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Abstract: Binocular structured light systems are widely used in 3D measurements. In the condition
of complex and local highly reflective scenes, to obtain more 3D information, binocular systems are
usually divided into two pairs of devices, each having a Single Camera and a Projector (SCP). In
this case, the binocular system can be seen as Dual Cameras-Projector (DCP) system. In the DCP
calibration, the Left-SCP and Right-SCP need to be calibrated separately, which leads to inconsistent
parameters for the same projector, thus reducing the measurement accuracy. To solve this problem
and improve manoeuvrability, a coupled calibration method using an orthogonal phase target is
proposed. The 3D coordinates on a phase target are uniquely determined by the binocular camera in
DCP, rather than being calculated separately in each SCP. This ensures the consistency of the projector
parameters. The coordinates of the projector image plane are calculated through the unwrapped
phase, while the parameters are calibrated by the plane calibration method. In order to extract
sub-pixel accuracy feature points, a method based on polynomial fitting using an orthogonal phase
target is exploited. The experimental results show that the reprojection error of our method is less
than 0.033 pixels, which improves the calibration accuracy.

Keywords: 3D shape measurement; projector calibration; binocular; phase target

1. Introduction

Three-dimensional shape measurement technology is of great significance in many ap-
plications, such as intelligent manufacturing, industrial inspection, virtual reality, machine
vision, reverse engineering, biomedicine and so on [1–3]. Among all of three-dimensional
shape measurement methods, Fringe Projection Profilometry (FPP) has been widely stud-
ied due to its advantages of being non-contact and high-speed and having high accuracy,
high spatial resolution and a large field of view [4–6]. In FPP systems, the Digital Light
Processing (DLP) projector is commonly used for its advantages of being low cost and
having flexible programming [7]. Two typical configurations of the FPP system are the
Single Camera-Projector (SCP) system [8–11] and the Dual Cameras-Projector (DCP) sys-
tem [12,13].

In the SCP system, the projector is equal to a camera. Therefore, this kind of FPP
system can also be regarded as a binocular vision system in principle, which then can be
described by the binocular vision model. In the DCP system, the projector projects groups
of phase-shifting fringe patterns onto the objects, and the modulated fringe patterns are
captured by the binocular camera. Typically, projectors are used to provide a binocular
camera with easily matched features [14]. In this case, it is not necessary to calibrate the
parameters of the projector.

However, when meet the condition of covering the complex surface between differ-
ent views or local high reflection, the binocular camera is often unable to capture some
unfavorable feature points at the same time, which will result in a matching failure. In
this way, in order to further improve the measurement accuracy in difficult scenes, many
researchers have regarded the projector as a camera [14–17], to ensure that as long as one
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camera in the binocular camera can capture the feature point, the measurement can be
realized. Tao et al. [18] use the constraints of the multi-view system, projecting fringes
embedded with triangular waves onto objects, in order to retrieve absolute phase and
high-speed dynamic 3D measurements of isolated objects. Liu et al. [15] proposed a stereo
matching method without phase unwrapping. This method uses the three view geometric
constraints of the camera and the projector, which can effectively reduce the number of
fringes in the binocular structured light system. Gai et al. [16] use the digital projector
to provide additional information for multi-view mapping, which can effectively avoid
the problems of small field of view and self-occlusion in 3D measurement. Hu et al. [17]
proposed an accurate dynamic 3D shape measurement method based on DIC-assisted
phase shifting and a stereo structured-light system model, which requires projected three-
step phase-shifting patterns and a speckle pattern. All of those methods require accurate
calibration of the projector.

Existing projector calibration methods can be divided into two categories. In the first
way, the camera captures both the calibration chessboard and the projected chessboard
in the same scene [19,20]. These methods use the calibrated parameters of the camera to
calculate the parameters of the projector so that the calibration error of the camera will be
accumulated and amplified in the process of projector calibration.

