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Abstract: Molding sand mixtures used in the foundry industry consist of various sands (quar� 

sands, chromite sands, etc.) and additives such as bentonite. The optimum control of the processes 

involved in using the mixtures and in their regeneration after the casting requires an efficient in-line 

monitoring method that is not available today. We are investigating whether such a method can be 

based on electrical impedance spectroscopy (EIS). To establish a database, we have characterized 

various sand mixtures by EIS in the frequency range from 0.5 kHz to 1 MHz under laboratory con-

ditions. A�empts at classifying the different molding sand mixtures by support vector machines 

(SVM) show encouraging results. Already high assignment accuracies (above 90%) could even be 

improved with suitable feature selection (sequential feature selection). At the same time, the stand-

ard uncertainty of the SVM results is low, i.e., data assigned to a class by the presented SVMs have 

a high probability of being assigned correctly. The application of EIS with subsequent evaluation by 

machine learning (machine-learning-enhanced EIS, MLEIS) in the field of bulk material monitoring 

in the foundry industry appears possible. 

Keywords: electrical impedance spectroscopy (EIS); machine learning; support vector machines 

(SVM); feature analysis; classification; foundry; molding materials; sand 

 

1. Introduction 

The application of electrical impedance spectroscopy (EIS) as an analytical method 

is widespread. Examples include material characterization, monitoring and diagnosis of 

ba�ery or accumulator systems, medical applications, or food monitoring [1]. The ad-

vantages of the measurement method include its non-invasive nature, the flexibility of the 

measurement duration and the volume under investigation, and the high information 

content due to the simultaneous determination of the real and imaginary parts of an im-

pedance at various frequencies [1]. Impedance is an integral measure that contains infor-

mation about larger volumes rather than local characteristics, which do not have to be 

statistically representative. Finally, the measurement is harmless to health compared to 

other methods such as X-rays [2]. For all these reasons, EIS is interesting for the in-situ 

monitoring of industrial processes. However, in order to be able to use EIS in an industrial 

environment, appropriate measuring devices are required, as laboratory equipment usu-

ally does not meet field requirements (it tends to be too expensive, too bulky, or too gen-

eral-purpose). Various approaches to replacing laboratory equipment with application-

specific developments can be found in the literature. These developments consist of a con-

trol unit, such as a field-programmable gate array [3], an Arduino DUE [4,5], or a Red 

Pitaya Board [6]. Conventional setups are extended and improved by, e.g., an impedance-

to-digital converter [7], a logarithmic amplifier [4], or a digital auto-balancing bridge [8]. 

Citation: Bifano, L.; Ma, X.;  

Fischerauer, G. Classification of 

Sand-Binder Mixtures from the 

Foundry Industry Using Electrical 

Impedance Spectroscopy and Sup-

port Vector Machines. Sensors 2024, 

24, 2013. h�ps://doi.org/10.3390/ 

s24062013 

Received: 28 February 2024 

Revised: 15 March 2024 

Accepted: 18 March 2024 

Published: 21 March 2024 

 

Copyright: © 2024 by the authors. 

Licensee MDPI, Basel, Swi�erland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

A�ribution (CC BY) license 

(h�ps://creativecommons.org/license

s/by/4.0/). 



Sensors 2024, 24, 2013 2 of 15 
 

 

The operating frequencies range from 0.1 MHz [7] to 10 MHz [8], and the impedance mag-

nitudes range from 100 Ω [8] to 10 GΩ [5]. The relative measurement deviations achievable 

with these application-specific developments are in the low single-digit percentage range 

[3,5–8]. Measurement times compatible with real-time requirements (between a few mil-

liseconds and a few minutes) are achieved if the operating frequencies are restricted to 

sufficiently high values [8,9]. The devices developed in this way offer advantages since 

they can be adapted to the respective problem, such as ba�ery technology [9], corrosion 

monitoring [5], and bioimpedance [3,6,8], and can also be inexpensive and compact com-

pared to laboratory equipment [3,5]. Other research areas that are coming into the focus 

of EIS include environmental technology (microplastics detection [10], nitrate detection 

[11]), biotechnology or medical technology, especially sensor technology for minimally 

invasive surgical techniques, and cell monitoring [12–14]. In the medical field, the suita-

bility of EIS for tomographic examinations is also being investigated [14,15]. 

