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Abstract: Radio frequency (RF) technology has been applied to enable advanced behavioral sensing
in human-computer interaction. Due to its device-free sensing capability and wide availability on
Internet of Things devices. Enabling finger gesture-based identification with high accuracy can be
challenging due to low RF signal resolution and user heterogeneity. In this paper, we propose MeshID,
a novel RF-based user identification scheme that enables identification through finger gestures with
high accuracy. MeshID significantly improves the sensing sensitivity on RF signal interference, and
hence is able to extract subtle individual biometrics through velocity distribution profiling (VDP)
features from less-distinct finger motions such as drawing digits in the air. We design an efficient
few-shot model retraining framework based on first component reverse module, achieving high
model robustness and performance in a complex environment. We conduct comprehensive real-
world experiments and the results show that MeshID achieves a user identification accuracy of
95.17% on average in three indoor environments. The results indicate that MeshID outperforms the
state-of-the-art in identification performance with less cost.

Keywords: device-free behavioral sensing; orthogonal signal interference; user identification

1. Introduction

Human Activity Recognition (HAR) and Human Behavior Recognition (HBR) tech-
nologies are integral components of Human-Computer Interaction (HCI) systems. They
enable computers to interpret and respond to human actions and behaviors, enhancing the
overall user experience. HAR and HBR systems [1] utilize various sensors and algorithms
to analyze data such as movement patterns, gestures and physiological signals, facilitat-
ing seamless interaction between humans and computers. However, they raise security
concerns about potential misuse or unauthorized access to users’ data. Through robust
user identification methods such as biometrics, passwords, or behavioral analysis, HCI
systems can mitigate the risk of unauthorized access. Vision technology [2,3] can identify
different users through physical activity characteristics captured from image frames using
high resolution cameras, but it is susceptible to failure in the presence of luminous changes
and obstacles within the line-of-sight (LoS) [4], thus exacerbating significant concerns
regarding user privacy. In stark contrast, RF sensors (such as WiFi, RFID, and Zigbee) offer
numerous advantages, including freedom from illumination constraints, reduced privacy
apprehensions, equitable penetration and widespread availability on IoT devices. As a
result, they are widely proposed to enable advanced device-free behavioral sensing [5,6].
Towards RF-based behavioral sensing, existing systems propose a variety of behavioral
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characteristics including daily activities [7–10], vital signs [11,12] and gestures [13–15].
Although these systems have demonstrated their effectiveness with fair accuracy in labora-
tory settings, they may still encounter real-world constraints. Extracting biometric features
from daily activities usually require users consistently performing a set of pre-defined
activities for long-term tracking [5]. The motion of vital signs (e.g., heartbeats [16] and
respiration rate [17]) remains fragile, and identification may be prone to failure due to
body movement artifacts and ambient noise. In contrast, performing gestures (e.g., finger
gesture) for identification can practically mitigate the impact of motion noise and offer con-
siderable user-friendliness [18–20]. Gesture-based interaction stands as the most common
and efficient method of HCI [21–23]. Gesture recognition technology is mature and capable
of achieving high accuracy. When users write in the air, they commonly use their forefinger
naturally. In our experiment, we adhere to this habit by employing forefinger gestures for
user identification. Enabling user identification through finger gestures with high accuracy
is a non-trivial challenge, which requires addressing two key challenges.

Firstly, as the movement of the finger motion is quite small, the amplitude change
in the RF reflected signal caused by finger motion could be very faint, hence it is difficult
to identify minor variance among users’ biometrics extracted from the limited signal
variance. According to the theory of the Fresnel model [24,25], when a user moves his/her
hand across the boundaries of Fresnel zones, the CSI of the signal will form a series of
peaks and valleys. We regard this variance pattern as a kind of RF signal resolution. If
we have more peak values in an unit area we can say that the RF signal resolution is
higher. Once the motion becomes smaller, like finger motion, the number of peak values
is reduced and the amplitude change in CSI diminishes much smaller, resulting in low
accuracy for identification. The key question we have is how to fundamentally improve
the RF signal resolution (i.e., CSI variance). Inspired by Young’s double-slit interference
experiment [26], we use a pair of transmitters (double-source) in the same frequency to
induce the signal interference. The double-source interference produces numerous dense
narrow beams. In other word, it greatly increases the number of boundaries in the same
unit area compared with traditional methods. By setting up two orthogonal double-source
pairs, the sensing area will be covered by a dense signal mesh, hence the signal resolution
is enormously improved.