To avoid projector calibration being affected by the calibration errors of the camera,
some researchers proposed the “inverse camera” method. The fringe patterns are generated
and projected onto the calibration target, and the pixel coordinates of the feature points
on the image plane of the projector are determined. In the “inverse camera” method, the
camera is just used to enable the projector to “capture” the calibration target. The precision
of these methods depends on the accuracy of extracting and mapping the corresponding
pixel coordinates of feature points on the image plane of the camera and projector. In [9],
the phase-shifting patterns are directly projected onto the printed chessboard, and feature
points are extracted by the camera and mapped to their pixel coordinates on the image
plane of the projector. Zhang et al. [21] implemented a sub-pixel mapping between the
corresponding feature points on the image plane of the camera and the projector, which
was based on the projection invariance of the cross ratio. At the same time, with the
popularization of machine learning and deep learning, some learning-based calibration
methods have also been emerged. Liu et al. [22] proposed a Bayesian network according
to the Markov random field hypothesis, which transforms the image intersection point
matching problem between a camera and the projector into a maximum a posteriori
estimation problem.Yuan et al. [23] designed an unsupervised image deblurring network
to recover a sharp target image from the deteriorated one, which can learn more accurate
features from the multi-quality target dataset of convenient image acquisition.

Nevertheless, these methods are only applicable to projector calibration under SCP
systems. Among the existing multi-view reconstruction methods [15–18], the Left-SCP
and Right-SCP are generally calibrated separately in the system calibration stage. This
will cause inconsistencies in the projector parameters, which are mainly reflected in the
focal length error and principal point error. These errors can lead to reconstruction errors
and rigid transformations and rotations, resulting in a decrease in measurement accuracy.
Through the calculation and derivation of the formula, it can be quantitatively calculated
that the principal point error will not only cause the reconstruction error, but also cause the
rigid body transformation of the 3D data. At the same time, focal length errors can also
cause reconstruction errors, and can also cause the 3D data to rotate around one axis.

Another key point in the projector calibration is the extraction accuracy of the feature points.
Classical feature points include chessboard corners and circular target centers [8,21,24–26].
Xing et al. [24] proposed a method for calibrating the measurement system which has lens
distortions. Fitting the phase values projected on the chessboard through a rational function, the
phase value of the corner is accurately extracted, and then the corresponding pixel coordinates
of the corner on the image plane of the projector are determined. Since the corners of the
chessboard are sensitive to light, this method has low accuracy and reliability. Huang et al. [25]
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proposed a sub-pixel extraction method based on the circle pattern. A group of pixels at the
edge of the circle are extracted and mapped to the image plane of the projector. Then the center
of the circle is fitted through the least-square method. Due to the perspective projection of
the camera, the center of the fitted circle is usually not the center of the true circle target [27].
Chen et al. [26] proposed an improved camera and projector calibration method, an improved
sub-pixel edge detection algorithm and a circular projection error compensation algorithm.

Most of the existing methods require high-precision targets with good diffuse reflection.
Such targets can provide reliable world coordinates to ensure the accuracy of calibration
results. In addition, these methods only apply to SCP systems, corresponding to the
problem of inconsistent projector parameters mentioned above.

Ideally, if we calibrate each SCP system in the DCP system independently, the cali-
brated projector parameters should be consistent. However, due to the extraction error and
phase error, there are differences between those projector pixel coordinates corresponding
to the same feature point, which is calculated through different pairs of projector-cameras.
Figure 1a shows the projector pixel coordinates of a certain pose calculated by two pairs
of SCPs. The STD of two direction errors are 0.1548 pixels and 0.1045 pixels, respectively.
Figure 1b shows the reprojection errors of each target pose, while each pose is represented
by a unique color cross symbol. It can be observed that due to the error mentioned above,
the calibrated projector parameters of the two pairs of SCPs are different. This will in-
evitably cause errors in the 3D measurement results.

Figure 1. Pixel coordinate errors. (a) Projector pixel coordinates of a certain pose. (b) Reprojection
error distribution of different poses.

This paper proposes a coupled projector calibration method for the DCP system.
Through the binocular camera in DCP system and the orthogonal fringe map, our method
can obtain the relationship between the 3D coordinates in the world coordinate system
and the 2D coordinates on the image plane of the projector, solving the inconsistencies
of the projector parameters. Moreover, our method can obtain high-precision projector
parameters without the high-precision chessboard targets or circular targets.