The number of developments of suitable EIS devices for a wide range of applications 

demonstrates the interest and performance of EIS as a measurement technology in the 

field of online monitoring. An example of such an application is the process of used-sand 

regeneration in the foundry industry, in which used sand from casting production is pro-

cessed so that the product obtained can be reused as a new-sand substitute for mold or 

core production [16] (pp. 311–313). The goal of regeneration is to reduce the raw material 

input of new quar� sand and the landfilling of used sand as a waste product. Such pro-

cesses are currently controlled based on the empirical values of each foundry and with 

offline sand quality analysis. Process optimization in terms of energy consumption and 

product yield is highly desirable, but it is not at all clear how the continuous process state 

monitoring required for such a closed-loop system could be realized in the field and at a 

reasonable cost. We have investigated the merits of EIS as a measuring tool to identify the 

process moment at which regeneration is complete, and the processed former waste sand 

is available for reuse [17]. 

The EIS is intended to collect information on the used sand during the regeneration 

process. The composition of this sand varies depending on the casting process and the 

cast product. Typical main components can be quar� sand, chromite sand, and inorganic 

binder components such as bentonite [16] (pp. 19–65). Since these components are natural 

products, they vary in their properties, such as composition or particle size distribution. 

Some of the influence quantities affecting the measurement result have been characterized 

impedimetrically in the literature. For example, the influence of the water content of dif-

ferent types of bentonites on the dielectric properties was investigated in [18]. In addition 

to moisture, Szypłowska et al. [19,20] analyzed salinity and were able to extract a relation-

ship between conductivity and permi�ivity via the salinity index model. The influence of 

the particle size distribution on the electrical impedance has also been analyzed in the 

literature. For example, Robinson et al. [21] mention its effect on the permi�ivity of the 

measured substance. In our previous EIS analyses of different sand types and mixtures, 

we were also able to show that the impedance spectra are characteristic of each mixture at 

the given particle size distribution of the mixtures [17,22,23]. 

The question that now arises is whether the characteristics or impedance features are 

suitable for distinguishing the two process states—“used sand to be regenerated” and 

“used sand regenerated sufficiently to serve as new-sand substitute”—from each other. 

This corresponds to a binary classification. An analytical solution to this task is difficult 

because of the large number of possible used-sand compositions and process parameters. 

For this reason, we have undertaken to solve the classification problem by machine learn-

ing (ML) in the form of support vector machines (SVM). An SVM has the potential to pro-

vide a generalized solution even though training data are available in limited quantities. 

Analytical problem-solving is no longer necessary. It outperforms numerical solution 

methods in computational speed [24]. The overfi�ing risk is low due to the robust mathe-

matical design. The required computational power is also small due to efficient algorithms 
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[25,26]. Extremely complex nonlinear input-output relationships can be handled with rel-

ative ease, and unique solutions can be found even with large data sets [26]. In addition, 

the risk of misclassification is minimized by maximizing the margin as outliers can be 

detected. The empirical training error is minimized [24,26]. 

The SVM methodology is the subject of ongoing research and development. The main 

focus is on efficiency improvements during training by avoiding numerical iteration pro-

cedures, a reduced memory requirement due to a smaller number of support vectors, and 

an optimized method for selecting the width of the kernel function by avoiding the grid 

search for determining the hyperparameters [27,28]. Approaches include the fast support 

vector classification or the semiproximal support vector machine [27,29]. Weakening the 

condition of a hard-margin to a soft-margin loss is also mentioned as a possible perfor-

mance improvement [30]. Other approaches aim at improved algorithms that specifically 

reduce the input data to those that contain the most important pieces of information, lead-

ing to a higher training speed [31]. Typical SVM applications are in the field of image 

processing, i.e., surface, face, and object recognition or the analysis of handwriting and 

text classification [24,32]. Examples of more specific applications in medical technology 

include the analysis of ECG signals [33] and tumor detection [2,34]. More recent SVM ap-

plications are material classification tasks such as moisture determination in wood chips 

[35] or classification of various coals and rocks [36]. 

Our research follows on from material investigations, with the raw data being gen-

erated using EIS. Here, the input data for the SVM, denoted as features, are analyzed and 

selected both manually and automatically. The obtained results are then presented and 

compared within the context of this study. Importantly, employing effective feature selec-

tion techniques yields SVM models that demonstrate reduced complexity and a smaller 

risk of overfi�ing. 

Based on the positive experiences described in the literature when investigating ma-

terials with EIS and the subsequent data analysis with SVM and based on the further in-

vestigation of the capabilities of SVM, we measured typical molding material mixtures 

from foundries impedimetrically and used the features extracted from the EIS output data 

for classification with SVM. 

