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Abstract: Multi-frame super-resolution (MFSR) leverages complementary information between im-
age sequences of the same scene to increase the resolution of the reconstructed image. As a branch
of MFSR, burst super-resolution aims to restore image details by leveraging the complementary
information between noisy sequences. In this paper, we propose an efficient burst-enhanced super-
resolution network (BESR). Specifically, we introduce Geformer, a gate-enhanced transformer, and
construct an enhanced CNN-Transformer block (ECTB) by combining convolutions to enhance local
perception. ECTB efficiently aggregates intra-frame context and inter-frame correlation information,
yielding an enhanced feature representation. Additionally, we leverage reference features to facilitate
inter-frame communication, enhancing spatiotemporal coherence among multiple frames. To address
the critical processes of inter-frame alignment and feature fusion, we propose optimized pyramid
alignment (OPA) and hybrid feature fusion (HFF) modules to capture and utilize complementary
information between multiple frames to recover more high-frequency details. Extensive experiments
demonstrate that, compared to state-of-the-art methods, BESR achieves higher efficiency and compet-
itively superior reconstruction results. On the synthetic dataset and real-world dataset of BurstSR,
our BESR achieves PSNR values of 42.79 dB and 48.86 dB, respectively, outperforming other MFSR
models significantly.

Keywords: burst super-resolution; CNN-Transformer; multi-frame super-resolution

1. Introduction

As a crucial low-level computer vision task, image super-resolution helps to drive
research in advanced tasks such as target detection [1,2] and image segmentation [3], in
in addition to reconstructing image details. Traditional image super-resolution methods
are mainly based on interpolation and filtering techniques. Although these methods
can increase the resolution of the image, they cannot restore the lost detail information.
In recent years, with the rise of deep learning, image super-resolution methods based
on neural networks have made significant breakthroughs in improving reconstruction
accuracy and visual effects [4]. Super-resolution technology has been widely used in video
surveillance [5], remote sensing [6], medical image diagnosis [7], and other fields [8-10]. In
particular, with the increasing popularity and professionalization of mobile photography,
burst super-resolution technology is attracting more and more attention. Burst is a common
photography mode, where multiple images are captured in rapid succession within a short
period of time. Due to camera shake, there exists sub-pixel displacement among these
multiple images. Burst super-resolution [11] aims to restore image details by utilizing the
complementary information from multiple displaced images.
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SRCNN [12] is a three-layer convolutional network, as well as the first attempt at
deep learning methods for super-resolution problems. The residual network structure
addresses the issue of gradient vanishing that arises from increased network depth, leading
to improved convergence and enhanced model performance. VDSR [13] uses residual
learning to increase the number of layers of the super-resolution network to 20 for the first
time. A generative adversarial network (GAN) consists of a generator and a discriminator.
SRGAN [14] introduces GAN into the super-resolution task, enabling the generation of
more realistic textures in the reconstruction. ESRGAN [15] and SFTGAN [16] optimize the
adversarial loss function and incorporate prior information, respectively. Other convolu-
tional network-based super-resolution algorithms, such as [17-19], achieve better training
results through deeper and more intricate network structures.

In recent years, Transformer has attracted widespread attention in the field of NLP.
Thanks to its parallel computing and long-distance dependency modeling capabilities, it has
significantly improved the model’s ability to learn rich semantic representations. ViT [20]
introduces a Transformer into the computer vision field and has achieved remarkable
success. For pixel-level visual tasks, such as image segmentation and super-resolution, the
introduction of the Transformer model enhances the network’s understanding of global
semantics and can capture the correlation between different pixels or semantics. TTSR [21]
introduces the Transformer model to the super-resolution task for the first time, learning
the deep correspondence between the low-resolution (LR) image and the reference image
through self-attention, and transferring similar textures in the reference image to restoring
the high-resolution (HR) image. However, the original Transformer has a complexity of
O(n?), which comes with high computational costs.

Currently, in the task of super-resolution, Transformer models with linear complexity
mainly fall into two categories. One approach involves computing self-attention within
a window, as seen in SwinlIR [22], which divides the input image into non-overlapping
windows and achieves cross-window information interaction through shifting. HAT [23]
introduces overlapped cross-attention modules to further enhance the aggregation of
information across windows. Another approach involves implicitly encoding global infor-
mation across feature dimensions, as demonstrated by Restormer [24], which computes
cross-channel covariance to implicitly model global information. SAFMN [25] introduces
a convolutional channel mixer to simultaneously encode local context and blend chan-
nels, achieving global information interaction. We further optimize the implicit global
information encoding method and propose a more efficient self-attention mechanism.

Multiple frames of images are sampled from different sub-pixel positions, exhibit-
ing sub-pixel displacement relationships. Multi-frame super-resolution can additionally
leverage inter-frame complementary information, recovering more details compared to
single-frame super-resolution, and has broad application prospects in fields such as com-
putational photography [26,27], remote sensing satellite imaging [28,29], etc. Commonly
used MFSR datasets include PROBA-V [30] for remote sensing tasks and BurstSR [31] for
computational photography tasks. The performance improvement of multi-frame super-
resolution relies on the sub-pixel-level alignment of multiple frames, and the accuracy of
alignment directly impacts the reconstruction results.