The rest of the paper is organized as follows. Section 2 explains the related work
about the proposed calibration method. Section 3 introduces the pipeline and details of our
methods. Section 4 gives the experimental results to demonstrate the effectiveness of the
method. Section 5 discusses the innovation of this study. Section 6 summarizes this paper.
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2. Related Works
2.1. Camera Model and Projector Model

The camera model is the simplification of optical imaging geometry, and the pinhole
model is widely used because of its simplicity and accuracy [28]. Let the 3D point in
the world coordinate system be W(xw, yw, zw), while its homogeneous coordinates are
W̃(xw, yw, zw, 1). In the following, the subscript c represents the camera model. Let the
corresponding point in the camera image coordinate system be wc(uc, vc), while its homo-
geneous coordinates are w̃c(uc, vc, 1). The relationship between the world coordinates and
the camera image coordinates can be described as

sc

uc
vc
1

 =

 fcu γc uc0
0 fcv vc0
0 0 1

[Rc Tc
]

xw
yw
zw
1

 = Ac
[
Rc Tc

]
xw
yw
zw
1

 (1)

where fcu = fc/dcu and fcv = fc/dcv. fc is the focal length of the camera lens, while dcu
and dcv are the pixel size along the u and v axes, respectively. (uc0, vc0) is the coordinate of
the principal point. γc is the skew factor, sc is an arbitrary scale factor and Ac is the intrinsic
matrix. Rc and Tc denote the 3 × 3 rotation matrix and the 3 × 1 translation vector from the
world coordinate system to the camera image coordinate system, respectively. The matrix
composed of Rc and Tc is the extrinsic matrix.

Due to the distortion of the camera lens, the actual camera model is often not an ideal
pinhole model. Through the distortion model, we can obtain the correct correspondence
between 3D space points and 2D pixel points. The most commonly used distortion model
is the Brown–Conrady model [29], which mainly contains two kinds of distortions: radial
distortion and tangential distortion. Let the ideal image point be (xc, yc), and the corre-
sponding distorted point be (xc

d, yc
d); the relationship between them can be described as{

xc
d = xc

(
1 + kc1rc

2 + kc2rc
4)+ [2pc1xcyc + pc2

(
rc

2 + 2xc
2)]

yc
d = yc

(
1 + kc1rc

2 + kc2rc
4)+ [pc1

(
rc

2 + 2yc
2)+ 2pc2xcyc

] (2)

where (kc1, kc2) denotes the radial distortion coefficients, (pc1, pc2) denotes the tangential
distortion coefficients and rc

2 = xc
2 + yc

2 is satisfied. The high-order coefficient term is
discarded because its distortion value is insignificant.

The intrinsic matrix Ac and the distortion coefficients (kc1, kc2, pc1, pc2) are constant
parameters, while the extrinsic matrix

[
Rc Tc

]
varies with the poses of the calibration

target. Through single-camera calibration, the intrinsic parameters and the distortion
coefficients of the camera can be determined.

The projector can be regarded as an inverse camera, so it can also be modeled by the
pinhole model with radial and tangential lens distortion. The formula for describing the
projector model is the same as Equations (1) and (2), except that the subscript needs to be
replaced from c to p.

2.2. Phase Target

Phase targets are widely used in camera calibration because of their robustness against
defocussing and their flexible feature points [30–33]. Differing from the traditional inverse
camera method based on the diffuse planar target, the method based on the phase target
only depends on the horizontal and vertical fringe patterns to obtain the feature points.
These methods avoid extracting the complex feature points (such as the corner points of the
chessboard, the center of the circle or the cross line, etc.). In addition, theoretically, all points
distributed on the phase target can be used as effective 2D calibration points, so the amount
of 2D calibration points is greatly increased, while the calibration accuracy is also improved.
Moreover, while under the certain calibration accuracy, the number of required 2D calibra-
tion planes can be reduced, and the calibration process can be simplified. The following
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will introduce the phase-shifting method to obtain the horizontal and vertical phases.
A set of horizontal and vertical fringe patterns is generated by computer and projected by
projector. The vertical fringe patterns captured by the camera can be expressed as

IVn(uc, vc) = AV(uc, vc) + BV(uc, vc)cos
[

φV(uc, vc) +
2πn

N

]
, n = 1, 2, . . . , N − 1 (3)