2. Materials and Methods 

The molding materials investigated by us are listed in Table 1. They are typical ma-

terials for foundries. Quar� sand (MUT 1 and 2) or, in special applications, chromite sand 

(MUT 4) is used as the mold base material. To ensure that the mold has the necessary 

stability, various binder systems are used. Here, two inorganic systems based on bentonite 

were selected, which were added to the mold base material in different concentrations 

(MUT 5 and 6, both a–c). The two substances differed in terms of composition since the 

system of MUT 5 contained, in addition to the binder bentonite, further additives preset 

by the manufacturer. The binder system of MUT 6, on the other hand, was pure bentonite. 

MUT 3 is also quar� sand. Due to its lower quar� content, it does not meet the require-

ments of foundries, but it allowed us to test whether the proposed method can also dis-

tinguish quar� sands with varying quar� contents. 
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Table 1. Chemical composition of the molding materials was investigated. MUT 1 and 2 are quar� 

sands with 0.2 mm and 0.4 mm mean grain size, respectively (manufacturer’s data). MUT 3 is also 

quar� sand but with lower quar� content and a mean grain size of 0.3 mm. MUT 4 is a chromite 

sand with a mean grain size of 0.3 mm. MUT 5 and 6 are mixtures of MUT 1 and different prefabri-

cated typical binder mixtures. MUT 1 and MUT 6 have been used in previous investigations [17], 

and MUT 4 in [23]. Bentonite is denoted as “B”, and other additives are denoted as “A”. 

MUT 
Mass Fraction in % 

SiO2 Al2O3 Cr2O3 Fe2O3 MgO K2O B A 

1 99.53 0.01 0 0.01 0.01 <0.01 0 0 

2 99.53 0.01 0 0.01 0.01 <0.01 0 0 

3 84.6 7.63 0 0.21 0.34 5.35 0 0 

4 0.7 14.8 46.4 28.2 9.5 0 0 0 

5a 98.53 <0.01 0 <0.01 <0.01 <0.01 0.6 0.4 

5b 94.55 <0.01 0 <0.01 <0.01 <0.01 3 2 

5c 89.58 <0.01 0 <0.01 <0.01 <0.01 6 4 

6a 98.53 <0.01 0 <0.01 <0.01 <0.01 1 0 

6b 94.55 <0.01 0 <0.01 <0.01 <0.01 5 0 

6c 89.58 <0.01 0 <0.01 <0.01 <0.01 10 0 

The molding compounds listed in Table 1 were each filled into a cylindrical plate-

capacitor measuring cell (Figure 1), characterized, removed, filled in again, etc., and the 

whole cycle was repeated until ten fillings were characterized. The measurement of each 

individual filling involved a total of 20 repeated frequency sweeps so that at the end of 

the measurement series, a database of 10 × 20 frequency sweeps per MUT was available. 

The frequency range investigated included 145 frequency points between 0.5 kHz and 1 

MHz. One sweep took approximately 1 min. 

These se�ings were chosen with field applications in mind. The laboratory applica-

tion of EIS usually involves lower frequencies, sometimes in the MHz range, and often 

frequencies higher than 1 MHz. Measuring low-frequency sinusoids, however, requires 

long measurement times, which is incompatible with the dynamics of an industrial pro-

cess such as used-sand regeneration. In addition, higher-frequency signals are sensitive to 

disturbances in the field. In addition, they do not provide significant information in the 

current context. 

 

Figure 1. Cross-section of measurement cell used for sand characterization. (1) Wood base. (2) Mac-

rolon stamp. (3) Polymer cylinder. (4) Material under test (MUT). (5) Copper electrodes (Area: 133 

cm2. Distance: 4 cm) [22]. 

Impedances were measured by an Agilent E4980A LCR meter. The measuring cell 

was connected to the instrument via two coaxial cables, and their shielding was connected 

to the ground LCR meter. Measurements were then performed at room temperature (be-

tween 21 °C and 26 °C). A broader temperature range is not necessary because the regen-



Sensors 2024, 24, 2013 5 of 15 
 

 

eration in the foundry is performed at temperatures between 20 °C and 40 °C. Impedimet-

ric investigations of the MUTs in this temperature window did not reveal any significant 

influence of the temperature on the data. 

3. Results and Discussion 

3.1. Overview of the Raw Impedance Data 

To illustrate the characteristics of the measured impedances, Figure 2 shows ten spec-

tra randomly selected from all spectra obtained with pure substances, MUTs 1 through 4. 

