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Abstract: Lateral flow immunoassay (LFIA) is extensively utilized for point-of-care testing due to its
ease of operation, cost-effectiveness, and swift results. This study investigates the flow dynamics and
reaction mechanisms in LFIA by developing a three-dimensional model using the Richards equation
and porous media transport, and employing numerical simulations through the finite element method.
The study delves into the transport and diffusion behaviors of each reaction component in both
sandwich LFIA and competitive LFIA under non-uniform flow conditions. Additionally, the impact
of various parameters (such as reporter particle concentration, initial capture probe concentrations
for the T-line and C-line, and reaction rate constants) on LFIA performance is analyzed. The findings
reveal that, in sandwich LFIA, optimizing parameters like increasing reporter particle concentration
and initial capture probe concentration for the T-line, as well as adjusting reaction rate constants, can
effectively enhance detection sensitivity and broaden the working range. Conversely, in competitive
LFIA, the effects are inverse. This model offers valuable insights for the design and enhancement of
LFIA assays.

Keywords: lateral flow immunoassay (LFIA); non-uniform flow; sandwich LFIA; competitive LFIA;
finite element method

1. Introduction

Lateral flow immunoassay (LFIA) has been widely used in recent years as a main-
stream instant diagnostic method due to its advantages of easy operation, low material
cost, and fast detection speed [1,2]. It has been widely applied in medical diagnosis, food
safety, environmental monitoring, and other fields [3–8]. Large molecular analytes such as
proteins are typically tested using sandwich assays, while small molecule analytes such as
drugs of abuse are analyzed using competitive or inhibitory assays [9–11]. There may be
multiple forms of reaction patterns, but they all have a common feature: reporter particles
are captured by reagents immobilized on the test and control lines to form complexes,
which generate visual signals within minutes. LFIA can easily obtain qualitative or semi-
quantitative results, but compared to large quantitative detection instruments, it has many
limitations in sensitivity.

Researchers have made many innovative efforts to improve the sensitivity of LFIA,
such as inventing new reporter particles [12,13], optimizing membrane properties [14,15],
improving experimental reagents [16,17], modifying LFIA geometry [18–20], and using
different technologies [21–23]. These innovations have indeed enhanced the detection
sensitivity. However, the development of lateral flow immunoassay test strips from the
design stage to product development and final manufacturing is a process that applies
principles of biology, chemistry, physics, and engineering. Structural and material changes
require a considerable amount of experimentation [24].
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In this context, computer simulation has become a practical tool to reduce the large
amount of experimental work required for LFIA development. Simulation models of
LFIA will allow developers to design and explore different architectures, materials, and
analysis formats to seek better binding efficiency and improved detection sensitivity. Fur-
thermore, running these simulation experiments significantly reduces development costs
and time. Gasperino et al.’s review summarizes existing models [25], emphasizing the
importance of computational models in quantifying performance and predicting future
trends. Qian pioneered the establishment of mathematical models for sandwich and com-
petitive LFIA [26,27], including a complete set of coupled reactions considering uniform
and constant fluid velocity through the test lines. Berli proposed a simple mathematical
model that condenses the main system parameters into two dimensionless parameters [28],
relative fluid velocity, and relative analyte concentration, to quantitatively describe the
dynamics of analyte capture in LFIA. Sotnikov used analytical (non-numerical) methods
to calculate the dynamics of immune complex formation in continuous flow systems and
also proposed an analysis of competitive LFIA under non-equilibrium conditions [29],
obtaining symbolic solutions of differential equations describing the system [30]. Liu et al.
established a model where reporter particles can bind to multiple target molecules and
also developed a method to convert LFIA design parameters between simulation and
experimentation [31,32]. Furthermore, they combined Langmuir surface reaction with
convection–diffusion reaction equations to establish a thickness model for LFIA [33]. Asadi
conducted a numerical study of spontaneous self-suction of shearing-related fluids using
an improved Richards equation, showing that the average velocity of LFIA on the test
line is strongly influenced by the microstructure of the absorption pad [34]. Schaumburg
modeled LFIA using the finite element method in a Python environment and discussed its
application in different dimensions [20].

Inspired by the work of Schaumburg and Liu, expanded on Qian’s numerical model
and the COMSOL model established by Ed Fontes [35], we develop a 3D model of LFIA
within the framework of porous media transport phenomena in COMSOL. Finite element
simulations of sandwich LFIA and competitive LFIA were conducted to analyze a complete
set of biochemical reactions involved in LFIA throughout the entire 3D domain. This in-
cluded capillary-driven flow velocities, transport and diffusion of each reaction component
under non-uniform flow, and the effects of different parameters (analyte concentration,
reporter particle concentration, initial capture probe concentrations for T-line and C-line,
reaction rate constants) on LFIA performance.

2. Mathematical Modeling

In this section, we use equations to simulate all the transport phenomena related to
the performance of LFIA, including fluid dynamics, solute transport, and reaction kinetics.
The model is based on the classical approach of porous media, where the microstructural
properties of the matrix are represented by macroscopic parameters such as porosity, pore
size, and permeability.

2.1. Fluid Dynamics Model

The lateral flow immunoassay strip is a porous structure, and the interaction between
the liquid and the pore walls causes capillary forces that drive the liquid forward. In this
paper, the Richards equation is used to describe the fluid dynamics model of capillary
seepage in porous media. The Richards equation is primarily used to analyze flow in
variably saturated porous media. In this type of flow, as the fluid passes through the
porous medium, it fills some pores and drains from others, leading to changes in hydraulic
properties. The specific expression is as follows:

ρ

(
SeS +

Cm

ρg

)
∂p
∂t

+∇ · (ρu) = Qm (1)

ρεp = θs (2)
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u = −κ

µ
∇p (3)

κ = kskr(Se) (4)

In the equation, ρ is the density of the solution; Se is the effective saturation; S is
the specific storage coefficient; Cm is the specific moisture capacity; p is the pore water
pressure; g is the acceleration due to gravity; ∇ is the Hamiltonian operator; u is the flow
velocity; Qm is the sink or source term of the solution; εp is the porosity; θs is the saturation
volumetric fraction; µ is the dynamic viscosity; κ is the permeability; ks is the saturated
hydraulic conductivity; and kr is the relative hydraulic conductivity. The parameters related
to unsaturated seepage in this model are all fitted using the Brooks–Corey model.