The horizontal fringe patterns captured by the camera can be expressed as

IHn(uc, vc) = AH(uc, vc) + BH(uc, vc)cos
[

φH(uc, vc) +
2πn

N

]
, n = 1, 2, . . . , N − 1 (4)

where (uc, vc) is the pixel coordinate on the camera image plane, AV(uc, vc) and AH(uc, vc)
are the vertical and horizontal background intensities. BV(uc, vc) and BH(uc, vc) are the
vertical and horizontal modulation intensities. φV(uc, vc) and φH(uc, vc) are the vertical
and horizontal phase values modulated by the height of the object. The subscript n is
the sequence number of the group of fringe pattern images, while N represents the total
number of steps of the fringe phase-shifting. The phase value can be calculated by the
following formula

φj(uc, vc) = −arctan
∑N−1

n=0 Ijn(uc, vc)sin
(

2πn
N

)
∑N−1

n=0 Ijn(uc, vc)cos
(

2πn
N

) , j = V, H (5)

The value of φj(uc, vc) is wrapped in the range of (−π, π] by Equation (5). To obtain
the continuous phase value φV(uc, vc) and φH(uc, vc), the phase unwrapping algorithm
is needed to eliminate the 2π phase discontinuity. In this paper, the multi-frequency time
phase unwrapping algorithm [34] is selected to obtain the corresponding unwrapped phase.

Much research shows that as N increases, the phase-shifting method will have better
anti-noise performance, while the precision of the obtained fringes and the quality of the
phases will also improve [35]. Therefore, in this paper, we chose an eight-step method,
instead of the commonly used four-step phase-shifting method.

3. Calibration Method
3.1. Overview

The DCP system is always set up as shown in Figure 2. ow − xwywzw, ow − xlylzl ,
or − xryrzr and op − xpypzp denote the world, left camera, right camera and projector
coordinate systems, respectively. The relationship between camera, projector and world
coordinates can be described as 

W = RlW l + T l
W = RrW r + Tr
W = RpW p + T p

(6)

where W , W l , W r and W p are the same points defined in ow − xwywzw, ow − xlylzl ,
or − xryrzr and op − xpypzp, respectively. Rl , Rr and Rp denote the rotation matrices
from the world to two cameras and projector; T l , Tr and T p denote the translation vectors.
Uniting any two formulas in Equation (6) can solve the three-dimensional coordinates of
the target point in the world coordinate system. In Equation (6), Rl , T l , W l , Rr, Tr and W r
can be determined by Zhang’s method [28], and Rp, T p and W p can be determined by the
projector calibration proposed by our method. In addition, it is necessary to find the pose
relationship between the left and right cameras and the projector for the system calibration.

Set the projector coordinate system as the reference, then eliminate the world coordi-
nate W in Equation (6) to obtain
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{
W p = R−1

p RlW l + R−1
p
(
T l − T p

)
= RlpW l + T lp

W p = R−1
p RrW r + R−1

p
(
Tr − T p

)
= RrpW r + Trp

(7)

where R−1
p Rl and R−1

p
(
T l − T p

)
are the rotation matrix and translation vector between the

left camera coordinate system and the projector coordinate system, denoted as Rlp and T lp.
Likewise, R−1

p Rr and R−1
p
(
Tr − T p

)
are the rotation matrix and translation vector between

the right camera coordinate system and the projector coordinate system, denoted as Rrp
and Trp.

Figure 2. DCP system.

In order to solve Rp, T p and W p, we proposed a method to calibrate the projector in
the DCP system. The complete calibration procedure with the proposed method can be
summarized in the following steps:

• Step 1: Calibrate the intrinsic and extrinsic parameters of the two cameras;
• Step 2: Project two sets of fringe patterns, one horizontal and the other vertical, onto a

white plane. Capture the images of these fringe patterns, respectively, with the two
cameras calibrated in step 1;

• Step 3: Randomly change the poses of the white plane, then repeat step 1 and step
2 to obtain 17 groups of images. Each group contains 96 images; the left and right
cameras correspond to 48 pictures each. For each camera, 8 vertical fringe patterns
and 8 horizontal fringe patterns with three frequencies are need;