Inter-frame alignment and feature fusion are key challenges in burst super-resolution.
Frame alignment methods are mainly divided into two types: one involves explicit frame
alignment through optical flow estimation and motion compensation [32], and the other
employs deformable convolution to learn dynamic sampling positions of adjacent frames
for implicit frame alignment [33]. However, existing methods have certain limitations in
extracting spatiotemporal correlation information. Therefore, we propose two optimized
modules to extract more complementary information from aligned multi-frame images to
recover high-frequency details.

To more effectively capture global information, we propose a gate-enhanced Trans-
former, Geformer. By computing self-attention along the channel dimension, Geformer
can implicitly encode global information while maintaining linear complexity. The gating
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mechanism enables Geformer to effectively model correlations between domain-specific
features. We leverage reference features to facilitate inter-frame communication, simulta-
neously serving as an implicit image co-registration condition to enhance spatiotemporal
information consistency. By combining Geformer with convolution, we construct an en-
hanced CNN-Transformer block (ECTB), providing enhanced feature representation for
the two crucial processes of inter-frame alignment and feature fusion. Consequently, we
introduce an efficient burst-enhanced super-resolution network, BESR.

We conduct extensive experiments on synthetic and real-world datasets of BurstSR.
The results demonstrate a significant improvement in perceptual quality and detail fidelity
compared to previous MFSR methods. In terms of PSNR and SSIM metrics, our BESR
achieves a gain of 0.35 dB and 0.06 dB, respectively, over the state-of-the-art method RBSR
on the two datasets, while having lower parameters. The extensive experimental results
provide strong evidence for the effectiveness of our approach.

The main contributions of this paper are summarized as follows:

1.  We propose Geformer, a gate-enhanced Transformer model, and combine Geformer
with convolution to construct an enhanced CNN-Transformer block (ECTB), enabling
the network to simultaneously perceive global information and local details, thereby
achieving enhanced feature representation.

2. We enhance the interaction between inter-frame information and boost the correlation
of spatiotemporal features by constructing reference features, providing more effective
information for the entire super-resolution process.

3. Addressing the critical issues of inter-frame alignment and feature fusion, we intro-
duce optimized pyramid alignment (OPA) and hybrid feature fusion (HFF) modules
to fully leverage non-redundant information between frames. Our BESR achieves
the optimal reconstruction performance on both synthetic and real-world datasets
of BurstSR.

2. Related Work
2.1. Single-Image Super-Resolution (SISR)

SRCNN is the first method to use deep learning to construct a nonlinear mapping
between LR and HR, which achieves SOTA performance on multiple public datasets
with only three convolutional layers. Subsequent research has shown that by increasing
network depth and introducing residual learning, such as [13,34] and other methods, image
quality and perceptual quality can be further improved. Research on generative adversarial
networks (GANSs), such as [14,35], is introduced to generate more realistic and detailed
high-resolution images through adversarial training. GANs not only enhance quantitative
evaluation metrics but also improve subjective perceptual quality.

Recent studies suggest that attention mechanisms, through feature selection, can
strengthen the extraction of important information while suppressing less relevant details,
thereby enhancing the network’s feature extraction capabilities. For instance, RCAN [36]
combines residual learning with channel attention mechanisms and trains a super-resolution
network with over 400 layers. HAN [37] introduces layer attention and channel-wise spa-
tial attention modules to learn the direct correlation between layer, channel, and spatial
features, resulting in an enhanced feature representation.

Due to the inherent advantage of Transformer in modeling long-distance dependencies,
Transformer-based super-resolution models have achieved significant performance im-
provements. SwinIR [22] divides the input image into windows, computing self-attention
between patches within each window and using a moving window to model distant depen-
dencies, thus reducing computational complexity linearly. HAT [23] introduces overlapping
cross-attention modules to enhance information interaction between adjacent windows.
However, the local windows limit the utilization of crucial global information in image
super-resolution. Restormer [24] implicitly encodes global information by computing self-
attention across feature channels, resulting in a more lightweight super-resolution network.
We have improved its limitations in spatial modeling by introducing a gating mechanism
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to dynamically modulate self-attention, enabling better modeling of the correlation of
neighborhood features and extracting more effective global information.

2.2. Multi-Frame Super-Resolution (MFSR)

The research on multi-frame super-resolution is first proposed by Tsai and Huang [38].
Compared with SISR methods, MFSR is able to utilize additional inter-frame comple-
mentary information to achieve better high-frequency detail recovery. Farsiu et al. [39]
propose a bilateral total variation regularization method based on the total variation super-
resolution approach. Wronski et al. [27] utilized kernel regression to align input frames,
introduced radial kernels for local adaptive detail enhancement, and achieved mosaic
removal through multi-frame super-resolution. Deudon et al. [40] focus on MFSR in
satellite imagery, addressing subtasks such as joint learning of registration, fusion, and
upsampling. They introduced the first deep learning-based multi-frame super-resolution
network, HighRes-net.