2.2. Transport of Dilute Species in Porous Media

The transfer of dilute species in porous media is mainly used to simulate the migration
and reaction of substances in porous media, calculating the concentration and transfer of
substances in porous media, including the transfer mechanisms of diffusion, convection,
migration, dispersion, adsorption, and volatilization of chemical substances in porous
media. The specific expression is as follows:

∂(θci)

∂t
+

∂(ρcP,i)

∂t
+

∂
(
θgcG,i

)
∂t

+∇ · Ji + µ · ∇ci = Ri + Si (5)

In the formula, θ is the volumetric water content; ρ is the density of the solution; ci is
the solute concentration in the solution; cP,i is the adsorbed concentration in the solution;
cG,i is the concentration of reaction products; θg is the liquid volume fraction; ∇ is the
Hamiltonian operator; ∇ · Ji is the diffusion term of the equation, Ji is the diffusion flux,
where Ji = −(DG,i + De,i)∇ci, DG,i is the dispersion tensor; De,i is the effective diffusion
coefficient; µ is the dynamic viscosity; µ · ∇ci is the convective term of the equation; Ri is
the reaction term; Si is the sink or source term of the solution.

2.3. Reaction Kinetics Model

In the following sections, we will focus on the formulation of numerical prototypes for
antigen–antibody reactions. These models are based on the following assumptions [26–30]:

• Antigens consist of single molecules and exist in homogeneous form, as do antibodies.
• One report particle combines one target analyte.
• Binding is consistent, without positive or negative allosteric effects (binding of one

site on the analytes does not affect the binding of another site to the antibody).
• The reaction is a first-order reversible interaction, with concentrations of reactants

reaching a steady state over time.
• There is no non-specific binding, such as binding to the reaction vessel walls.
• The rate constants of the reaction are constant, meaning they do not change with

variations in reagent and sample concentrations during the reaction process.

2.3.1. Sandwich LFIA Reaction Kinetics Model

The components of the model are represented as follows:
A—Analytes;
P—Reporter particle;
PA—Complex formed by analytes and reporter particle;
RT—Capture probe, immobilized on the test line;
RT A—Complex formed by analytes captured by the test line;
RT PA—Complex formed by analytes, reporter particle, and antibody immobilized on

the test line;
RC—Capture probe, immobilized on the control line;
RCP—Complex formed by free reporter particle captured by the control line;
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RCPA—Complex formed by analytes, reporter particle, and antibody immobilized on
the control line.

In the Sandwich LFIA reaction process and equations as depicted in Figure 1, the
sample liquid is dispensed onto the sample pad, and due to capillary action, it migrates
forward. The analytes (A) in the sample liquid reacts with the reporter particles (P) on the
conjugate pad to form the analyte–reporter particle complex (PA) upon passing through
the conjugate pad. When the mixture of (A), (P), and (PA) migrates to the test line (T-line),
the capture antibody (RT) on the test line captures the analytes (A) and the analyte–reporter
particle complex (PA), forming (RT A) and (RT PA), respectively. The complex (RT A) may
further interact with free reporter particles (P) to form (RT PA). At the control line, the
reporter particles (P) and (PA) are captured by the control line antibody (RC) to form (RCP)
and (RCPA), respectively. The complex (RCP) may further interact with free analytes (A) to
form (RCPA). These biochemical reactions are reversible, where kai(i = 1 ∼ 7) represent
the association rate constants, and kdi(i = 1 ∼ 7) represent the dissociation rate constants.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 23 
 

 

2.3.1. Sandwich LFIA Reaction Kinetics Model 
The components of the model are represented as follows: 𝐴—Analytes; 𝑃—Reporter particle; 𝑃𝐴—Complex formed by analytes and reporter particle; 𝑅 —Capture probe, immobilized on the test line; 𝑅 𝐴—Complex formed by analytes captured by the test line; 𝑅 𝑃𝐴—Complex formed by analytes, reporter particle, and antibody immobilized on 

the test line; 𝑅 —Capture probe, immobilized on the control line; 𝑅 𝑃—Complex formed by free reporter particle captured by the control line; 𝑅 𝑃𝐴—Complex formed by analytes, reporter particle, and antibody immobilized on 
the control line. 

In the Sandwich LFIA reaction process and equations as depicted in Figure 1, the 
sample liquid is dispensed onto the sample pad, and due to capillary action, it migrates 
forward. The analytes (𝐴) in the sample liquid reacts with the reporter particles (𝑃) on the 
conjugate pad to form the analyte–reporter particle complex (𝑃𝐴) upon passing through 
the conjugate pad. When the mixture of (𝐴), (𝑃), and (𝑃𝐴) migrates to the test line (T-line), 
the capture antibody (𝑅 ) on the test line captures the analytes (𝐴) and the analyte–re-
porter particle complex (𝑃𝐴), forming (𝑅 𝐴) and (𝑅 𝑃𝐴), respectively. The complex (𝑅 𝐴) 
may further interact with free reporter particles (𝑃) to form (𝑅 𝑃𝐴). At the control line, the 
reporter particles (𝑃) and (𝑃𝐴) are captured by the control line antibody (𝑅 ) to form (𝑅 𝑃) 
and (𝑅 𝑃𝐴), respectively. The complex (𝑅 𝑃) may further interact with free analytes (𝐴) to 
form (𝑅 𝑃𝐴). These biochemical reactions are reversible, where 𝑘 (𝑖 = 1 ~ 7) represent 
the association rate constants, and 𝑘 (𝑖 = 1 ~ 7)  represent the dissociation rate con-
stants. 

 
Figure 1. Schematic diagram of the sandwich LFIA model and reaction processes. The model depicts 
all the reaction processes involved in LFIA. 

During the reaction process, the concentrations of each substance can be considered 
as a function of the position x on the lateral flow strip and the reaction time t. They all 
satisfy the convection–diffusion equation and fluid dynamics equations. Solving these 
partial differential equations for the concentration functions of each substance at any po-
sition and time during the reaction process yields the concentration profiles. For ease of 
understanding, we represent each substance involved in the reaction with the letters or 

Figure 1. Schematic diagram of the sandwich LFIA model and reaction processes. The model depicts
all the reaction processes involved in LFIA.

During the reaction process, the concentrations of each substance can be considered as a
function of the position x on the lateral flow strip and the reaction time t. They all satisfy the
convection–diffusion equation and fluid dynamics equations. Solving these partial differential
equations for the concentration functions of each substance at any position and time during
the reaction process yields the concentration profiles. For ease of understanding, we represent
each substance involved in the reaction with the letters or combinations of letters enclosed
in parentheses. cA, cP, cPA, cRT , cRC , cRT A, cRT PA, cRCPA, cRCP denote the concentrations of the
respective substances, with subscript 0 indicating the initial concentrations.