• Step 4: As shown in Figure 3a, for each group of images, calculate the absolute phase
maps from the vertical and horizontal fringe patterns obtained by the binocular camera
in DCP system;

• Step 5: Create the orthogonal fringe map for feature extraction as Figure 3b and extract
the feature points on both right and left images as Figure 3c with the method given
in Section 3.2. Compute the projector pixel coordinates and the world coordinates of
each feature point with the method given in Sections 3.2 and 3.3;

• Step 6: Estimate the intrinsic parameters and the distortion coefficients of the projector
by optimizing the reprojection error with the Levenberg–Marquardt method as shown
in Figure 3d.
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Figure 3. The pipeline of projector calibration. (a) Eight-step phase shift and Three-frequency
heterodyne for phases unwrapping. (b) Create the orthogonal fringe map for feature extraction.
(c) Extract the feature points on both right and left image. (d) Optimize the reprojection error.

The following part will introduce the details about our method.

3.2. Feature Points Extraction and Mapping

Theoretically, any phase value can be used as a feature point, which is also the advan-
tage of using phase targets, i.e., with a large number of accurate feature points. However,
the complete period phase is more convenient for calculating the coordinates of feature
points on the projector image plane. Other work that utilizes phase targets, such as [31],
also uses the complete period phase as feature points. In order to facilitate the extraction
and analysis, we select the phase value with a complete period as the feature points. After
obtaining the unwrapped phases, the vertical and horizontal sine fringe patterns can be
generated using the known phases, and then superimposed onto the orthogonal fringe
map, as shown in Figure 4a. In this way, it is easier to capture the feature points. We select
the intersections of the orthogonal bright fringe patterns to be feature points. Points with
phase values of φtar

V = 2πni and φtar
H = 2πnj are selected as feature points, where ni and

nj are integral numbers. Since the accuracy of projector calibration often depends on the
accuracy of feature point extraction, consequently, in order to obtain higher accuracy, we
proposed a method based on polynomial fitting to extract the feature points with sub-pixel
level coordinates.

Since there is some background information, the image needs to be pre-processed as
follows. As shown in Figure 4b, take the left view as an example. Select four boundary
points and calculate the ROI (Region of Interest) mask based on them. Boundary points
are determined by hand-selecting the intersections of bright fringes and refining them
using the same method as the polynomial fitting described below. This ensures that all
feature points in the ROI have complete phase information. Finally, delineate the ROI. In
the following process, we are only interested in the complete feature points in the ROI.

In the process of detecting feature points, we first obtain the pixel level coordinates
of the orthogonal intersections according to the phase value of pixels like Figure 4c. Then
we use the fitting method to further obtain sub-pixel coordinates. Because the white
board in our method cannot be treated as an ideal plane, it may be tilted or have subtle
unevenness properties, which can cause the phase growth to change from linear to nonlinear.
The polynomial fitting method can better fit the geometric characteristics of an ordinary
white board, so as to obtain more accurate phase information. Therefore, we choose the
polynomial fitting method but not the usual plane fitting method as shown in Figure 4d.
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We set a sliding window with the size of 20 × 20 pixels as a sub-region for each integer
pixel. Based on the least squares method, we use the integer pixel values and their phases
in the sub-region to fit the polynomial equation, which can describe the distribution of
horizontal and vertical unwrapped phases. The equation is as follows{

p0x2y2 + p1xy2 + p2y2 + p3x2y + p4xy + p5y + p6x2 + p7x + p8 = up
c

q0x2y2 + q1xy2 + q2y2 + q3x2y + q4xy + q5y + q6x2 + q7x + q8 = vp
c

,
{

x = φc
V

y = φc
H

(8)

where up
c and vp

c are the pixel level integer pixel coordinates in the sliding window, φV and
φH are the corresponding unwrapped phases and pn(n = 0, 1, . . . , 8) and qn(n = 0, 1, . . . , 8)
are the polynomial coefficients. Then convert the coefficients into the form of matrix for
easier calculation, as P and Q show in the following formula

P =

p0 p3 p6
p1 p4 p7
p2 p5 p8

, Q =

q0 q3 q6
q1 q4 q7
q2 q5 q8

 (9)