Bhat et al. [11] introduce the baseline DBSR for burst super-resolution, aligning mul-
tiple frames through optical flow and utilizing attention modules to fuse aligned frame
information, addressing real-world MFSR challenges. Later, Bhat et al. [41] optimized the
multi-frame fusion mechanism by modeling the image formation process in the latent space
and conducting a deep reparameterization of the classical MAP formulation. Dudhane
et al. [42] propose a pseudo-burst fusion strategy for inter-frame information interaction,
enhancing it with multiscale context. Luo et al. [43] employ optical flow-guided deformable
convolution for inter-frame alignment, using Swin Transformer as the backbone network
for deep feature extraction and image reconstruction.

These models often come with complex parameters and computational requirements.
In comparison, the lightweight MFSR model is more practical. Wu et al. [44] proposed a
recursive model, RBSR, which merges inter-frame complementary information frame by
frame and introduces implicit weighted loss to handle sequences of varying lengths. We
have further improved frame alignment by constructing a feature pyramid to integrate
multi-scale aligned features, achieving more precise alignment effects, and providing more
complementary information for feature fusion.

2.3. Efficient Vision Transformers

In recent years, Vision Transformers have experienced rapid development, demonstrat-
ing outstanding performance in various tasks. However, constrained by high computational
costs, they are not ideal for real-time applications. Therefore, researchers have started to
explore lightweight Vision Transformer models. For example, more efficient attention
mechanisms have been introduced into the model, such as sparse attention [45-47] and
local attention [48-50]. CvT [51] uses convolutional mapping instead of position-wise linear
projection and undersamples K and V matrices to improve attention efficiency. Researchers
have also explored methods such as model pruning [52] and parameter quantization [53] to
compress model size, reducing memory requirements while maintaining high performance.
The research on efficient Vision Transformers is expected to provide feasible solutions for
scenarios with limited computational resources. In this study, we propose an efficient
Transformer model, Geformer. Introducing a gating mechanism enhances the modeling
of spatial relationships in the neighborhood, allowing for the implicit encoding of global
information with higher computational efficiency.

3. Methodology
3.1. Network Architecture

The proposed BESR framework, as illustrated in Figure 1, is primarily based on four
key components: shallow feature extraction, optimized pyramid alignment (OPA), hybrid
feature fusion (HFF), and image reconstruction.
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Burst Feature-Enhanced Super-Resolution Network (BESR)

Figure 1. The overall architecture of BESR.

Specifically, the input of the network is the RAW burst sequences LR, whose size is N
x H x W x Cy. Among them, N, H, W, and Cy, respectively, represent the frames, height,
width, and channels of the LR. The specific values are 14, 48, 48, and 4, respectively. The
output of the super-resolution network is a high-resolution RGB image SR with a size of
8H x 8W x 3. We generate the reference feature by repeating the 0-th frame of the input
feature N times, and then concatenate the input feature and the reference feature along the
channel dimension to obtain the feature F-, whose size is N x H x W x 2Cj.

LR,¢[i] = LR [0], i € [0,N —1] )

Eeln hw, ={  Rimhwe, ce0,C—1]
O T\ LReg[n, h,w,¢ — CJ, ¢ € [C,2C — 1]

where i denotes the i-th frame of the reference feature. We employ a single layer of
3 x 3 convolution to aggregate information from concatenated features, mapping them to
a high-dimensional feature representation, thus obtaining shallow feature Fs with a size of
N x H x W x C. Here, C represents the channels in the intermediate features, which we
set to 48.

@)

Fs= Convs(F ) (3)

where Convs represents a 3 x 3 convolution. The enhancement of reference features can
not only promote information interaction between frames, but also serve as an implicit
multi-frame co-registration condition, helping to reduce the impact of alignment errors.
In the optimized pyramid alignment (OPA) module, we employ a combination of
deformable convolution and enhanced CNN-Transformer blocks (ECTB) for multi-scale
feature alignment. Subsequently, through the refinement of a cascaded alignment network,
we can capture fine-grained inter-frame displacements, achieving more precise feature
alignment and obtaining enhanced aligned features, denoted as F4, with dimensions
N xHxWxC.
Fa= OPA(Fy) @

Our BESR can flexibly handle different numbers of inputs. To capture more effective
information from the inputs, we use all 14 bursts from the same scene as the input to the
model. For convenience in subsequent feature transformations, we adjust the size of the
aligned features by applying the average pooling operator in the AvgPool module to obtain
the pooled features Fp as the input to the fusion module, with a size of 8 x H x W x C.

Fp= AvgPool(F ,) (5)

In the hybrid feature fusion (HFF) module, we integrate inter-frame complementary
information using ECTBs and facilitate inter-frame communication with reference features,
enhancing the spatiotemporal correlations among multiple frames. Subsequently, we
combine 1 x 1 convolution and Pixel Shuffle to upsample the fused features, achieving the
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restoration of high-frequency details. Finally, through a 3 x 3 convolution layer, we map the
fused high-level semantic feature Fy; (with dimensions 8H x 8W x C) to a high-resolution
RGB image SR, sized 8H x 8W x 3.