According to material conservation and reaction kinetics equilibrium, the reaction
rates for each component are calculated as follows [26]:

rPA = ka1cAcP − kd1cPA (6)

rRT A = ka2cA
(
cRT0 − cRT A − cRT PA

)
− kd2cRT A − ka4cRT AcP + kd4cRT PA (7)

r1
RT PA = ka3cPA

(
cRT0 − cRT A − cRT PA

)
− kd3cRT PA (8)

r2
RT PA = ka4cRT AcP − kd4cRT PA (9)

rRT PA = r1
RT PA + r2

RT PA (10)
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rRC P = ka5cP
(
cRc0 − cRC P − cRC PA

)
− kd5cRC P − ka7cRC PcA + kd7cRC PA (11)

r1
RC PA = ka6cPA

(
cRc0 − cRC P − cRC PA

)
− kd6cRC PA (12)

r2
RC PA = ka7cRC PcA − kd7cRC PA (13)

rRC PA = r1
RC PA + r2

RC PA (14)

The reaction rate constants for the analyte–antibody interaction are adopted from
Qian [26], where ka1 = ka2 = ka3 = ka4 = 106 M−1s−1 and kd1 = kd2 = kd3 = kd4 = 10−3 s−1.

The diffusion–reaction equations for all species are as follows:

∂Ci
∂t

= Di
∂C2

i
∂x2 − u

(
∂Ci
∂x

)
− ri (15)

where ci is the concentration of the species, Di is the diffusion coefficient, u is the fluid
velocity, and ri is the reaction rate of species i. The complete set of equations for each
species is listed as follows [26]:

∂cA
∂t

= DA
∂c2

A
∂x2 − u

(
∂cA
∂x

)
− (rPA + rRT A + r2

RC PA) (16)

∂cP
∂t

= DP
∂c2

P
∂x2 − u

(
∂cP
∂x

)
− (rPA + r2

RT PA + rRC P) (17)

∂cPA
∂t

= DPA
∂c2

PA
∂x2 − u

(
∂cPA
∂x

)
+ rPA − r1

RT PA − r1
RC PA (18)

∂cRT A

∂t
= rRT A (19)

∂cRT PA

∂t
= rRT PA (20)

∂cRC P

∂t
= rRC P (21)

∂cRC PA

∂t
= rRC PA (22)

where DA = 10−10 m2/s and DP= DPA = 10−12 m2/s are the diffusion coefficients for the
analytes (A) and the complex of analytes and reporter particles (PA), respectively [26].

2.3.2. Competitive LFIA Reaction Kinetics Model

The commonly observed reaction mode in commercially available competitive LFIA
involves the competition between the capture probe on the T-line and the antibody conju-
gated to the reporter particles for the target analytes. This study exclusively analyzes this
competitive reaction model.

The competitive LFIA reaction process and equations are shown in Figure 2. After the
sample liquid is dropped onto the sample pad, due to the capillary action, the analytes (A)
in the sample liquid reacts with the reporter particles (P) on the conjugate pad to form the
analyte–reporter particle complex (PA) when passing through the conjugate pad. When the
mixture of (A), (P), and (PA) migrates to the test line, the antigen analogue (RT) on the test
line captures the free reporter particles (P) to form (RT P). At the control line, the reporter
particles (P) and (PA) are captured by the control line antibodies (RC) to form (RCP) and
(RCPA), respectively. These biochemical reactions are reversible, where kai(i = 1 ∼ 4)
represents the association rate constants, and kdi(i = 1 ∼ 4) represents the dissociation
rate constants.
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depicts all the reaction processes involved in LFIA.

Assuming no time delay in the four biochemical reaction processes, the rates of the
four biochemical reactions are given by [27]:

rPA = ka1cAcP − kd1cPA (23)

rRT P = ka2cP
(
cRT0 − cRT P

)
− kd2cRT P (24)

rRC PA = ka3cPA
(
cRC0 − cRC PA − cRC P

)
− kd3cRC PA (25)

rRC P = ka4cP
(
cRC0 − cRC PA − cRC P

)
− kd4cRC P (26)

From the convection–diffusion equations, we can obtain:

∂cA
∂t

= DA
∂c2

A
∂x2 − u

(
∂cA
∂x

)
− rPA (27)

∂cP
∂t

= DP
∂c2

P
∂x2 − u

(
∂cP
∂x

)
− (r PA + rRT P + rRC P

)
(28)

∂cPA
∂t

= DPA
∂c2

PA
∂x2 − u

(
∂cPA
∂x

)
+ rPA − rRC PA (29)

∂cRT P

∂t
= rRT P (30)

∂cRC P

∂t
= rRC P (31)

∂cRC PA

∂t
= rRC PA (32)

3. Finite Element Simulation
3.1. Simulation Approach

In COMSOL, LFIA three-dimensional models were established using the Richards
equation, transport of dilute species in porous media, and domain ordinary differen-
tial equation physics interfaces, and the geometric diagram of the model is shown in
Figure 3. The simulation process involves iterative calculations of fluid velocity, substance
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concentration distribution, and reaction rate coupling fields. During the solving process,
COMSOL utilizes iterative algorithms to gradually approximate the solution of the model,
as illustrated in Figure 4.
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Set material properties and initial conditions for the model, including porous media
and fluid. Specifically, materials such as NC membrane and other components (sample
pad, conjugate pad, absorbent pad) are set as porous materials with different parameters
(porosity, pore size, permeability, etc.), as detailed in Table 1. The initial conditions of the
model include the initial concentration distribution of various substances, the initial state of
the porous media, and the initial conditions of the domain, as described in Section 3.2. Select
the solver and iterative algorithm to start iterative calculations. In each iteration, COMSOL
updates boundary conditions based on the current solution and adjusts them according
to residuals or other convergence criteria. Using the updated boundary conditions, the
solver is called again, gradually approaching the final solution. This iteration scheme is
repeated until the fluid velocity becomes zero, but the reaction–diffusion process continues
to evolve. The solver continues to iterate until the final time step is reached.
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Table 1. Main model parameters.

Parameters Values Descriptions

M_l 2 [cm] NC membrane length
M_th 125 [m] NC membrane thickness
L_th 1 [mm] Line thickness

Poro 0.7 Porosity of NC membrane
d_p 0.45 [µm] Pore diameter of NC membrane
κ 1.715 × 10−14 m2 Membrane permeability of NC membrane

Poro2 0.8 Porosity of other porous materials
d_p2 1 [µm] Pore diameter of other porous materials
κ2 2.8444 × 10−13 m2 Membrane permeability of other porous materials

Hw 2 [mm] Water head
p0 −4.06 × 10−6 N/m2 Richards equation initial phase pressure

C0 10−8 [M] Concentration of substances

3.2. Model Parameter Settings, Initial Conditions, and Boundary Conditions

Set model parameters, including geometric parameters, porous material parameters,
physical parameters of the Richards equation and initial concentrations of each substance.
The main model parameters include the following:

Using the Richards equation to model liquid-phase transport in porous media, the
following are defined:

No-flow boundary:
−n · ρu = 0 (33)

Initial pressure value:
p = p0 (34)

Sample pad as fluid inlet, pressure head:

Hp0 = p0/(ρg) + (Hw − p0/(ρg)) (35)

The solving substance concentration and reaction rate are determined using the trans-
port of dilute species in porous media and domain ODEs and DAEs interfaces. Fluid
velocity is determined by the Richards equation, selecting the corresponding reaction
region, setting the initial substance concentration as:

cP = cRT = cRC = c0 (36)

Initial concentration of other substances is set to 0.

ci = 0 (37)

The sample pad is set as the inlet, with the inlet boundary condition:

cA = c0 (38)

The absorbent pad is the outlet, with the outlet boundary condition:

n · Di∇ci = 0 (39)

The reaction rate of each substance in the corresponding reaction region is set, with
the sandwich LFIA according to Equations (5)–(13) and the competitive LFIA according to
Equations (22)–(25).