Sub-pixel coordinates can be obtained by bringing the target phase φtar
V = 2πni and

φtar
H = 2πnj into Equation (8). The process of obtaining sub-pixel level coordinates can be

expressed as {
usp

c = f
(
P, φtar

V , φtar
H
)

vsp
c = f

(
Q, φtar

V , φtar
H
) (10)

where f is the process of calculating the sub-pixel coordinates corresponding to the target
phase φtar

V and φtar
H , using the coefficient matrices P and Q obtained in Equation (9), usp

c and
vsp

c are the sub-pixel level coordinates. As shown in Figure 4e, the three images on the left are
zoomed-in images of the sub-pixel level feature points highlighted in the red rectangle box on
the right images. It is obvious that the precision of the feature detection is improved.

Figure 4. The process of detecting feature points.
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The projector pixel coordinates corresponding to the feature points are
up =

φ
f
V

(
usp

c , vsp
c

)
2π

TV

vp =
φ

f
H

(
usp

c , vsp
c

)
2π

TH

(11)

where TV and TH are the periods of fringe patterns along the vertical and horizontal
directions, respectively, and φ

f
V and φ

f
H are the corresponding phases after being fitted

with another polynomial in the same way as above.

3.3. World Coordinates Calculation

When the left and right camera pixel coordinates (ul , ur) and (vl , vr) corresponding to
the feature points are obtained, the world coordinates of the feature points can be calculated.
As shown in Figure 5, let the projection matrix of the left camera be M l , and the projection
matrix of the right camera be Mr. After camera calibration, M l and Mr are simplified to

M l =

2760.8263 0 787.3906 0
0 2761.8504 549.9437 0
0 0 1 0


Mr =

 1956.2650 −37.1332 2107.9197 −864851.6178
−286.4883 2764.1705 527.0503 54260.4679
−0.5222 −0.0080 0.8528 100.2849


(12)

According to the projector model in Section 2.1, we have

sl

ul
vl
1

 = Al [Rl T l ]


xw

yw

zw

1

 = M l


xw

yw

zw

1

 =

ml
11 ml

12 ml
13 ml

14
ml

21 ml
22 ml

23 ml
24

ml
31 ml

32 ml
33 ml

34




xw

yw

zw

1

 (13)

sr

ur
vr
1

 = Ar[Rr Tr]


xw

yw

zw

1

 = Mr


xw

yw

zw

1

 =

mr
11 mr

12 mr
13 mr

14
mr

21 mr
22 mr

23 mr
24

mr
31 mr

32 mr
33 mr

34




xw

yw

zw

1

 (14)

Eliminate sl and sr in Equations (13) and (14), and then we have
ulml

31 − ml
11 ulml

32 − ml
12 ulml

33 − ml
13

vlml
31 − ml

21 vlml
32 − ml

22 vlml
31 − ml

23
urmr

31 − ml
11 urmr

32 − mr
12 urmr

33 − mr
13

vrmr
31 − ml

21 vrmr
32 − mr

22 vrmr
33 − mr

23


xw

yw

zw

 =


ml

14 − ulml
34

ml
24 − vlml

34
mr

14 − urmr
34

mr
24 − vrmr

34

 (15)

The feature points’ coordinates of the three-dimensional world can be obtained by
solving Equation (15). In this research, we assume that the origin of the left camera
coordinate system ol − xlylzl coincides with the origin of the world coordinate system
ow − xwywzw (i.e., xl = xw, yl = yw,zl = zw). Therefore, we can obtain the coordinates of
the feature points in the left camera coordinate system.

At this point, we have obtained the 3D coordinates of the feature point under the left
camera and the sub-pixel level coordinates on the projector image plane. Next, the projector
parameters can be optimized as shown in Section 3.4.
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Figure 5. The relationship between projector and binocular camera.