Fiy= HFF(F ) (6)
SR = Conuvs(Fy;) @)

3.2. Enhanced CNN-Transformer Block

For pixel-level visual tasks such as image segmentation and super-resolution, when
the input image size is H x W pixels, the complexity of the Transformer model is O(H>W?).
The quadratic complexity results in high computational costs. In super-resolution tasks,
the key lies in capturing similar features. Features in spatial proximity exhibit higher
similarity, while those at spatially distant locations demonstrate lower similarity. Standard
Transformers acquire attention maps through global computations, which results in a
large number of redundant calculations. At the same time, it also lacks local perception
capabilities and does not capture high-frequency information well. To solve these problems,
we propose an enhanced CNN-Transformer block (ECTB), as shown in Figure 2.

Local Enh

NXHXWxC NXHXWxC

NxHXWxC

Enhanced CNN-Transformer Block(ECTB)

Figure 2. The structure of ECTB.

Xp= Geformer(Geformer(X)) (8)
Xg= Xr+Local Enh(X | — X)) )

Here, X represents the input feature, while Xr and X, respectively, denote the in-
termediate and output features of ECTB, all with dimensions H x W x C. By adopting a
CNN-Transformer hybrid structure, ECTB can simultaneously perceive global context and
local detailed features, resulting in an enhanced feature representation.

3.2.1. Geformer

Inspired by Restormer [24], we model global correlations by computing the covariance
across feature channels, and integrate gating mechanisms in the attention and FFN com-
ponents to model neighborhood correlations. Consequently, we propose a gate-enhanced
Transformer called Geformer, whose structure is illustrated in Figure 3. It comprises
two core components: Transposed Gating Attention (TGA) and Spatial-Gate Modulated
Network (SGMN).
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Xn= Xin+TGA(LN(X ;,)) (10)
Xm= XN+SGMN(LN(X y)) (11)

Among them, X;, represents the input feature, while Xy and X represent the inter-
mediate and output features of Geformer, respectively, and their sizes are H x W x C. LN
represents the LayerNorm layer. Through the introduced gating mechanism, Geformer
achieves dynamic spatial modulation of self-attention, which can better capture the cor-
relation of neighborhood features and provide more effective contextual information for
super-resolution tasks.

Transposed Gating Attention (TGA) is a gate-enhanced self-attention mechanism we
proposed, as illustrated in Figure 4. It enhances the ability to extract global correlations by
calculating cross-covariance across feature channels and introducing a gating mechanism
to model spatial neighborhood correlations.

Conv 1x1
DWConv

Conv 1x1

HxWxC

HxWxC

Conv 1x1
DWConv

Kz HWxC e

Transposed Gating Attention(TGA)
Figure 4. The illustration of TGA.
Specifically, given an input feature X of size H x W x C, we expand its channels
through two 1 x 1 convolutions. Subsequently, we enhance local contextual awareness
through a 3 x 3 depth-wise separable convolution. After reshaping the features, we obtain

the query projection (Q), the value projection (V), and two key projections (K; and K5),
where Q, V, Ky, and K5 are all of size HW x C.

Q,V = Split(DWConv 4 (Conv,1(X,))) (12)

K3, Ky= Split(DWConv 4,(Conv,(X))) (13)

Among them, Convy; and DWConvsz; represent the first 1 x 1 convolution and
3 x 3 depth-separable convolution, and Convy; and DWConvs, represent the second
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1 x 1 convolution and 3 x 3 depth-separable convolution. By transposing Q, we ob-
tain the transposed projection QT with dimensions C x HW. We perform element-wise
multiplication between QT and K;j as well as QT and K; to assess the similarity between
the input features, yielding two weight matrices, W; and W,. Subsequently, we apply
GELU to activate Wy, serving as a gating modulation unit for W,. By element-wise multi-
plication of two matrices and applying softmax mapping, the modulated attention map
Attn is obtained. Then, it is multiplied with V' to enhance similar features. Finally, through
1 x 1 convolution, the TGA produces output features X4 with a size of H x W x C.

Wi =Q @K, Wo=Q' @K, (14)
Attn = Softmax(GELU(W ;)-W, /) (15)
Xa= Convi(V ® Attn) (16)

Here, « is a learnable scaling parameter, and ® represents matrix multiplication. Com-
pared to the original self-attention, TGA can effectively capture the correlations between
spatial neighborhood features, enhancing the exploration of global information.

The Feedforward Neural Network (FEN) introduces non-linearity to the Transformer,
but its limitations in feature fitting arise due to the implicit modeling of spatial and channel
relationships. Therefore, we propose the Spatial-Gate Modulated Network (SGMN), a
gate-enhanced efficient feedforward network, as illustrated in Figure 5.

(—b DWConv

— —> Split

LV Identity

Spatial-Gate Modulated Network(SGMN)

Conv 1x1
Conv 1x1

Figure 5. The illustration of SGMN.