Sensors 2024, 24, 1989 9 of 23

3.3. Parameter Definitions

When the computing system reaches equilibrium, the detection signal is obtained at
600 s. Theoretically, the concentration of the composite particles captured on the test line
and control line is proportional to the available detection signal (optical signal, magnetic
signal) in experiments. Therefore, in this study, the volume-averaged concentrations of the
composite particles captured on the T-line and C-line are defined as the T-line and C-line
analysis signals:

Sandwich LFIA:
ST =

y

V
cRTPA

dV
V

(40)

SC =
y

V

(
cRCPA + cRCP

)dV
V

(41)

where V is the volume of the T-line or C-line.
In sandwich LFIA, we take 1.5 × 10−9 M as the threshold value STL for ST. The target

analyte concentration (CAL) corresponding to the threshold value STL is defined as the
detection limit (CAL). The range of target analyte concentrations (CAM) corresponding to
the maximum signal (STmax) from the detection limit (CAL) to ST is defined as the working
range (WR) [32]:

WR = log(CAM)− log(CAL) (42)

Competitive LFIA:

ST =
y

V
cRTP

dV
V

(43)

SC =
y

V

(
cRCPA + cRCP

)dV
V

(44)

In Competitive LFIA, the detection limit for competitive LFIA is chosen as IC10, and
the working range is IC20–IC80.

4. Results and discussion
4.1. The Effect of Flow Velocity on LFIA Performance

Flow velocity is one of the most important factors affecting the sensitivity of LFIA.
In LFIA, once the analytes and reporter particles in the sample solution pass through the
T-line and C-line, they cannot be captured. A slower flow velocity allows more interactions
between reporter particles and capture reagents, leading to higher signal intensity [36].
Flow velocity is difficult to measure accurately in experiments, but it can be easily calculated
in finite element simulation software.

We simulated the flow velocity on the test strip using the Richards equation (Figure 5).
The distribution of sample liquid flow velocity at different times on the test strip is shown
in Figure 5a. The sample solution reaches the binding pad, T-line, C-line, and absorption
pad at 3 s, 23 s, 32 s, and 50 s, respectively, and fills the entire test strip by 140 s, with the
flow velocity rapidly decreasing to 0.

For comparison, we extracted the flow velocity profiles at the T-line and C-line
P(Figure 5b). It can be observed that the sample flow velocity decreases almost expo-
nentially as the distance of the liquid front from the origin increases. This is because the
capillary forces driving liquid flow only acts on the surface of the porous material where
the sample solution meets the air (the three-phase boundary region of the liquid front).
This means that the capillary force is constant, and as long as there is free pore volume, it
can be filled with the sample solution. However, as the sample solution further enters the
test strip, the flow resistance increases, leading to a decrease in flow velocity. The trend
of the results calculated by the model is consistent with the trend derived by Mendez [37]
based on the Lucas–Washburn equation.
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The flow velocity of the membrane mainly depends on the properties of the porous
structure, including pore size and porosity, and discussing these parameters helps us to
understand capillary flow. Flow velocity is difficult to measure accurately in experiments,
so commercial NC membranes typically use a parameter called capillary flow time (CFT)
to reflect capillary flow velocity—the time required for the liquid to move along a specified
length of strip and completely fill it. The larger the CFT value, the slower the capillary flow.
We compared the flow velocities of liquids with different pore sizes and porosities passing
through the T-line, and extracted the time and average velocity at which the liquid passes
through the T-line (Figure 6).
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Pore size is a measure of the maximum pore diameter. In the simulated experiments,
we compared three common pore sizes (dp = 0.1, 0.2, 0.45 µm) found in the market
and plotted the flow velocity of the liquid passing through the T-line at different pore
sizes (Figure 6a). From the graph, it can be observed that as the pore size increases, the
membrane’s flow velocity also increases. For easier observation, we extracted the time
taken for the liquid to flow through the T-line from Figure 6a and calculated its average
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velocity (Figure 6b). It is evident that with an increase in pore size, the flow velocity of the
membrane increases, and the time taken for the liquid to flow through the T-line decreases.

Porosity is the volume of air in a three-dimensional membrane–membrane structure,
usually expressed as a percentage of the total membrane volume. Porosity is typically
unrelated to pore size and is not controlled by pore size. These two parameters are
essentially independent. In the simulation, we set the porosity to 0.5, 0.7, and 0.8, and
compared the flow velocity of the liquid passing through the T-line (Figure 6c). It can be
observed that under the same conditions, the capillary flow velocity increases with an
increase in porosity, and at the same time, the time taken for the liquid to flow through the
T-line decreases (Figure 6d). When the porosity is set to 0.7, the simulated flow velocity of
the liquid through the T-line is 0.00025 m/s, which is close to the average flow velocity of
0.0002 m/s measured in the experiments by Qian [26,27] and Liu [31]. This validates the
accuracy of the model.

For a better observation of the impact of flow velocity on LFIA performance, we
compared the variation trend of ST (taking competitive LFIA as an example) under different
average flow velocities (Figure 7). As the flow velocity increases, the time for the liquid to
flow on the T-line decreases, shortening the time for the reactants to come close enough to
bind, significantly reducing ST and system sensitivity. This is why membranes with the
fastest capillary flow are usually not used. The longer the reaction duration in the T-line
and C-line, the higher the detection sensitivity and signal intensity of the T-line and C-line.
Therefore, to achieve better analytical characteristics, the fluid front must pass through
the T-line and C-line as slowly as possible. The structure of the NC membrane can be
appropriately optimized (by selecting smaller pore size and lower porosity) or the viscosity
of the sample can be increased to achieve this effect.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 23 
 

 

Figure 6. Effect of different pore sizes and porosities on flow velocity. (a) Flow velocity of liquid 
passing through the T-line for different pore sizes; (b) time and average velocity of liquid passing 
through the T-line for different pore sizes; (c) flow velocity of liquid passing through the T-line for 
different porosities; (d) time and average velocity of liquid passing through the T-line for different 
porosities. 

