE), minimum final displacement
error (minFDE), Brier minimum final displacement error (brierFDE), and miss rate (MR).
The details of each metric are as follows.

Average displacement error (minADE) measures the average accuracy of predictions
by calculating the average Euclidean distance between the ground truth trajectory and the
best trajectory out of K-predicted trajectories. The formula for ADE is

ADE =
1
N

N

∑
i=1

 1
Tpred

T+Tpred

∑
t=T+1

√
(ŷ − ygt

t )2

 (24)

Here, N is the number of predicted trajectories, Tpred is the prediction duration, T is
the observation duration, ŷ is the predicted position at time t which derives from O
(O = {yk

n}k∈[0,k−1]), and ygt
t is the ground truth position at time t.

Final displacement error (minFDE) evaluates the accuracy of the predicted trajectory at
the final moment of the prediction period by measuring the Euclidean distance between the
last point of the predicted trajectory and the last point of the true trajectory. Its formula is

FDE =
1
N

N

∑
i=1

√
(ŷ(T+Tpred)

− ygt
(T+Tpred)

)2 (25)

The symbols used here carry the same meaning as those in the ADE formula. Brier
minimum final displacement error (brier-minFDE) is similar to FDE but incorporates a
penalty term related to the accuracy of the predicted probabilities in calculating the error.
This metric considers not only the final displacement error of the prediction, but also
the probability accuracy of the predicted trajectory. The miss rate (MissRateK,2) imposes
penalties solely on predictions that deviate by more than 2 m from the ground truth. The
offroad rate quantifies the proportion of predictions that fall outside the road boundaries.

5.3. Results and Ablation Studies
5.3.1. Performance Comparison to Other Methods

We conducted an extensive comparison of our SRGAT model against a broader range
of state-of-the-art trajectory prediction methods on the Argoverse motion prediction bench-
mark [2]. As presented in Table 2, SRGAT demonstrates superior performance over existing
methods, notably TNT [22], LaneRCNN [35], LaneGCN [31], and the newly compared mod-
els in [23,25,36,37]. The detailed analysis reveals that SRGAT consistently achieves lower
average offset error and higher long-term prediction accuracy, indicating its robustness in
diverse traffic scenarios.

Notably, the comparison with LaneGCN, which serves as our primary benchmark,
highlights the effectiveness of our approach. Our model achieves significant improve-
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ments of 15%, 22%, 21%, 15%, and 13% in minADE6, minFDE6, brierFDE6, minADE1, and
minFDE1, respectively. These improvements can be attributed to the innovative use of
the Social Relationship Graph Attention Network (SRGAT), which effectively captures
dynamic interactions among agents in traffic, providing a more accurate prediction of their
future trajectories. Our model’s profound comprehension of the dynamics between traffic
participants and HD maps is facilitated by constructing a comprehensive map node graph
coupled with a multi-layer graph neural network strategy. Leveraging HD map data along-
side the Transformer network’s aptitude for identifying long-range dependencies, it can
skillfully forecast a range of potential objectives and Points of Interest (POIs). Employing
a dual-branch, multimodal prediction framework, SRGAT, not only generates multiple
viable future pathways linked to these POIs, but also accurately evaluates their likelihood.
This holistic integration of technologies ensures SRGAT achieves significant improvements
in trajectory prediction accuracy compared to previous models, effectively enhancing our
understanding and forecasting of complex traffic interactions.

Furthermore, we offer both quantitative metrics and qualitative insights to under-
stand the model’s performance better. Through visual comparisons in specific scenarios,
SRGAT not only accurately predicts trajectories, but also adapts to complex interactions,
demonstrating its significant advantages over conventional models.

Table 2. Results on Argoverse (upper set) and nuScenes (lower set) motion forecasting dataset. The
“-” denotes that this result was not reported in their paper.

Method brierFDE6 minFDE6 minFDE1 minADE6 minADE1

LaneRCNN [35] 2.14 1.45 3.69 0.90 1.68
TNT [22] 2.14 1.44 4.95 0.91 2.17

DenseTNT (MR) [38] 2.07 1.38 3.69 0.91 1.70
LaneGCN [31] 2.05 1.36 3.77 0.86 1.70

mmTransformer [39] 2.03 1.33 4.00 0.84 1.77
HOME [40] - 1.45 3.73 0.94 1.73

GOHOME [41] 1.98 1.45 3.64 0.94 1.68
DenseTNT (FDE) [38] 1.97 1.28 3.63 0.85 1.67

TPCN [42] 1.92 1.24 3.48 0.81 1.57
GANet [25] 1.79 1.16 3.45 0.80 1.59
R-Pred [23] 1.77 1.12 3.47 0.76 1.58