Specifically, the network takes the enhanced feature Xt obtained from TGA as input.
We perform high-dimensional mapping on X7 using a 1 x 1 convolution, followed by
nonlinear activation with GELU. Along the channel dimension, we partition the features
into two parts, resulting in two features X; and Xj of size H x W x Cj,, where Cj, denotes the
channels in the high-dimensional feature mapping. One branch undergoes local contextual
enhancement via depth-wise separable convolution, while the other branch undergoes
an identity mapping. Spatial modulation is achieved by element-wise multiplication of
these two features. Finally, we aggregate information along the spatial dimension using a
1 x 1 convolution to obtain the nonlinearly enhanced feature representation Xy, with a
sizeof H x W x C.
X1, Xp = Split(GELU(Convy (X 1))) (17)

Xn1= Convy(DWConv,(X,)-X,) (18)

Compared with standard FFN, our SGMN can explicitly model spatial informa-
tion while reducing redundant information between channels and has a smaller number
of parameters.

Compared to existing Transformer models, our proposed Geformer maintains linear
instead of quadratic computational complexity by establishing inter-feature channel in-
formation interaction. Benefiting from the gating mechanisms introduced in TGA and
SGMN, Geformer can model spatial neighborhood correlations while capturing global
information, thus providing powerful feature learning capabilities for super-resolution
reconstruction tasks.
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3.2.2. Local Enhancement

To enhance the perception of local features, we construct a local enhancement (Local
Enh) module (as shown in Figure 2) for extracting local residuals, which are then added to
the output of the Geformer to obtain augmented hybrid features. The Local Enh module
comprises two cascaded layers of 3 x 3 convolutions and GELU, designed to excite and
compress features, thereby capturing more local detail information. Given an input feature
X, the output feature X of Local Enh can be expressed as:

Xc= GELU(Conv,(GELU(Conv 5(X )))) (19)

The first layer of convolution doubles the channels in the feature map, while the
second layer of convolution recovers the number of channels by reduction. The size of both
Xgand XcisH x W x C.

3.3. Optimized Pyramid Alignment

Compared with SISR, MFSR can utilize the complementary information between
frames by aligning multiple frames with sub-pixel displacements to provide more effective
information for the reconstruction of high-frequency details of the image. Inter-frame
alignment is a key issue in multi-frame super-resolution. Effective alignment can strengthen
the spatiotemporal correlation between frames, allowing the model to capture sub-pixel
differences between frames. Enhancing through the fusion of adjacent frame information is
helpful in mitigating motion-induced blurriness and distortion.

Deformable alignment uses deformable convolution to estimate the offset and resam-
ple adjacent frames to achieve alignment with the reference frame. Deformable convolution
extends traditional convolution by introducing a learnable offset for each convolution
sampling point to adjust the sampling points at each position in the convolutional kernel.
These offsets are generated by the input feature map and another convolution.

Specifically, given a convolutional kernel with K sampling positions, where wy and
ny represent the weight and pre-set offset of the k-th position, and let x(1) and y(11) denote
the features at position n in the input feature map x and output feature map y, deformable
convolution can be defined as follows:

K
y =Y wpx(n+ ne+Ang)-Amy (20)
k=1

where Any and Amy, represent the learnable offset and modulation scalar at the k-th position,
with Amy constrained within the range [0, 1]. As the coordinates after incorporating A
are typically non-integer, resulting in irregular sampling positions, we employ bilinear
interpolation to resample the feature map and obtain the displaced features.

Based on deformable convolution, we propose an optimized pyramid alignment (OPA)
module, as shown in Figure 6. In each layer of the alignment network, we first aggregate
intra-frame context and inter-frame correlation information through the proposed ECTB
to obtain enhanced feature representation, and then utilize deformable convolution to
perform motion estimation and compensation on the aggregated features. In the reference
enhancement (Ref Enh) module, we concatenate and fuse the input feature Fp and the
reference feature F,.¢ along the channel dimension to promote inter-frame communication
and enhance the mining of spatiotemporal associated information.
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Fpln,h,w,c], ce [0,C—1
Filn, h,w,c] = ol ) [ ] (21)
Fregln, h,w,c —C], c € [C,2C — 1]
Fr= GELU(Conv,(F)) (22)

where F/. and F represent concatenated features and fused features, respectively. OPA is
a top-down three-level feature pyramid, where each alignment network layer consists of
ECTBs on both sides, along with a deformable convolution and a reference enhancement
module. To generate the input feature at the (i + 1)-th level, we utilize a convolution with a
3 x 3 kernel and a stride of 2 to downsample the input at the i-th pyramid level.