Pore size is a measure of the maximum pore diameter. In the simulated experiments, 
we compared three common pore sizes (dp = 0.1, 0.2, 0.45 µm) found in the market and 
plotted the flow velocity of the liquid passing through the T-line at different pore sizes 
(Figure 6a). From the graph, it can be observed that as the pore size increases, the mem-
brane’s flow velocity also increases. For easier observation, we extracted the time taken 
for the liquid to flow through the T-line from Figure 6a and calculated its average velocity 
(Figure 6b). It is evident that with an increase in pore size, the flow velocity of the mem-
brane increases, and the time taken for the liquid to flow through the T-line decreases. 

Porosity is the volume of air in a three-dimensional membrane–membrane structure, 
usually expressed as a percentage of the total membrane volume. Porosity is typically 
unrelated to pore size and is not controlled by pore size. These two parameters are essen-
tially independent. In the simulation, we set the porosity to 0.5, 0.7, and 0.8, and compared 
the flow velocity of the liquid passing through the T-line (Figure 6c). It can be observed 
that under the same conditions, the capillary flow velocity increases with an increase in 
porosity, and at the same time, the time taken for the liquid to flow through the T-line 
decreases (Figure 6d). When the porosity is set to 0.7, the simulated flow velocity of the 
liquid through the T-line is 0.00025 m/s, which is close to the average flow velocity of 
0.0002 m/s measured in the experiments by Qian [26,27] and Liu [31]. This validates the 
accuracy of the model. 

For a better observation of the impact of flow velocity on LFIA performance, we com-
pared the variation trend of ST (taking competitive LFIA as an example) under different 
average flow velocities (Figure 7). As the flow velocity increases, the time for the liquid to 
flow on the T-line decreases, shortening the time for the reactants to come close enough 
to bind, significantly reducing ST and system sensitivity. This is why membranes with the 
fastest capillary flow are usually not used. The longer the reaction duration in the T-line 
and C-line, the higher the detection sensitivity and signal intensity of the T-line and C-
line. Therefore, to achieve better analytical characteristics, the fluid front must pass 
through the T-line and C-line as slowly as possible. The structure of the NC membrane 
can be appropriately optimized (by selecting smaller pore size and lower porosity) or the 
viscosity of the sample can be increased to achieve this effect. 

 
Figure 7. The trend of ST under different flow velocities. 

4.2. Sandwich LFIA 
4.2.1. Sandwich LFIA Reaction Process 

In this section, we explore the reaction process of the sandwich LFIA under the non-
uniform flow conditions calculated in the previous section. The model assumes that each 
reaction component is uniformly distributed throughout the thickness of the entire test 

Figure 7. The trend of ST under different flow velocities.

4.2. Sandwich LFIA
4.2.1. Sandwich LFIA Reaction Process

In this section, we explore the reaction process of the sandwich LFIA under the non-
uniform flow conditions calculated in the previous section. The model assumes that each
reaction component is uniformly distributed throughout the thickness of the entire test strip,
and here, the model’s top view is used to represent the calculation results. Figure 8 shows
the concentration distribution of analytes A (Figure 8a), reporter particles P (Figure 8b),
analyte–reporter particle complex PA (Figure 8c), complexes RTPA, RCPA, RCP formed by
capturing reporter particles on the T-line and capturing PA and reporter particles P on the
C-line (Figure 8d) at different times.

From Figure 8a, it can be observed that the analytes A, under the influence of capillary
forces, exhibit lower concentration at the leading edge of the liquid flow. As it flows
towards the right end of the absorbent pad, analytes A fill the entire test strip. A is
consumed in the reaction zones including the binding pad, T-line, and C-line, leading to a
decrease in concentration, while it is almost uniformly distributed elsewhere on the strip.
The concentration distribution of reporting particles P (Figure 8b) is similar to that of the
analytes A concentration distribution.
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In Figure 8c, it can be seen that the complex PA travels with the liquid flow until it
reaches the regions of T-line and C-line. Here, it reacts with the capture probes RT and RC
on the T-line and C-line, respectively, forming colored detection lines (Figure 8d).

To further facilitate the observation of the reaction process at T-line and C-line, we
analyzed the variation in ST and SC over time (Figure 8e). When the sample liquid reaches
the T-line and C-line, particle concentrations begin to increase. As PA is captured in the
regions of T-line and C-line, forming detection materials RTPA and RCPA, ST and SC exhibit
nearly linear growth. When the absorbent pad saturates and flow stops, the growth in
concentration slows down, indicating that under this condition, the formation of RTPA and
RCPA is controlled by mass transport. Figure 8f displays the concentration distribution of
the generated species along the x-direction on the surfaces of T-line and C-line, showing
edge effects. The concentration is higher near x = 0, which can be easily explained as this
edge is closest to the inlet where reactants are first captured. At the edge near the outlet,
the concentration also increases due to diffusion effects, and this effect is also present at the
edge positions near the inlet.
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4.2.2. The Influence of Target Analyte Concentration on ST and SC in Sandwich LFIA

Figure 9 depicts the variation in ST and SC with the concentration of analytes A. When
the concentration of the target analytes is very low, ST remains nearly constant. As the
concentration of the target analytes increases, ST almost linearly increases as a function
of CA0. With further increase in the concentration of the target analytes, ST reaches its
maximum value at the concentration CAM of the target analytes, and then decreases. CAM
corresponds to the concentration of the target analytes at the peak of ST, a phenomenon
known as the “HOOK effect”, which is described in many literature sources. At high
concentrations, the decrease in ST is due to the binding of analytes to reporting particles
and capture probes, which hinders the binding of complex PA to RT. SC remains almost
constant as the concentration of analytes changes, indicating that the concentration of
analytes does not affect SC.
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4.2.3. The Influence of Reporter Particle Concentration on Sandwich LFIA Performance

The concentration of reporter particles P plays a significant role in the sensitivity of
LFIA. We first investigated the effect of reporter particle concentration on the performance
of sandwich LFIA (Figure 10).
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Figure 10. The relationship between reporter particle concentration and LFIA detection performance.
(a) Variation in ST and SC with different reporter particle concentrations; (b) standard curves of the
HOOK effect under different reporter particle concentrations; (c) trends of LFIA detection limit (CAL)
and working range (WR) under different reporter particle concentrations.