The following aspects can be identified: 

- The details of the impedance locus are characteristic for each cell filling, i.e., for each 

MUT. 

- The more similar the MUTs are in their composition, the more difficult it is to differ-

entiate the impedance curves (cf. MUTs 1 and 2). 

- The dependence of the complex permi�ivity on the grain size distribution mentioned 

in the introduction shows up in a similar dependence on the impedance. For exam-

ple, the impedance–locus curves for MUTs 1 and 2 are slightly shifted against each 

other. 

- It does not suffice to merely look at the shape of an impedance locus. The frequency 

associated with each point of the locus is also important. Otherwise, by way of an 

example, one could hardly distinguish MUTs 3 and 4 as their impedance–locus 

curves without frequency labels along the curves are quite similar. 

- The largest relative standard uncertainty occurring in Figure 2 appears at 500 Hz with 

a value of 7.9% for the resistance and 1.8% for the reactance. The EIS data are, there-

fore, deemed suitable for evaluation by machine learning. 

 

Figure 2. Impedance–locus plot of ten impedance spectra (raw measurement data): MUT 1 (red), 

MUT 2 (orange), MUT 3 (yellow), MUT 4 (green). 

3.2. Feature Generation 

It is conceivable, of course, to use the raw EIS data as direct input to an ML algorithm, 

e.g., a classifier [2]. For large data sets, this can turn out to be computationally expensive 

both during the algorithm training and during its field use. The approach to completely 

turn over the data interpretation to an algorithm also involves risks. One cannot be sure 

what exactly an ML algorithm learns from training data, and it is difficult to gain any 

physical insight from its results. We, therefore, took a different approach. Instead of pass-

ing raw EIS data to an SVM classifier, we extract m features from the n  raw data (with 
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n > m ) to be passed to the classifier. This leads to SVMs that are computationally less ex-

pensive, especially with large data sets, and faster to train. It is not quite what is called 

physics-informed ML but may be considered to be data-quality restricted ML. 

We focused on two types of features: statistical features of impedance spectra on the 

one hand (feature class A, [37]) and parameters of approximation curves fi�ed to the im-

pedance–locus curves on the second hand (feature class B, [37]). The four features belong-

ing to class A used in our studies were the median and the mean of both the measured 

resistance and the measured reactance of a MUT sample over the entire frequency range 

(see [17]). The three features belonging to class B were the slope, the intercept with the 

vertical axis, and the coefficient of determination of a regression line for the measured 

impedance–locus curve of a MUT sample in double-logarithmic representation. Figure 3 

visualizes the result of fi�ing a line to an impedance curve section in double-logarithmic 

representation to convey an idea of why such a linear fit produces meaningful features in 

the given context. 

 

Figure 3. Impedance–locus plot, in double-logarithmic representation, for a measurement cell filled 

with MUT 1 (circles) and linear regression line (solid curve). The three extracted class-B features—

“slope”, “intercept”, and “coefficient of determination”—are also visualized. 

3.3. Classification with SVM 

We used the Classification Learner as part of the Statistics and Machine Learning 

Toolbox 12.1 of MATLAB R2021a [38] to generate SVMs, which were adapted to classify 

MUTs of the type considered in this work. A total of 70% of the available data were used 

for training and 30% for testing. To check the robustness of the SVM with respect to pos-

sible outliers in the measurement data, the data were randomly divided into training and 

test data ten times. The following list provides an overview of this grouping: 

 10 MUTs investigated. 

 Per MUT: 200 measurement repetitions (of which 140 were used for training and 60 

were used as test data). 

 Per impedance spectrum: 7 features (four of class A and three of class B). 

 Together, this yielded 10 × 200 × 7 = 14,000 feature values. 

 In an experiment based on fn  out of the 7 features ( f = 1...7n ), the corresponding 

subset of 10 × 200 × fn  = 2000 × fn  feature values was then randomly split into 0.7 

× 2000 × fn  = 1400 × fn  feature values for training and 0.3 × 2000 × fn  = 600 × 

fn  feature values for testing. Such splits were made 10 times per experiment. 

The parameter se�ings used to generate the ten SVMs are listed in Table 2. 
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Table 2. Parameters used to generate SVMs. 