Fiy1= Convs,(F;) (23)

where F; and F; ;1 represent the input features of i-th level and (i + 1)-th level, respectively.
The input of the i-th deformable convolution consists of two parts: the refined feature
output by the i-th level ECTB and the offset output by the (i + 1)-th level deformable
convolution. The aligned features and offsets output by the (i + 1)-th level are upsampled
through Pixel Shuffle and deconvolution, respectively, and then input to the i-th level. For
each level of alignment network,

F/= ECTBg (Ref Enh(DeConv(ECTB | (F;)))) (24)

Fym=Up(Up(F3) + Fy) + Fy (25)

Among them, F;/ represents the output features and alignment features of the i-th level.
And ECTBy, and ECTBg, respectively, represent the ECTB blocks on both sides of each layer
of the aligned network. By integrating the output of the three-layer network, we obtain
the multi-scale aligned feature Fy;. By repeating the 0-th frame of Fy; 8 times, we construct
reference features to provide more contextual information for feature fusion.

Refli] = Fp[0], i € [0,7] (26)

To further enhance the spatiotemporal consistency of inter-frame features, we cascade
another layer of alignment network after the pyramid structure to refine the Fj; and obtain
an enhanced alignment feature F4, which further improves the alignment accuracy and
can provide more supplementary information for reconstruction.

Fp= ECTBg (Ref Enh(DeConv(ECTB | (F),)))) 27)

3.4. Hybrid Feature Fusion

For feature fusion, we propose a hybrid feature fusion module (HFF), as shown in
Figure 7. The three-layer network enables the model to extract more effective information
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from the fused features. We use reference features to enhance inter-frame correlations
and add them to the aligned features as input to the fusion module. The introduction
of reference features provides additional reference information for feature fusion while
facilitating the interaction of interframe information. By introducing an ECTB to capture
and aggregate global and local contextual information in input features, the network can
more fully exploit inter-frame complementary information, resulting in finer high-frequency
detail recovery.
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Hybrid Feature Fusion(HFF)

Figure 7. The structure of HFE.

In HFF model, the input of the (i + 1)-th level network is obtained by adding the
output features of the i-th level network and the reference features. At each level of the
network, the input features are fused with complementary information between frames
through ECTB. We then utilize 1 x 1 convolution for channel expansion and upsampling
via pixel shuffling to recover the lost details.

Y; 1= Pixel Shuffle(Conv, (ECTB(Y ;4+Ref;))) (28)

where Y; and Ref; represent the output feature and reference feature of the i-th level,
respectively. And Y;, represents the output feature of the (i + 1)th-level. The stepwise
feature fusion and upsampling strategy helps to preserve the spatial information of the
image while mitigating the impact of noise and blurring factors, thereby enhancing the
reconstruction effect. To reduce the model’s parameters, we use ECTB only in the first two
layers and share parameters between the three upsampling layers of reference features to
achieve a lightweight model while maintaining high performance.

4. Experiments
4.1. BurstSR Dataset

BurstSR is a benchmark for the MFSR task proposed by the NTIRE 2022 Burst Super-
Resolution Challenge, which includes synthetic and real-world datasets. Among them,
the synthetic dataset consists of 46,839 bursts for training and 300 bursts for validation.
Each burst contains 14 RAW images of size 48 x 48 pixels. These images are obtained by
converting the raw images from sRGB to linear space by inverse camera pipeline, then
randomly translating, rotating, and downsampling each image by bilinear interpolation,
and finally, mosaicking using Bayer mode. The real-world dataset includes 5405 bursts
for training and 882 bursts for validation. The LR images and HR images are captured
by a smartphone and a DSLR camera with a zoom lens, respectively. They exhibit certain
misalignments in both spatial and color aspects. Therefore, we employ aligned L1 loss
and perceptual loss for model training and evaluate the model performance using aligned
PSNR and SSIM.
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4.2. Evaluation Metrics

Quantitative evaluation based on objective assessment methods is the mainstream
evaluation metric in the current field of super-resolution reconstruction. Among them,
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are two of the most
commonly used metrics for image quality evaluation. PSNR is the most widely used
image reconstruction quality evaluation metric in the current task of super-resolution
reconstruction. It measures the quality of an image by calculating the differences between
corresponding pixels in the reconstructed image and the ground truth image. A higher
PSNR value indicates less distortion in the reconstructed image. SSIM is a full-reference
image quality assessment metric used to measure the similarity between a reconstructed
image and a ground truth image in terms of brightness, contrast, and structure. It provides
a more accurate reflection of human perception of image quality, and a value closer to
1 indicates higher similarity between the reconstructed image and the ground truth image.
Learned Perceptual Image Patch Similarity (LPIPS) is a deep learning-based image quality
assessment metric. It evaluates the quality of images by learning human perception, where
a lower value indicates greater similarity between two images. We use LPIPS along with
PSNR and SSIM as evaluation metrics for the super-resolution models.

4.3. Training Details

We choose the Adam optimizer for model training and set the decay rate parameters
B1 and By to 0.9 and 0.999. During model training, we use the L1 norm as the loss function
and set the batch size to 4. The learning rate is gradually reduced during the training phase
according to the decay strategy of cosine annealing, from the initial value of 1 x 10~* to
1 x 107°. We trained the proposed BESR model for 300 epochs using 4 NVIDIA A5000
GPUs (NVIDIA, Beijing, China) based on the PyTorch 1.10.2 framework. For real-world
data, we use the model weights trained on synthetic data to fine-tune it, with a period of
75 epochs, and the learning rate is reduced from 1 x 107 to 3 x 107°.