3.4. Projector Parameters Estimation

After determining the sub-pixel coordinates of the feature points on the projector
image plane corresponding to the phase target as described in Section 2.2, all these point
pairs are used to estimate the parameters of the projector. First, calculate the parameters
without lens distortion through Zhang’s method. Then, nonlinear optimization is used
to further solve the distortion parameters of the projector. All of the final parameters
are optimized with the Levenberg–Marquardt optimization method by minimizing the
reprojection error. The optimization objective function is given as follows

F = min

(
n

∑
i=1

m

∑
j

∥∥∥∥wij
p − ŵp

(
Ap, Rp, T p, Kp, W i

)∥∥∥2
)

(16)

where n is the number of feature points on each phase target, m is the number of poses of
the target, wij

p is the pixel coordinate of the j-th point of the i-th pose on the image plane of
the projector and ŵp is the function representing the projection process of the projector. Ap,
Rp, T p, Kp are the intrinsic matrix, rotation matrix, translation vector and the distortion
coefficients of the projector, respectively. W i is the 3D coordinate of the feature points
corresponding to wij

p , calculated by Equation (15).
Due to the assumption of Equation (12), the extrinsic parameters between the two

cameras and the projector can be easily calculated. From this, the extrinsic parameters
between each SCP can also be calculated.

4. Experiments and Results

We set up a DCP system as shown in Figure 6 to test our algorithm. The system
consists of two CMOS cameras with a resolution of 1600 × 1200 (model UI-3250CP-M-GL,
produced by IDS Imaging Development Systems GmbH, Obersulm, Germany). The DLP
projector with a projection speed of 30 fps and a resolution of 1280 × 800 (model PDC03-A,
produced by Giant Vinda, Fuzhou, China). The focal length of the lens of both cameras is
12 mm (Japan Ricoh Corporation, FL-CC1214-2M, Tokyo, Japan). For algorithm validation,
we calibrated the system using both the classical separate calibration method and our
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coupled calibration method. For both methods, we used TV = 80 pixels and TH = 50 pixels
per period of fringe patterns and N = 8 steps phase shifting for calibration.

Figure 6. Experimental setup.

After the fringe images are acquired by the experimental setup shown in Figure 6, and
processed by Figure 4a,b, the feature point can be extracted. We conduct a comparative
experiment between the pixel level feature point extraction method and our sub-pixel level
extraction method with polynomial fitting. The MSE (Mean Squared Error) between pixel
level points and sub-pixel level points is 0.2034 pixels.

Figure 7 shows the comparison results of the polynomial fitting method and the general
method to extract feature points. The red circle indicates the sub-pixel level coordinates
refined by the polynomial fitting method, corresponding to Figure 4d,e. The blue cross
indicates the original pixel level coordinates calculated based on phase value only, without
being optimized by the polynomial fitting method, and corresponding to Figure 4c. The
green arrow indicates the error vector between the sub-pixel accuracy value and the pixel
accuracy value. The highlighted box shows the zoomed-in comparison. It can be clearly
seen that the polynomial fitting method can avoid the nonlinear errors caused by the overall
tilt and subtle deformation of the white board.

Figure 7. The comparison results of polynomial fitting and general feature point extraction methods.
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The intrinsic parameters and distortion coefficients of the projector are calibrated with
our proposed method and classical method, respectively. It is worth mentioning that both
Left-SCP and Right-SCP can be used for projector calibration when the classical method
is used. The calibration results are listed in Tables 1 and 2. It is obvious that the standard
errors of the calibration results with our method are much lower than those obtained with
the classical method.

Table 1. Calibrated intrinsic parameters with standard error (unit: pixel).

Method Device fup fvp up0 vp0

Separate calibration Left-SCP 1744.3991 ± 16.9957 1745.2484 ± 16.9660 588.1513 ± 3.3219 375.4900 ± 3.9784
(Classical) Right-SCP 1755.7047 ± 18.4074 1755.2361 ± 18.3390 597.7887 ± 3.3325 366.9479 ± 4.3530

Coupled calibration (Ours) DCP 1756.5209 ± 0.7293 1756.2796 ± 0.7163 597.7667 ± 0.3391 382.3472 ± 0.3184

Table 2. Calibrated distortion coefficients with standard error.