Parameter Se�ing 

Model type Fine Gaussian SVM 

Cross-validation 10-fold 

Kernel function Gaussian 

Box constraint level 1 

Kernel scale mode Auto 

Multiclass method One-vs-One 

Standardize data True 

Loss function Hinge loss 

For each feature described in Section 3.1, SVMs were generated with the parameters 

listed in Table 2 and in the manner described in the bullet list above ( f = 1n ). In the fol-

lowing, for brevity’s sake, we only discuss the results for the feature “median resistance” 

in detail. Only the final results are presented for all other features. 

The confusion matrix obtained for the feature “median resistance” with the selected 

data is shown in Table 3. The confusion matrix columns list the MUTs predicted by the 

SVM, whereas the rows list the MUTs actually present. The entries on the diagonal are the 

numbers of correct classifications, and off-diagonal entries are the numbers of wrong clas-

sifications. For example, in 140 out of 140 cases, MUT 1 was correctly identified by the 

SVM. MUT 2 was correctly identified in 110 out of 140 cases but was mistaken for MUT 

5a in 20 cases, for MUT 6a in 2 cases, and for MUT 6c in 14 cases. The shaded rows in Table 

3 indicate those MUTs that the SVM could not identify correctly in all cases. The misclas-

sifications involve very similar mixtures of substances. Such cases may pose problems for 

classifiers based on a single feature only. Their classification quality is still quite good but 

not as excellent as when the MUTs differ significantly. The assignment correctness of this 

training data set results in 90.9%. 

Table 3. Confusion matrix of the training data for the feature “median resistance” for one chosen 

distribution. 

True 

MUT 

Predicted MUT 

1 2 3 4 5a 5b 5c 6a 6b 6c 

1 140 0 0 0 0 0 0 0 0 0 

2 0 110 0 0 21 0 0 5 0 4 

3 0 0 140 0 0 0 0 0 0 0 

4 0 0 0 140 0 0 0 0 0 0 

5a 0 20 0 0 110 0 0 9 0 1 

5b 0 0 0 0 0 138 0 0 0 2 

5c 0 0 0 0 0 0 140 0 0 0 

6a 0 2 0 0 11 0 0 123 0 4 

6b 0 0 0 0 8 0 0 1 129 2 

6c 0 14 0 0 1 0 0 16 6 103 

Each of the available data sets yields a slightly different confusion matrix and slightly 

different assignment correctness since the assignment of the data to the training or test 

data varies slightly. It follows that the result of the SVM, i.e., the assignment correctness 

and thus the probability of misclassification, depends on the choice of data. To be able to 

describe the quality of the SVM be�er and independently of the data sets, we, therefore, 

used the ten confusion matrices with the corresponding assignment correctnesses and 

performed an uncertainty analysis by calculating the standard uncertainty / 10u s  

with s  the standard deviation according to [39] (p. 10). This then led to a complete meas-

urement result for the correctly assigned data of the confusion matrix, i.e., the diagonal 



Sensors 2024, 24, 2013 8 of 15 
 

 

elements, and for the assignment correctness. The determined ten assignment correct-

nesses of the ten data sets for the feature “median resistance” are listed in Table 4. 

Table 4. Assignment correctness AC in % for the application of the feature “median resistance” to 

ten different training data sets. 

Data Set No. i 1 2 3 4 5 6 7 8 9 10 

ACi/% 90.9 91.1 90.6 90.7 91.6 91.6 91.9 91.2 91.6 90.9 

From the assignment correctnesses of Table 4, a mean assignment correctness of 

91.2% and an absolute standard uncertainty of 0.14% are then obtained for the ten training 

data sets evaluated. Therefore, the complete measurement result for the assignment cor-

rectness () with the training data when using the feature “median resistance” is 

= 91.2 % ± 0.14 %
M edian - R

A C . Following the same procedure, the corresponding values 

for the other features and test data were obtained, as shown in Table 5. 

Using a confusion matrix of the averaged values of the assignment correctness and a 

matrix of the standard uncertainty elements matching the confusion matrix, it is then pos-

sible to estimate more precisely how often a particular misclassification may occur. These 

two matrices for the training data and the feature “median resistance” are shown in Tables 

6 and 7. 

Table 5. Means and standard uncertainties of assignment correctness for all features and broken 

down by training and test data. 

Feature 

Class 
Feature 

Training Data Test Data 

Mean in 

% 

Std. unc. in 

% 

Mean  

in % 

Std. unc. in 

% 

A Median resistance 91.2 0.14 90.6 0.28 

A Median reactance 88.9 0.19 88.5 0.46 

A Mean resistance 86.6 0.24 87.0 0.54 

A Mean reactance 84.8 0.23 85.3 0.60 

B Slope of regression line 83.1 0.23 82.8 0.56 

B Intercept of regression line 92.3 0.29 92.0 0.33 

B 
Coefficient of determination of 

regression line 
88.1 0.29 87.3 0.52 

Table 6. Confusion matrix of the mean values of all training data sets for the feature “median re-

sistance”. 