Secondly, due to user heterogeneity (e.g., different users, preferences, and surround-
ings), in reality, the data distribution of users’ biometrics may become complex and un-
predictable to fail user identification. The performance of the traditional deep learning
(DL) technique relies heavily on collecting a large amount of user data as a prerequisite,
especially assuming that the represented data distribution is relatively stationary without
dynamic changes. Towards robust and efficient model retraining, we utilize a one-shot
learning approach based on the Siamese network [27–29], with two core techniques: first
component reverse (FCR) extraction and convolution block attention module (CBAM),
achieving high model robustness and performance in heterogeneous scenarios (e.g., identi-
fying unseen users). A unique velocity distribution profiling (VDP) is calculated from a
double-source interference pattern, reflecting the personal motion features.

When users perform finger gestures in a complex environment, the input feature
space of extracted biometrics contains both non-related features (i.e., common features
shared by the same gestures of users and ambient noise) and user-specific features (i.e.,
personal features), but the issue is that the non-related features may strongly affect the
performance of identifying users. To improve it, we design a first component reverse (FCR)
extraction, inspired by principal component analysis (FCR) extraction, inspired by principal
component analysis (PCA), hat removes the non-related features (i.e., first component in
PCA) and helps extract user-specific features from the input feature space, boosting our
CBAM-based Siamese network with a superior identification capability.

To address the above issues, we propose MeshID, a novel RF-based user identification
approach leveraging signal interference for accurate finger gesture tracking. MeshID is
able to significantly improve the sensing sensitivity by leveraging double-source signal
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interference and extracting subtle individual biometrics from less distinct finger motions.
Due to the effect of enhancing CSI variance, our mesh approach can mitigate the multi-
path effects and contribute to resisting the interference from ambient environments. By
applying an efficient CBAM-based few-shot deep learning framework with FCR extraction,
MeshID achieves high model robustness and can be easily adapted to new users with
complex surroundings.

The main contribution are summarized as follows:

• We present MeshID, an RF-based user identification approach based on a beam struc-
ture caused by double-source orthogonal signal interference. The system is able to
detect user in-air finger motion with high accuracy, which could support for a variety
of smart home/building applications especially for user identification.

• To the best of our knowledge, MeshID is the first solution that derives the unique
velocity distribution profiling (VDP) features from signal patterns leveraging the novel
mesh beam structure. It fully enables user identification by essentially enhancing the
signal sensing sensitivity compared to traditional RF-based approaches

• We design a first component reverse (FCR) extraction method to emphasize user-
specific features and remove non-related features, hence improving the identification
accuracy and model capability. We propose a one-shot learning framework with
CBAM in a Siamese network for model retraining robustness and efficiency.

• We evaluate MeshID in comprehensive real-world experiments. The results demon-
strate that MeshID is able to achieve an average identification accuracy of 95.17% on
average by performing single finger gestures in three indoor environments.

The rest of the paper is organized as follows. Section 2 discusses the preliminary
knowledge of the method. Section 3 presents the design of MeshID. Section 4 demonstrates
the comprehensive evaluation results. Section 5 shows the key discussions. Section 6
reviews the related works. Section 7 concludes the paper and discusses future works.

2. Preliminary

In this section, we introduce the fundamental concept of Channel State Information
(CSI) and then explore the double-source interference phenomenon for finger gesture-based
user identification.

CSI is a fine-grained physical layer that depicts how RF signals propagate between
a transmitter and a receiver [30,31]. It captures the slight change in the surrounding
objects in both the time domain and spatial domains. The CSI channel H is modeled
by Y( f , t) = H( f , t)X ( f , t) + N, where Y is the received signal, X is the pre-defined
modulated signal and N is the noise vector.

Empirical Study of double-source interference. In tradition, for a pair of transmitters
and receivers, as shown in Figure 1a, the signal variance pattern caused by the reflection
of target activity is usually identified as Fresnel zones. Small finger motions in the same
zone usually have a small impact on the signal variance, while user activity across different
zones causes a large signal variance. We may regard these zones as a kind of “sensing
sensitivity”. The zone number can be a measure of sensitivity to sensing. For example, in a
1 × 1 m area (without losing generality, the frequency is set as 5.76 GHz), roughly we may
have only seven Fresnel zones.