When the analyte concentration remains constant, an increase in the concentration
of reporter particles P positively affects the signal intensity on the T-line and C-line
(Figure 10a). The simulation results show that at low concentrations, CP0 is low, and
may not sufficiently cover the binding sites on the test and control lines, resulting in rela-
tively constant concentrations of ST and SC. As CP0 concentration increases, more binding
sites are occupied, and the concentrations of ST and SC begin to increase almost linearly.
However, when CP0 concentration further increases to a certain extent, the binding sites on
the test and control lines may become saturated, leading to a slowing down of the rate of
increase in concentrations of ST and SC, showing a saturation state.
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We also plotted standard curves of the HOOK effect for different CP0 values (1 × 10−9,
5 × 10−9, 1 × 10−8, and 1 × 10−7 M) (Figure 10b). The increase in initial concentration of
reporter particles not only enhances the ST value corresponding to the peaks in the standard
curve, but also results in a rightward shift in the peak in the HOOK effect standard curve.
The rightward shift indicates an increase in the working range, possibly due to the increased
strength of binding between reporter particles and analytes.

To further compare LFIA performance, we extracted the detection limit (CAL) and
working range (WR) from the simulation results (Figure 10c). With the increase in CP0, the
CAL in the simulation shows a decreasing trend (black line in Figure 10c), indicating that
higher CP0 enhances system sensitivity. However, due to the limited capture capacity of
the capture probes fixed on the T-line and C-line, this decreasing trend gradually becomes
moderate. Additionally, it can be observed from the simulation results that as CP0 increases,
the WR widens (red line in Figure 10c), indicating that appropriately increasing CP0 is
beneficial for expanding the linear working range. The simulation results also reveal
that the slopes of the CAL and WR curves gradually decrease, indicating that the capture
capacity of the capture reagents on the T-line and C-line gradually saturates, and cannot
bind more reporter particles. This model can be utilized to predict the standard curves,
CAL, and WR under different CP0 values, assisting experimenters in selecting the optimal
CP0 for LFIA with the best performance.

4.2.4. The Influence of Initial Capture Probe Concentration on Sandwich LFIA Performance

The initial concentration of capture probe CRT0 on the T-line is also a crucial parameter
when preparing LFIA, and we investigated its impact on LFIA performance by calculating
different concentrations of CRT0 (Figure 11).

Sensors 2024, 24, x FOR PEER REVIEW 14 of 23 
 

 

When the analyte concentration remains constant, an increase in the concentration of 
reporter particles P positively affects the signal intensity on the T-line and C-line (Figure 
10a). The simulation results show that at low concentrations, CP0 is low, and may not suf-
ficiently cover the binding sites on the test and control lines, resulting in relatively con-
stant concentrations of ST and SC. As CP0 concentration increases, more binding sites are 
occupied, and the concentrations of ST and SC begin to increase almost linearly. However, 
when CP0 concentration further increases to a certain extent, the binding sites on the test 
and control lines may become saturated, leading to a slowing down of the rate of increase 
in concentrations of ST and SC, showing a saturation state. 

We also plotted standard curves of the HOOK effect for different CP0 values (1 × 10−9, 
5 × 10−9, 1 × 10−8, and 1 × 10−7 M) (Figure 10b). The increase in initial concentration of re-
porter particles not only enhances the ST value corresponding to the peaks in the standard 
curve, but also results in a rightward shift in the peak in the HOOK effect standard curve. 
The rightward shift indicates an increase in the working range, possibly due to the in-
creased strength of binding between reporter particles and analytes. 

To further compare LFIA performance, we extracted the detection limit (CAL) and 
working range (WR) from the simulation results (Figure 10c). With the increase in CP0, 
the CAL in the simulation shows a decreasing trend (black line in Figure 10c), indicating 
that higher CP0 enhances system sensitivity. However, due to the limited capture capacity 
of the capture probes fixed on the T-line and C-line, this decreasing trend gradually be-
comes moderate. Additionally, it can be observed from the simulation results that as CP0 
increases, the WR widens (red line in Figure 10c), indicating that appropriately increasing 
CP0 is beneficial for expanding the linear working range. The simulation results also reveal 
that the slopes of the CAL and WR curves gradually decrease, indicating that the capture 
capacity of the capture reagents on the T-line and C-line gradually saturates, and cannot 
bind more reporter particles. This model can be utilized to predict the standard curves, 
CAL, and WR under different CP0 values, assisting experimenters in selecting the optimal 
CP0 for LFIA with the best performance. 

4.2.4. The Influence of Initial Capture Probe Concentration on Sandwich LFIA Perfor-
mance 

The initial concentration of capture probe CRT0 on the T-line is also a crucial parameter 
when preparing LFIA, and we investigated its impact on LFIA performance by calculating 
different concentrations of CRT0 (Figure 11). 

 
Figure 11. The relationship between the initial capture probe concentration on the T-line and LFIA 
detection performance. (a) Variations in ST and SC with different initial capture probe concentrations 
on the T-line; (b) standard curves of the HOOK effect under different initial capture probe concen-
trations on the T-line; (c) trends of LFIA detection limit (CAL) and working range (WR) under differ-
ent initial capture probe concentrations on the T-line. 

When other conditions remain constant, CRT0 only affects ST, with little influence on 
SC (Figure 11a). When CRT0 is low, the effective capture of reporter particles and analytes 
is insufficient, resulting in a low and relatively constant ST. As the concentration of capture 
antibodies increases, the capture capacity increases, leading to an almost linear increase 

Figure 11. The relationship between the initial capture probe concentration on the T-line and LFIA
detection performance. (a) Variations in ST and SC with different initial capture probe concentrations
on the T-line; (b) standard curves of the HOOK effect under different initial capture probe concentra-
tions on the T-line; (c) trends of LFIA detection limit (CAL) and working range (WR) under different
initial capture probe concentrations on the T-line.

When other conditions remain constant, CRT0 only affects ST, with little influence on
SC (Figure 11a). When CRT0 is low, the effective capture of reporter particles and analytes is
insufficient, resulting in a low and relatively constant ST. As the concentration of capture
antibodies increases, the capture capacity increases, leading to an almost linear increase
in ST. However, when the binding sites of the capture antibodies reach saturation (due
to the limitation of CP0, preventing further binding of more reporter particles), even with
further increases in the concentration of capture antibodies, ST cannot be further increased,
reaching a saturation state. In the range of CRT0 = 1 × 10−8 to 1 × 10−6 M, when ST
increases almost linearly, more reporter particles P are captured on the T-line, resulting in a
decrease in reporter particles P on the downstream C-line, thus reducing SC.

We plotted concentration curves of ST at different analyte concentrations using differ-
ent CRT0 values (5 × 10−9, 1 × 10−8, 5 × 10−8, and 1 × 10−7 M) (Figure 11b). The increase
in CRT0 enhances the capture capacity of the T-line, enlarging the peak of the ST curve,
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significantly reducing the detection limit. As CRT0 increases, the CAL in the simulation
shows a decreasing trend (black line in Figure 11c), indicating that higher CRT0 also in-
creases sensitivity. However, as CRT0 increases, this decreasing trend gradually becomes
less sensitive. The changes in the detection limit with different CRT0 are more pronounced
compared to different CP0. Additionally, the WR in the simulation shows an expanding
trend with the increase in capture probe concentration (red line in Figure 11c). Therefore,
increasing CRT0 should be considered to lower the system detection limit and expand the
system detection range. Similarly, this model can be used to predict standard curves, CAL,
and WR under different CRT0 values, helping experimenters select the optimal CRT0 for
LFIA with the best performance.