True 

MUT 

Predicted MUT 

1 2 3 4 5a 5b 5c 6a 6b 6c 

1 140 0 0 0 0 0 0 0 0 0 

2 0 111 0 0 19 0 0 3 0 8 

3 0 0 140 0 0 0 0 0 0 0 

4 0 0 0 140 0 0 0 0 0 0 

5a 0 19 0 0 114 0 0 6 1 1 

5b 0 0 0 0 0 139 0 0 0 1 

5c 0 0 0 0 0 0 140 0 0 0 

6a 0 1 0 0 12 0 0 123 1 4 

6b 0 0 0 0 5 0 0 1 131 4 

6c 0 14 0 0 1 0 0 16 9 100 
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Table 7. Matrix of the absolute standard uncertainty elements in % of the confusion matrix of means 

from Table 6. 

True 

MUT 

Predicted MUT 

1 2 3 4 5a 5b 5c 6a 6b 6c 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0.99 0 0 0.82 0 0 0.62 0 0.50 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5a 0 0.81 0 0 0.99 0 0 0.72 0.26 0.15 

5b 0 0 0 0 0 0.21 0 0 0 0.21 

5c 0 0 0 0 0 0 0 0 0 0 

6a 0 0.21 0 0 0.74 0 0 0.81 0.17 0.26 

6b 0 0 0 0 0.69 0 0 0.20 0.86 0.88 

6c 0 0.78 0 0 0.16 0 0 0.60 0.67 1.28 

The comparison of Tables 6 and 7 reveals that most of the training data are assigned 

to the correct MUT class using the feature “median resistance”. The results are worse for 

MUT 6c. This concerns both the mean value of all data correctly assigned to this class (100 

is the lowest value among all diagonal elements in Table 6) and the standard uncertainty 

(1.28% is the largest value of all correctly assigned data, i.e., all diagonal elements, in Table 

7). Thus, improving the classification quality via a combination of different features to 

generate an SVM must be the goal. 

3.4. Combined Features for Classification 

The classification of similar mixtures of substances, which proved difficult when 

based on a single feature only, should be more successful when two or more features are 

passed to a classifier f 2n  . We investigated the benefits of combining two features 

nf = 2  when training SVMs with the se�ings from Table 2. The resulting mean values of 

the assignment correctness and the standard uncertainty are listed in Table 8. As in the 

previous section, the assignment correctnesses within ten different data sets were deter-

mined for the three feature combinations shown in Table 8 and then averaged for each 

feature combination. Again, the standard uncertainty as a measure for the variance of each 

assignment’s correctness was determined for each investigated feature combination. The 

training confusion matrix for the feature combination “median resistance + median reac-

tance” for the mean values is shown in Table 9. 

Table 8. Assignment correctness when using a combination of two features to classify MUTs. 

Feature Combination 

Training Data Test Data 

Mean in 

% 

Std. unc. in 

% 

Mean in 

% 

Std. unc. in 

% 

Median resistance + median reactance 99.7 0.04 99.7 0.07 

Mean resistance + mean reactance 100 0.00 100 0.00 

Slope + intercept of regression line 100 0.00 100 0.00 

Table 9. Confusion matrix of the training data for the feature combination “real and imaginary part 

of the median” applied to the mean values of all data sets. 

True 

MUT 

Predicted MUT 

1 2 3 4 5a 5b 5c 6a 6b 6c 

1 140 0 0 0 0 0 0 0 0 0 

2 0 139 0 0 1 0 0 3 0 0 

3 0 0 140 0 0 0 0 0 0 0 
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4 0 0 0 140 0 0 0 0 0 0 

5a 0 4 0 0 136 0 0 0 0 0 

5b 0 0 0 0 0 140 0 0 0 0 

5c 0 0 0 0 0 0 140 0 0 0 

6a 0 0 0 0 0 0 0 140 0 0 

6b 0 0 0 0 0 0 0 0 140 0 

6c 0 0 0 0 0 0 0 0 0 140 

The assignment correctness assumed a value of 99.7% in the worst case, i.e., the data 

could be assigned to the individual MUT classes very reliably via the feature combinations 

presented. Overall, it can be stated that the use of two features improved the classification 

quality significantly. In the case of the feature combination used for Table 9, the SVM only 

had misclassifications for MUT 2 and MUT 5a (rows shaded in gray). The occasional con-

fusion of MUT 2 with MUT 5a or 6 and vice versa results from the similarity of these 

mixtures in terms of chemical composition. It may well be that the recorded impedances 

sometimes are too similar to safely allow discrimination. The results for one training data 

set shown in Figures 3 and 4 support this assumption. 