To increase the boundaries of sensing, our intuition is to apply RF signal interference.
Inspired by Young’s double-slit interference experiment [26], we use a pair of transmitters
with same frequency to induce the signal interference, resulting in a stripe pattern in a
parallel way. The simulation results of signal reflection are depicted in Figure 1b. The reason
why we can see such a fringes pattern is that multiple sources signals can interfere with each
other constructively, where the amplitude of combined signal is greater than the individual
one, while interference destructively where the amplitude of the combined signal is smaller
than the individual one or same with the original. We call the above phenomenon double-
source interference. Double-source interference obeys the Huygens-Fresnel Principle [32],
hence the Fresnel zones still exist under this double-source setting, as shown in Figure 1d.
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The double-source fringes pattern and the Fresnel zones are overlapping with each other,
the Fresnel zones will be divided into several “mesh” cells. Within this dense mesh, if
use activity is crosses the cell borders, it also causes a larger signal variance. That is, in
the same 1 × 1 m area, we may roughly have more than 83 separated areas in total. The
boundaries of “mesh” with fringes are notably increased by interference compared to
the Fresnel zones, which indicates that the sensing sensitivity on RF signal interference
increases. The interference of multiple waves are generally regarded as a not-so-trivial
negative effect leading to unpredictable signal patterns and poor signal quality in wireless
sensing, many studies aim to mitigate interference for better accuracy. However, our
objective is to utilize such negative effect in user identification and change the effect from
“negative” to “positive”.

(a) (b) (c) (d)

Figure 1. The simulation heatmaps: (a) Fresnel zones from single source; (b) Interference patterns from
double sources; (c) Mesh of the formed by orthogonal signal interference; (d) Fusion of interference
and Fresnel zone from double sources.

User identification based on orthogonal double-source interference: Since that a
finger gesture may lead to motions in different directions (e.g., drawing a digit “0”), one
transmitter pair may only be sensitive to the motions in the perpendicular direction to
the transmitters, hence it may lose useful motion features. To address this, we propose a
new setup of orthogonal antenna pairs to enable a dense interference pattern (i.e., dense
mesh) from both vertical and horizontal directions. Our basic idea is that if we deploy
another pair of transmitters with the same distance, but in another direction (e.g., parallel
to the x-axis) and with a slight frequency difference, such transmitters also cause a stripe
result but in a vertical way. The amplitude of the received signal appears like a dense
mesh with two orthogonal interference transmitter pairs, as shown in Figure 1c. We name
such pairs of transmitters as orthogonal antenna pairs. To observe the mesh pattern of
orthogonal double-source interference clearly, the Fresnel zone is omitted from this figure.
Consequently, we are able to achieve a higher sensing sensitivity on RF signal compared to
traditional methods.

The received CSI comprises a mixture of signals, including the line-of-sight component,
double-source component, and others. We utilize the Complementary Ensemble Empirical
Mode Decomposition (CEEMD) to separate the double-source interference component from
the CSI data. With this feature, we propose a noval VDP feature to capture the fine-grained
finger motions of users within the sensing area. The VDP encapsulates the motion change
pattern of the user and the corresponding potential biometric features such as the motion
speed. Since users have diversity motion habits and behavioral habits (e.g., drawing digit
“0” clockwise or anticlockwise, different pauses and speeds when performing gesture), even
when executing the same gesture, the moving finger interacts with RF signals differently,
resulting in distinct patterns. As shown in Figure 2, Figure 2a–c are the CSI variances
of three different users drawing the same digit “0” based on their own writing habits.
Figure 2d–f are the corresponding VDPs that have different velocity patterns. Therefore,
we can depict users’ behavioral characteristics by leveraging biometric feature extraction
methods and bring the opportunity for user authentication.
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(a) (b) (c)

(d) (e) (f)

Figure 2. The VDP of different users when writing digit 0. (a) CSI of user 1. (b) CSI of user 2. (c) CSI
of user 3. (d) VDP of user 1. (e) VDP of user 2. (f) VDP of user 3.

3. Methodology
3.1. Framework

As shown in Figure 3, our design consists of four components: (1) data collection from
orthogonal double-source interference, (2) noise removal and gesture recognition, (3) FCR
extraction analysis to extract user-specified features, (4) data transform and (5) CBAM-based
few-shot learning for identification.

Figure 3. MeshID design overview.