We also studied the influence of the initial concentration of capture probe CRC0 on
LFIA performance (Figure 12). Theoretically, CRC0 only affects SC, with little influence on
ST (Figure 12a). When CRC0 is low, the effective capture of reporter particles and analyte–
reporter particle complexes is insufficient, resulting in a low and relatively constant SC. As
the concentration of capture antibodies increases, the capture capacity increases, leading
to an almost linear increase in SC. However, as CRC0 continues to increase, the trend of an
increase in SC slows down due to the limitation of CP0, preventing further binding of more
reporter particles.
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of the C-line.

Because ST is insensitive to changes in CRC0, similarly, the system detection limit
and working range are also insensitive to changes in CRC0. However, in commercial
quantitative detection, to reduce inter-batch variability, the T/C value is usually used as
the final detection signal. When SC increases linearly with CRC0, the T/C value (ST/SC)
decreases (Figure 12b). In practical detection, this change may lead to a decrease in detection
sensitivity due to the influence of detection noise. Therefore, in experiments, CRC0 should
be limited to avoid adversely affecting the system detection performance by keeping the
T/C value from being too low.

4.2.5. The Influence of Reaction Rate Constants on Sandwich LFIA Performance

The reaction rate constants, including the association rate constant ka and the dissocia-
tion rate constant kd, play a crucial role in LFIA performance. Significant effort is required
in experimental research to select antibodies with different ka and kd values because differ-
ent ka and kd values correspond to different reagent reactions in various LFIA detection
processes. Therefore, we can utilize simulation methods to analyze the impact of ka and kd
values on antigen–antibody binding reactions (Figures 13 and 14).
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From Figure 13a, we observe the variations in ST and SC under different association
rate constants ka at constant analyte concentrations. A larger ka implies improved reaction
efficiency of the reagents, resulting in higher ST and SC at the T-line and C-line. However,
when the binding sites of the capture probes on the T-line and C-line become saturated, ST
and SC tend to saturate as well.

In Figure 13b, we observe the phenomenon of the HOOK effect under different asso-
ciation rate constants (ka = 1 × 105, 5 × 105, 1 × 106, 1 × 107 M−1 s−1). An increase in ka
significantly shifts the peak of the HOOK curve to the left (lower analyte concentrations).
From Figure 13b, we extract the system detection limit (CAL) and working range (WR)
(Figure 13c). With an increase in ka, the detection limit decreases significantly, and the
working range gradually expands. This is mainly because higher ka enhances the reaction
efficiency of the reagents, leading to greater capture efficiency of the capture probes on the
test line and stronger binding capacity.

The impact of the dissociation rate constant kd on system performance is exactly the
opposite of the association rate constant ka (Figure 14). An increase in kd leads to a decrease
in the reaction rate, significantly reducing the capture capacity of the T-line and C-line,
resulting in a decrease in ST and SC (Figure 14a). In the HOOK effect curves at different
analyte concentrations (Figure 14b), an increase in kd leads to a rightward shift in the curve
peak, indicating an increase in the detection limit, which reduces the sensitivity of the
system, while the working range also narrows (Figure 14c).

These phenomena indicate that increasing the association rate ka and decreasing the
dissociation rate kd are beneficial for quantitative analysis in rapid LFIA detection. By
selecting antibodies or capture probes with higher association rate constants and lower
dissociation rate constants, we can optimize the performance of LFIA detection. However,



Sensors 2024, 24, 1989 17 of 23

it is important to note that antibodies or capture probes with higher association rates
may be accompanied by higher dissociation rates. Therefore, when designing LFIA, a
balanced consideration between association and dissociation rates is needed to achieve
optimal performance.

4.3. Competitive LFIA
4.3.1. Competitive LFIA Reaction Process

Similarly to the sandwich LFIA, we explored the reaction process of competitive LFIA
under non-uniform fluid flow conditions (Figure 15). The concentration distribution of
analytes A, reporter particles P, and analyte–reporter particle complexes PA in competitive
LFIA is similar to that in sandwich LFIA, and will not be repeated here. The concentration
distribution of complexes RTP captured by the T-line, PA captured by the C-line, and
complexes RCPA and RCP formed by PA and P capture is shown in Figure 15a. Under
the same conditions, the color of the T-line in competitive LFIA is darker. This is because
in sandwich LFIA, part of the T-line capture probe reacts with A in the analyte, resulting
in a reduction in binding sites and a decrease in the capture capability for free reporter
particles P.
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Figure 15. Competitive LFIA reaction process. (a) Concentration distribution map of reporter particle
complexes captured by T-line and C-line; (b) variation in T-line and C-line signals ST and SC over
time; (c) diffusion effects of reporter particle complexes captured by T-line and C-line.

Figure 15b depicts the variation in T-line and C-line signals ST and SC over time.
According to the reaction kinetics equation, the T-line only captures free reporter parti-
cles P, while the C-line captures not only free reporter particles P but also the reporter
particle–analyte complex PA. Therefore, after the reaction reaches equilibrium, SC is higher
than ST.

Figure 15c describes the distribution of product concentration along the x-direction on
the surfaces of the T-line and C-line. Similarly to sandwich LFIA, competitive LFIA exhibits
edge effects in the concentration distribution along the surfaces of the T-line and C-line,
with stronger signals at the edges of the T-line and C-line.

4.3.2. The Influence of Target Analyte Concentration on ST and SC in Competitive LFIA

The influence of target analyte concentration on ST follows a sigmoidal curve
(Figure 16), which is a typical form of calibration curves in competitive analysis [30].
When the target analyte concentration is low, the analytes A have little effect on the con-
centration of free reporter particles P, resulting in a high and relatively constant ST value.
As the analyte concentration increases, the competitive reaction between analytes A and
reporter particles P intensifies, leading to a decrease in the concentration of free reporter
particles P and a nearly linear decrease in ST. When the analyte concentration reaches a
certain level, the competitive reaction between analytes A and reporter particles P saturates,
and ST no longer changes with increasing analyte concentration. SC, on the other hand,
remains unaffected by changes in analyte concentration, which is why the T/C ratio is
commonly used as the detection result in commercial assays.
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4.3.3. The Influence of Reporter Particle Concentration on Competitive LFIA Performance

Similarly to the sandwich LFIA, we first analyze the effect of reporter particle con-
centration on the performance of competitive LFIA (Figure 17). Under constant analyte
concentration conditions, the trends of ST and SC at different reporter particle concentra-
tions are similar to those in the sandwich LFIA. At low CP0 concentrations, the changes in
ST and SC are minimal. As CP0 increases, both ST and SC linearly depend on CP0. Followed
by a slower growth rate, this is due to the saturation of binding sites for capture probes on
the T-line and C-line.
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working ranges under different reporter particle concentrations.