ProphNet [36] 1.73 1.14 3.33 0.77 1.52
QCNet [37] 1.69 1.07 - 0.73 -

Ours 1.62 1.05 3.25 0.73 1.45

Method MinADE5 minADE10 MissRate5,2 MissRate10,2 Offroad Rate

CoverNet [43] 1.96 1.48 0.67 - -
Trajectron++ [44] 1.88 1.51 0.70 0.57 0.25

SG-Net [45] 1.86 1.40 0.67 0.52 0.04
MHA-JAM [17] 1.81 1.24 0.59 0.46 0.07

CXX [46] 1.63 1.29 0.69 0.60 0.08
P2T [47] 1.45 1.16 0.64 0.46 0.03
PGP [48] 1.30 1.00 0.61 0.37 0.03

Ours 1.22 0.95 0.58 0.33 0.03

5.3.2. Ablation Study

We conducted a detailed ablation study on the validation set to assess the impact
of each component within our model. Taking the LaneGCN model as a baseline, we
add other components progressively. Firstly, to enhance the model’s understanding of
social interactions among traffic participants and avoid the inefficiencies observed during
the inference process in graph neural networks (such as LaneGCN), we integrated an
independent attention mechanism as the social interaction encoder in our model. In
Table 3, ‘Social-En’ represents the social interaction encoder, and the ‘-’ symbol indicates
its replacement with a three-layer FPN. Secondly, to better leverage road features and
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enhance the model’s understanding of the interaction between participants and the HD
maps, we constructed a graph of map nodes and utilized a multi-step graph neural network
to encode vectorized map information. Subsequently, we integrated the dynamic impact of
participants on lanes with the real-time feedback of lanes on participant behavior using a
Transformer Fusion Layer. These processes are denoted as Scene-En, with “-” indicating the
substitution with feature extraction using a 32-layer CNN from rasterized map data. When
combining the above two modules, we observe a performance improvement of over 54%
on minFDE6, indicating the complementary effects of these modules and their importance
in enhancing model performance. To improve training efficiency and model quality, we
also employed learnable seed parameters, denoted as L-Seed. The introduction of seed
parameters also makes an important contribution to further improving model performance.

Table 3. The ablation study of SRGAT model.

Scene-En Social-En L-Seed ADE6 FDE6

✓ - - 1.49 5.31
- ✓ - 1.41 5.10
- - ✓ 1.33 4.72
✓ ✓ - 1.04 2.40
✓ ✓ ✓ 0.83 1.30

5.3.3. Qualitative Results

To better demonstrate the model’s effectiveness in complex traffic scenarios, we vi-
sualized the prediction results. As illustrated, orange represents the actual location of
the target vehicle, blue signifies the ego vehicle, and purple indicates the relevant other
traffic participants. The red line depicts the actual trajectory (ground truth) of the target
vehicle, while the green lines represent the multimodal predictive trajectories generated
by our model, green stars indicate the predicted goals,each with a corresponding confi-
dence level. From Figure 5a,b, we can observe that the model made accurate predictions
about the target vehicle’s direction of travel at the intersection. In Figure 5c, our model
effectively utilized the interactions among surrounding traffic participants to generate
accurate trajectory predictions for the target vehicle. These details demonstrate our model’s
advanced capability in understanding and adapting to complex traffic scenarios, accurately
predicting vehicle behaviors, and providing reasonable predictions among various poten-
tial behavioral choices. These results underscore the predictive power and accuracy of our
model in complex traffic situations.

(a) (b)
Figure 5. Cont.
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(c)

Figure 5. Qualitative results of SRGAT model. (a) Model predicts the vehicle’s left turn. (b) Model
predicts straight movement. (c) Model utilizes traffic interactions for accurate trajectory predictions.

6. Conclusions

This article presents SRGAT, a cutting-edge trajectory prediction model for predict-
ing vehicle trajectories in advanced autonomous driving applications, leveraging high-
definition map data and vehicle dynamics. Its unique architecture, which combines a
Transformer network with a dual-branch multimodal prediction mechanism, enables it to
effectively capture complex traffic scenarios and predict future vehicle movements with
high precision. The use of goal area estimation strengthens the model’s ability to gen-
erate muti-mode trajectories and support effective use of road context. The integration
of map data enhances the model’s contextual understanding, while the attention mecha-
nism and learnable seed parameters improve prediction diversity and training efficiency.
Through comprehensive testing on the Argoverse dataset, our model demonstrates su-
perior performance over existing methods. The results highlight SRGAT’s advancement
in trajectory prediction, showcasing its enhanced accuracy, reliability, and efficiency in
predicting traffic movements.
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