 

Figure 4. SVM classifier operating in the 2D feature space spanned by the median resistance and the 

median reactance for one training data set. (a) Distribution of the data points. (b) Division of the 

feature space into regions associated with the ten different MUT classes. The largest region is taken 

up by MUT 6c (color: magenta). (c) Data points with associated decision boundaries. The points 

marked by black circles are the support vectors defining the decision boundaries. The zoomed-in 

region contains data points belonging to MUT 1. 
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The distribution of measurement points in the feature space spanned by the median 

resistance and the median reactance, Figure 4a, already suggests that most of the points 

belonging to a given MUT are separable from the rest. However, the feature ranges of 

MUTs 2, 5a, and 6a overlap, which may have led to the misclassifications documented in 

Table 9. Figure 4b graphically shows how the SVM generated with the training data di-

vides the feature plane into ten distinct domains and assigns each domain to one MUT. 

The color code of the respective domain is based on the colors assigned to the individual 

MUTs in Figure 4a. Programmatically, the domain-to-MUT mapping was solved in such 

a way that a binary SVM was generated for each MUT, which had to distinguish between 

two material classes, the selected MUT and all the rest (one vs. all). In a loop, the proce-

dure was applied to all MUT classes, and a total of ten binary SVMs were generated, with 

each individual SVM providing the corresponding decision boundary of the associated 

MUT. The decision boundaries are shown in Figure 4c by colored lines matching the colors 

of the associated MUTs. The feature points marked by black circles are the so-called sup-

port vectors that define the decision boundaries. The number of support vectors is related 

to the choice of the box constraint: The smaller the box constraint is chosen, the more 

points are support vectors, i.e., the higher the probability of overfi�ing. Such overfi�ing 

is detrimental because the generated SVM then classifies the training data particularly 

well but produces less than optimum results for any other data not part of the training. In 

this application, the box constraint was chosen as 1, and this avoided overfi�ing. This can 

be seen from the smooth shape of the decision boundaries and is also confirmed by the 

values of the assignment correctness of the test results (Tables 5 and 8). The la�er are in 

the same range as the corresponding values for the training data, although the SVM has 

never seen the test data before the actual test. 

It is noticeable that the areas enclosed by the decision boundaries in Figure 4c are 

smaller than the color-coded assignment domains in Figure 4b. The reason for this is that 

all data points in the area enclosed by the decision boundary are assigned to the associated 

MUT class in any case. Points that lie outside this range can be assigned to different MUT 

classes. Which class they are then assigned to depends on the probability of assignment 

to a class that the generated SVM calculates for these points, i.e., the posterior probability. 

Figure 5 represents this assignment probability for the chosen feature space. This repre-

sentation allows statements about the probability that an arbitrarily chosen point in the 

feature space belongs to one of the MUT classes. Large parts of the region marked in ma-

genta in Figure 4b (MUT 6c) have a low assignment probability of less than 20%. It follows 

for data points that fall into this region of the feature space that they are assigned to class 

MUT 6c, but there is only a low probability that they actually belong to class MUT 6c. 
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Figure 5. Probability ranges predicted with the generated SVM operating in the feature space 

spanned by the median resistance and the median reactance of one data set (same EIS input data as 

for Figure 4). The zoomed-in region at the bo�om contains the data points produced with MUT 1. 

The zoomed-in region on the right shows the prediction probabilities in the area of the data of MUT 

2 (orange), MUT 5a (green), and MUT 6a (blue). The black arrow marks those points of MUT 5a, 

which are located in the area of class MUT 2 and therefore are misclassified. 

Zooming into the region of MUT 1 shows that, as expected, data points associated 

with unknown MUTs are more likely to be classified as MUT 1 the closer they are to the 

MUT-1 training data. As a result, the decision boundary of the MUT 1 class is similar to 

this in Figure 4c. The zoomed-in probability range of the feature data of MUTs 2, 5a, and 

6a shows why it is difficult to classify the three MUTs unambiguously based on the two 

selected features. The data lead to very similar feature values due to the very similar chem-

ical composition of the three MUTs (see Table 1). As a consequence, and by way of an 

example, the data points of MUT 5a marked with an arrow in Figure 5 are misclassified 

as MUT 2. More than two features are required to prevent such misclassification. 