Method Device kp1 kp2 pp1 pp2

Separate calibration Left-SCP −0.0718 ± 0.0300 0.3390 ± 1.2365 0.0002 ± 0.0004 −0.0042 ± 0.0006
(Classical) Right-SCP −0.0762 ± 0.0287 −0.2317 ± 1.1333 −0.0018 ± 0.0004 −0.0014 ± 0.0006

Coupled calibration (Ours) DCP −0.0610 ± 0.0024 0.0223 ± 0.0461 −0.0001 ± 0.00004 −0.0014 ± 0.00005

As shown in Figure 8, to evaluate the calibrated intrinsic parameters, the reprojection
errors are calculated for every plane orientation, while every color expresses one of the
planes’ orientations. The reprojection error distributions of the separate calibration methods
are shown in Figure 8a and Figure 8b, respectively, while Figure 8c shows our method.
The reprojection errors of the Left-SCP and the Right-SCP calibrated by classical method
are (0.0836, 0.0675) and (0.0853, 0.0718), respectively. Our proposed method reduces these
figures to (0.0186, 0.0322). Such a significant improvement is not only mainly caused by the
accumulation of the calibration error of the camera, but also the extraction error and phase
error.

Figure 8. Reprojection error distributions. (a) Separate calibration method (Left-SCP). (b) Separate
calibration method (Right-SCP). (c) Coupled calibration method (ours).

We measured two ceramic spheres to test the accuracy of our algorithm. To show that
our calibration method indeed reconstructs the absolute 3D geometry, we measured the
sphere using both our coupled calibration method and the classical separate calibration
method. In this experiment, as shown in Figure 9a, two ceramic spheres with diameters
of 50.7991 mm and 50.7970 mm were measured ten times from different views. Figure 9b
shows the 3D point clouds, with ten measurements, and the different numbers represent
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the measurement results at each position. By fitting two spheres using the 3D point cloud,
the diameters of the two spheres can be obtained. The measurement results of sphere A
and sphere B are shown in Figure 9c and Figure 9d, respectively. The Mean Absolute Error
(MAE) of the results, measured ten times, using three methods are calculated and shown
in Table 3. In Table 3, the measurement accuracy of the proposed method can achieve a
spatial resolution of 0.07 mm, which is more accurate than the classical method.

Figure 9. Comparison of ceramic sphere measurements. (a) Measured ceramic spheres. (b) 3D point
cloud at different locations. (c) Measurement results of sphere A. (d) Measurement results of sphere B.

Table 3. Comparison of the MAE of the proposed method and the conventional methods (unit: mm).

Method Device MAE of the Diameter
of Sphere A

MAE of the Diameter
of Sphere B

Separate calibration Left-SCP 0.0726 0.1115
(Classical) Right-SCP 0.0957 0.1601

Coupled calibration Left-SCP 0.0481 0.0294
(Ours) Right-SCP 0.0341 0.0687

5. Discussion

In this study, we proposed a new method for calibrating projector parameters in a DCP
system with high accuracy. In some difficult measurement environments, the projector in
the DCP system is seen as an inverse camera, thus playing the role of providing both texture
and 3D information. In many previous methods [15–18], the projector parameters are
calibrated in the Left-SCP and Right-SCP, respectively; thus the projector parameters were
inconsistent in the two systems due to influencing factors such as camera calibration error
transmission and feature point extraction error that may occur in the calibration process,
which led to measurement errors. Even though some learning-based calibration methods
have emerged [22,23], methods for calibrating the entire DCP system simultaneously are
still lacking. Differently from other methods, in order to unify the projector parameters in
the whole DCP system, we innovatively proposed a coupled calibration method, which
uses the binocular camera to uniquely determine the coordinates of 3D feature points. At
the same time, we also used a combination of phase target and polynomial fitting to obtain
the coordinates of the feature points at a sub-pixel level, thus simplifying the procedure.
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6. Conclusions

We develop a novel projector calibration framework based on binocular structured
light systems. Through the binocular structured light system and the phase target, the
inconsistency of the calibration results between the Left-SCP and the Right-SCP in the
traditional structured light system is effectively eliminated. The experimental results
show that the average reprojection error of the proposed method can reach (0.0186, 0.0322)
pixels. Specifically, we achieved an average accuracy of 0.07 mm by repeatedly measuring
two standard spherical objects. The experimental results are significantly better than the
traditional methods.
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