We also plotted inverse S-shaped standard curves for different CP0 values (1 × 10−9,
5 × 10−9, 1 × 10−8, and 1 × 10−7 M) (Figure 17b). The increase in CP0 results in a rightward
shift in the curve, with both detection limit and working range moving towards higher
analyte concentrations. This is because as CP0 increases, more reporter particles can bind
to more target analytes to form reporter particle–analyte complexes PA. However, due to
competitive effects, this hinders the recognition and capture of reporter particles by the
T-line capture probes.

To further compare LFIA performance, we extracted detection limits (CAL) and work-
ing ranges (WR) from simulation results (Figure 17c). As CP0 increases, CAL shows an
upward trend in the simulation (black line in Figure 17c), indicating that higher CP0 ac-
tually decreases system sensitivity, with this effect becoming more pronounced at higher
concentrations. Additionally, it can be observed from the simulation results that as CP0
increases, WR narrows (red line in Figure 17c). Unlike the sandwich LFIA, an increase in
CP0 actually raises the system detection limit and narrows the working range, consistent
with the conclusion in reference [30]. This suggests that higher CP0 concentrations increase
the detection signal strength, but reducing CP0 can be used to enhance the detection sensi-
tivity of competitive LFIA. We can utilize this model to predict standard curves, CAL, and
WR under different CP0 values and assist experimenters in selecting the optimal CP0 for
LFIA performance.
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4.3.4. The Influence of Capture Probe Initial Concentration on Competitive LFIA
Performance

Similarly to the sandwich LFIA, the initial concentration of the T-line capture probe,
CRT0, only affects ST and has minimal impact on SC (Figure 18a). When CRT0 is low, it
fails to effectively capture reporter particles and analytes, resulting in lower and relatively
unchanged ST. As the concentration of capture antibodies increases, the capturing capability
enhances, leading to an almost linear increase in ST. However, at high CRT0 concentrations,
ST decreases instead. This might be attributed to the limited binding capacity of proteins
on the membrane, causing protein accumulation and spatial hindrance effects when CRT0
concentration is too high, inhibiting the capture reaction of reporter particles P. As ST
almost linearly increases, more reporter particles P are captured by the T-line, reducing the
concentration of reporter particles CP0 downstream of the T-line and thus lowering SC.
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We plotted inverse S-shaped curves for ST at different analyte concentrations using
different CRT0 values (5 × 10−9, 1 × 10−8, 5 × 10−8, and 1 × 10−7 M) (Figure 18b). The
increase in CRT0 enhances the capturing capability of the T-line, resulting in a higher
maximum value of the ST curve, which generates a stronger signal. However, changes
in CRT0 have no significant impact on the detection limits and working ranges calculated
using the metrics in this study (Figure 18c).

The effect of C-line capture probe initial concentration, CRC0, on competitive LFIA
performance is similar to that in the sandwich LFIA and will not be further elaborated here.

4.3.5. The Influence of Reaction Constants on Competitive LFIA Performance

The effects of reaction constants ka and kd on competitive LFIA performance are
depicted in Figures 19 and 20. From Figures 19a and 20a, we observe the variations in ST
and SC at different values of ka and kd while holding the analyte concentration constant.
Larger values of ka and lower values of kd enhance the efficiency of the reaction, resulting
in higher ST and SC on both the T-line and C-line, which gradually saturate.

Figures 19b and 20b depict the inverse S-curves under different binding rate constants
(ka = 1 × 105, 5 × 105, 1 × 106, 1 × 107 M−1 s−1) and different dissociation constants
(kd = 1 × 10−4, 1 × 10−3, 5 × 10−3, 1 × 10−2 s−1). Increasing ka and decreasing kd
significantly narrow the working range (WR) (Figures 19c and 20c). It also increases the
system’s detection limit, which is detrimental to detection. These observations indicate that
contrary to sandwich LFIA, increasing the binding rate ka and decreasing the dissociation
rate kd can enhance the intensity of detection signals on both the T-line and C-line, but they
have negative implications for the system’s detection limit and working range.
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5. Conclusions

This paper uses the Richards equation to solve the capillary flow velocity model and
couples the solved velocity field with the physical field of mass transfer in porous media
to establish a three-dimensional LFIA model, investigating the reaction mechanism of
LFIA under non-uniform flow conditions. The influence of pore size and porosity on flow
velocity is explored, and the performance of LFIA under different average flow velocities
is compared. Additionally, the transport and diffusion of various reaction components
in sandwich LFIA and competitive LFIA are studied. Furthermore, the effects of analyte
concentration, report particle concentration, capture probe concentration, and reaction
constants on LFIA performance are analyzed. The conclusions are as follows:

(1) The sample flow velocity decreases exponentially with the distance from the sample
front to the origin. Increasing the pore size and porosity of the membrane both increase
the capillary flow velocity, thus reducing the sensitivity of LFIA.

(2) In sandwich LFIA, appropriately increasing the report particle concentration CP0,
increasing the initial concentration of T-line capture probe CRT0, increasing the binding
rate ka, and decreasing the dissociation rate kd are all beneficial for reducing the
detection limit and broadening the working range of LFIA. The initial concentration
of C-line capture probe CRC0 has little effect on LFIA performance but lowers the
T/C ratio.

(3) For competitive LFIA, increasing the report particle concentration CP0, increasing
the binding rate ka, and decreasing the dissociation rate kd may adversely affect the
detection limit and working range of LFIA. Under the indicators of this paper, the
effect of T-line CRT0 on LFIA performance is insensitive.
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The three-dimensional simulation model proposed in this paper has multiple ap-
plications in LFIA. Firstly, it allows for a comprehensive understanding of LFIA’s flow
characteristics and reaction mechanisms, thereby enabling the prediction of LFIA’s de-
tection limit and working range, ultimately enhancing detection sensitivity and accuracy.
Secondly, the model can guide the design and optimization of LFIA products, including
optimizing fluid channel design and reagent injection methods to improve equipment
performance and stability. Additionally, the model can be used to validate the effectiveness
and feasibility of new LFIA technologies or improvement methods, facilitating the applica-
tion and promotion of new technologies. Lastly, the model can provide recommendations
for product improvement and optimization, such as adjusting reagent formulations and
optimizing operational procedures to enhance product performance and competitiveness.
In summary, the LFIA three-dimensional simulation model serves as a valuable tool and
support for the research, development, and application of LFIA technology, with the poten-
tial to play a significant role in medical diagnosis, food safety, environmental monitoring,
and other fields.
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