3.5. Results with Automated Feature Selection 

The features to be used for an SVM can be selected by known algorithms, e.g., Se-

quential Feature Selection (SFS) [40]. SFS is a method employed to select the most valuable 

features based on a criterion, such as the minimum classification error of the SVM con-

structed from the training data. The procedure starts with the creation of a random non-

stratified partition for a 10-fold cross-validation on all observations, amounting to the 2000 

impedance spectra in our specific case. 

The algorithm sequentially builds a candidate set by adding features one at a time. 

The feature that exhibits the best performance, as indicated by the smallest cross-validated 

criterion, becomes the initial member of the candidate set. This process iterates for each 

remaining feature, generating new candidate sets by adding the corresponding feature to 

the existing candidate set. The cross-validated criterion for each new candidate set is then 
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computed and removed. The feature that causes the most significant improvement of the 

model performance, notably by reducing the cross-validated criterion value, is added to 

the candidate set. 

This iterative procedure continues until adding a feature no longer results in a sub-

stantial improvement (i.e., decrease) in the criterion value beyond the termination toler-

ance, set at 10−6 in our case. 

According to the SFS results, the first and most valuable feature was the intercept of 

the regression line, with a cross-validated criterion value of 0.00104. This agrees with Table 

5, in which the highest assignment correctness is documented for the intercept of the re-

gression line as a feature. The combination of intercept with median reactance led to the 

highest assignment correctness among all two-feature combinations (cross-validated cri-

terion value below 10−6). These two features alone could perfectly classify all observations. 

The addition of further features did not contribute significantly to the classification task. 

To check on this result, the original dataset was once more randomly divided into 

training and test data at a ratio of 70% to 30%. For the two features selected through SFS, 

an SVM was generated with the parameters listed in Table 2. The test results demonstrate 

a remarkable 100% classification accuracy. 

4. Conclusions 

This contribution is concerned with the real-time assessment of molding-compound 

quality in field environments of the foundry industry. The task involves (a) the generation 

of measurement data, (b) the interpretation of the measurement data, and (c) some meas-

ure for the overall soundness of the interpretation. Task (a) was solved by EIS. This then 

means that entire impedance spectra (or, put differently, complex-valued frequency se-

ries) form the basis of step (b). 

Step (b) was tackled by machine learning in general and by SVM in particular. In 

principle, SVM can be expected to be suitable for sand classification based on EIS spectra, 

but we have actually demonstrated it and have now investigated the key points that need 

to be considered. Feature candidates to be used for classification by the SVM were the 

median resistance, the mean resistance, the median reactance, and the mean reactance of 

an entire impedance spectrum (feature class A), as well as the fit parameters slope, inter-

cept, and coefficient of determination of a linear fit of the logarithmized measurement data 

(feature class B). Convincing assignment results (>83%) were achieved even with single 

features, with the median resistance performing particularly well (>90%). Misclassifica-

tions could be explained by similar compositions of two or more molding materials. 

To achieve even be�er assignment results, two features were combined, and a new 

SVM was generated for each case. As a result, the overall assignment correctness could be 

increased for all feature combinations examined so that values of over 99% were achieved. 

As we can show, by combining the features with the highest information density deter-

mined by an SFS, viz., the intercept of the regression line and the median reactance, one 

can achieve an assignment correctness of 100%. 

Regarding task (c) from above, variance analysis of the SVM results has shown that 

the uncertainty can be a valuable quality criterion for an SVM result in addition to the 

assignment correctness. The assignment correctness can be high overall, although the un-

certainty of any one class assignment is also high. It is our understanding that measure-

ment results involving some form of machine learning cannot be trusted (in the sense that 

led to the GUM methodology) unless a variance analysis or an equivalent approach is 

performed. At least for the material systems studied by us to date, we believe that we can 

state the following: EIS spectra are suitable input data to SVM classifiers, which are able 

to classify molding compounds reliably and with a small enough uncertainty to be useful 

for foundry applications. 

In further steps, the SVM will be optimized, i.e., an optimal hyperparameter selection 

will be performed. With the results generated in this process and the classification find-

ings, the aim will then be to refine the classes in order to be able to make concentration 
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statements about how much bentonite is present in the measured mold material via a re-

gression SVM. This aspect is highly relevant in the field of molding material preparation 

in foundry applications. 
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