4.4. Comparison with State-of-the-Art Methods
4.4.1. Quantitative Results

We quantitatively compare the proposed BESR with other state-of-the-art MFSR meth-
ods, including DBSR, HighRes-net, MFIR, BIPNet, BSRT-S, and RBSR, on benchmark
synthetic datasets and real-world datasets. We use PSNR and SSIM as objective evaluation
indicators of the reconstruction performance of different methods and report the param-
eters and inference time of the models, and the comparison results are shown in Table 1.
The time in the table represents the inference time required to generate a single SR image
of size 384 x 384.

Table 1. Quantitative comparison with state-of-the-art MFSR methods on benchmark datasets. Red
and blue represent the best and second-best reconstruction performance, respectively.

Synthetic Real-World

Methods Parameters (M) Time (ms)
PSNR SSIM LPIPS PSNR SSIM LPIPS
SingleImage [11] 13.01 40 36.86 0.919 0.113 46.60 0.979 0.039
HighResNet [40] 34.78 46.3 37.45 0.924 0.106 46.64 0.980 0.038
DBSR [11] 13.01 431 39.17 0.946 0.081 47.70 0.984 0.029
MEFIR [41] 12.13 420 41.55 0.964 0.045 48.32 0.985 0.023
BIPNet [42] 6.67 130 4193 0.967 0.035 48.49 0.985 0.023
BSRT-S [43] 492 198 42.72 0.971 0.031 48.48 0.985 0.021
RBSR [44] 6.42 336 42.44 0.970 0.035 48.80 0.987 0.022
BESR (Ours) 3.81 61 42.79 0.971 0.031 48.86 0.987 0.022

The comparison results indicate that, compared to other MFSR methods, our BESR
achieves the best reconstruction results on almost all evaluation metrics, fully demon-
strating the effectiveness of the proposed approach. Thanks to the efficient self-attention
mechanism in Geformer, BESR maintains lower model parameters compared to other
methods while enhancing performance. By adopting a CNN-Transformer hybrid structure,
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our model can simultaneously capture local details and global context, providing more
effective information for the super-resolution task. Compared to the latest model RBSR,
our method achieves a PSNR gain of 0.35 dB and 0.06 dB on the synthetic dataset and
real-world dataset of BurstSR, respectively, while also obtaining competitive LPIPS results.

4.4.2. Visual Comparisons

The visual results of the synthetic and real-world datasets are shown in Figures 8-10
and Figures 11-13, respectively. The red box represents the target area that we have selected.
Comparison results across different scenes indicate that, compared to other MFSR methods,
our proposed BESR can better restore high-frequency details lost in the images and exhibit
better robustness to noise, resulting in visually appealing HR images.

HR LR

DBSR MFIR

HR BIPNet BSRT-S RBSR BESR

Figure 8. Visual comparison of img_0012 on the synthetic dataset.
HR LR DBSR MFIR

|ERE R

HR BIPNet BSRT-S RBSR BESR

Figure 9. Visual comparison of img_0060 on the synthetic dataset.

e
| 553 \
T R S
HR LR DBSR MFIR
\ \ \ \
= = = =
BIPNet BSRT-S RBSR BESR

Figure 10. Visual comparison of img_0116 on the synthetic dataset.
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HR BIPNet BSRT-S RBSR BESR

Figure 11. Visual comparison of img_0010_0013 on the real-world dataset.

- 5 B

BIPNet BSRT-S RBSR BESR
Figure 12. Visual comparison of img_0060_0015 on the real-world dataset.

DBSR MFIR

wm (T h]

HR BIPNet BSRT-5 RBSR BESR

Figure 13. Visual comparison of img_0077_0012 on the real-world dataset.

For example, as shown in Figures 8 and 10, our super-resolution results reconstruct
sharp and natural edges, while the generated results from other methods exhibit significant
texture distortions. As depicted in Figure 9, our method can recover more details of the
wall, capturing relatively complete local structures, whereas the reconstruction results
from other methods are blurry and suffer from severe detail distortions. These results
demonstrate that our method effectively restores more high-frequency information.

From the visual comparisons in Figures 11 and 13, it is evident that the reconstruction
results from other methods exhibit significant blurring and detail distortions, whereas
our reconstruction results have fewer artifacts and sharper texture details. Especially in
the scene img_0077_0012, only our method effectively restores the details of the windows.
In Figure 12, it can be observed that our reconstructed results have sharper lines and
higher clarity.
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The visual comparison results indicate that our method, while enhancing the overall
structure, also focuses on local texture details, resulting in better super-resolution results,
further demonstrating the exceptional reconstruction performance of the proposed method.

4.4.3. Ablation Study

In this section, we discuss the effectiveness of key modules in BESR, including the
enhanced CNN-Transformer block, the optimized pyramid alignment module, and the
hybrid feature fusion module. We select the corresponding baselines for the ablation
study of the proposed modules and report the results of the ablation experiments on the
benchmark dataset in Tables 2-5. v and X in the table indicate the presence or absence of
the module respectively.

e  Effectiveness of ECTB.

We use the Transformer Block proposed in Restormer as the corresponding baseline
for the core component ECTB in our network. Our proposed Geformer can dynamically
modulate self-attention through a gating mechanism, providing better modeling of the
correlation of neighborhood features. ECTB adopts a CNN-Transformer hybrid structure,
which can effectively capture and process both local and global information in the image,
thereby providing more effective information for the recovery of high-frequency details.

Table 2. The ablation study of the enhanced CNN-Transformer block (ECTB).

Components Baseline
TGA X X v v v v
SGMN X X X X v v
Local Enh X v v X X v
Benchmark Metrics (PSNR/SSIM)
Synthetic 42.32/0.968 42.64/0.969 42.71/0.970 42.47/0.968 42.58/0.969 42.79/0.971
Real-world 48.43/0.985 48.67/0.986 48.78/0.986 48.52/0.986 48.64/0.986 48.86/0.987

Compared to the baseline, ECTB is able to obtain enhanced feature representations,
resulting in a 0.47 dB gain in PSNR for improved reconstruction performance. We report
the impact of different core components on the model’s reconstruction performance in
Table 3. The results show that our model maintains high performance while having
lower parameters.

Table 3. Comparison of different core blocks of the network.

Synthetic Real-World
Block Parameters (M
oc arameters (M) PSNR/SSIM PSNR/SSIM
ECTB 42.79/0.971 48.86/0.987 3.81
RSTB [22] 42.75/0.971 48.81/0.986 6.09
RHAG [23] 42.76/0.971 48.83/0.987 7.33
PAB [54] 42.69/0.970 48.77/0.986 5.78

e  Effectiveness of OPA.

We chose to use the PCD alignment module proposed in EDVR [55] as the baseline for
the OPA module ablation study. By adopting a CNN-Transformer hybrid structure, ECTB
has the ability to simultaneously perceive local features and model global information and
can effectively capture the spatiotemporal correlation of multi-frame features. In Table 4,
ECTBr, and ECTBg, respectively, represent the ECTBs on the left and right sides of each
layer in the alignment network, playing a crucial role in improving the alignment effect.
The OPA module performs inter-frame alignment at different scales and obtains more
refined alignment features through aggregation. We fuse the reference frame features with
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the current frame features to further enhance the correlation of inter-frame features, thereby
extracting more inter-frame complementary information. Compared with PCD, the OPA
module brings a PSNR gain of 1.13 dB to improve model performance.

Table 4. The ablation study of the optimized pyramid alignment (OPA) module.

Components Baseline
ECTB, X X 4 v/ 4 v
ECTBRr X X X X v v
Ref Enh X v 4 X X v
Benchmark Metrics (PSNR /SSIM)
Synthetic 41.66/0.964 41.78/0.966 42.32/0.968 42.23/0.967 42.64/0.970 42.79/0.971
Real-world 47.93/0.983 48.08/0.984 48.47/0.986 48.35/0.985 48.77/0.987 48.86/0.987
e  Effectiveness of HFFE.

We construct a baseline for HFF module ablation research using three upsampling
layers consisting of 1 x 1 convolution and Pixel Shuffle. The ECTB proposed in this study
can perform fine-grained feature fusion on the obtained alignment features to fully utilize
the complementary information between frames for high-frequency detail reconstruction.
In addition, the introduction of reference features helps to extract more different information
from aligned features, providing an additional reference for reconstruction while alleviating
the problem of edge information loss in image features. Compared with the baseline, the
model using two layers of ECTB achieved a PSNR gain of 0.68 dB, demonstrating its
effectiveness for feature fusion.

Table 5. The ablation study of the hybrid feature fusion (HFF) module.
Components Baseline
NEcTp 0 1 0 1 2 2
Ref X X 4 v X v
Benchmark Metrics (PSNR/SSIM)
Synthetic 42.11/0.966 42.34/0.970 42.18/0.967 42.40/0.969 42.67/0.970 42.79/0.971
Real-world 48.21/0.985 48.43/0.986 48.25/0.985 48.47/0.986 48.79/0.987 48.86/0.987

5. Conclusions

In this study, we propose an efficient burst-enhanced super-resolution network, BESR.
Based on the efficient Geformer introduced in the paper, we construct an enhanced CNN-
Transformer block that effectively aggregates intra-frame context and inter-frame corre-
lation information from multiple frames. Additionally, we leverage reference features to
facilitate inter-frame communication, enhancing spatiotemporal coherence among multiple
frames. To address the challenges of inter-frame alignment and feature fusion, we introduce
optimized pyramid alignment and hybrid feature fusion modules to extract and utilize
complementary information between frames, providing more effective information for the
restoration of high-frequency details. Extensive experiments conducted on two benchmark
datasets demonstrate that BESR achieves state-of-the-art reconstruction performance, pro-
ducing high-resolution images with rich details and clear textures. In the future, our work
will be dedicated to researching super-resolution algorithms for unsupervised models.
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