Firstly, we introduce our design of the orthogonal signal interference. The signal
interference pattern is like a dense mesh. The user is able to perform finger gestures within
this area. Under this setting, CSI information is collected from both horizontal and vertical
transmitters. Secondly, a low pass filter algorithm is used to remove the high-frequency
noise and a down sampling algorithm is used to reduce the data size in order to effectively
process the data. Then, we use Complementary Ensemble Empirical Mode Decomposition
(CEEMD) [33] on the data to obtain ensemble Intrinsic Mode Function (IMF) which is
related to the interference pattern. Thirdly, with the IMF data from the CSI series, we
utilize a CNN-based LSTM method to recognize the user’s gesture. Then, we leverage
FCR extraction to remove the effect of the shared component, so that it can remove the
correlated non-related features among different users and leave the user-specified features
of the user. Fourthly, we estimate the user instantaneous moving speed according to the
fringe-based variance pattern, then we generate the VDP for following user identification.
Finally, we can identify users by leveraging the CNN-based Siamese Network.
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3.2. Double-Source Interference

In free-space scenarios, where two RF waves with the same frequency f travel along
two different paths to converge at the same destination point, the difference of two path
lengths is equivalent to a multiple of wavelength λ, which is known as constructive
interference [34] Similarly, if the two waves are out of phase by half of the wavelength, the
result is destructive interference. In this case, the combined signals produce several fringes,
where the high points of fringes are called the crests, and the low points of the fringes are
called the troughs.

Given this phenomenon, we may deliberately utilize the aforementioned double-
source signals, each possessing the same radio frequency, to create a combined signal Hsum,
which can be defined as follow:

Hsum( f , t) = H1( f , t, r1) + H2( f , t, r2) (1)

where H1 is the received signal travel with distance r1 from the first antenna, and H2 is
from the second antenna and travels with distance r2.

The width of the neighbouring fringes can be calculated by three primary major
parameters: the distance between the transmitter node pairs, the wavelength of the radio
wave, and the distance from the transmitter pairs. The node distance between nodes and
the wavelength of the radio wave are the known values. The impact range of finger motion
usually is small compared to the sensing area, hence the distance from the transmitter pair
can be regarded as the middle of the sensing area. The fringes are symmetrical starting
from the central line (thick red line in the figure) of the receiver antenna, we refer to the
upper fringes as f ringeu

m and bottom fringes as f ringeb
m, m is the number of a specific fringe

number, as shown in Figure 4. The width ∆dist between fringe f ringeu
m and f ringeu

m+1 (or
between fringe f ringeb

m and f ringeb
m+1) at a position whose distance to the y axis is l, can

be calculated by

∆dist = mλ

√
4 +

l2

d2 − m2λ2 (2)

where d is the node distance between the transmitter antennas pairs, λ is the wavelength.

Figure 4. Illustration of double-source interference.
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3.3. Orthogonal Signal Interference

In previous instances of interference fringes, employing a pair of antennas in trans-
mission resulted in fringes appearing predominantly along one direction (e.g., horizontal
direction in Figure 1b). Introducing another pair of antennas orthogonally (e.g., vertically,
as shown in Figure 1c), operating at slightly different frequencies, produces interference
fringes along a different axis (vertical direction). Therefore, the combined interference
signal fringes appear like a mesh. We can effectively capture the fine-grained finger motion
from any direction, thereby enhancing signal resolution.

We may have CSI data from both vertical and horizontal antenna pairs at the same
time. The orthogonal RF signals can be represented as below:

M(RX1, RX2) =

[
HRX1( f , t)
HRX2( f , t)

]
(3)

where HRX1 is the received signal at receiver RX1, and HRX2 is the received signal at
receiver RX2.

3.4. Noise Removal and Gesture Recognition

The raw wireless signals are inherently noisy due to the multipath effect. In order
to effectively identify the human, we should remove noise first, then perform the data
transformation for enhanced analysis.

3.4.1. Low Pass Filtering

The CSI variance caused by human motion has a relatively low frequency specified as
fl , while the high-frequency data usually contain environment noise. Therefore, we utilize
a a low-pass FIR filter to remove the environmental noise. The cut-off angular frequency
used in the low pass filter is calculated as ωc = 2π

fl
f̃s

.

3.4.2. Down Sampling

To expedite calculations and enhance processing speed, we initially employ a down-
sampling (interpolation) method to stretch the input CSI matrix. Assuming the original
sampling rate is fs, and the data length of the original data is m. After the re-sampling, the
data length is n with the new sampling rate f̃s = fs ∗ m

n . The CSI matrix after re-sampling
can be rewritten as M̃( f̃s) = F(M, fs) where M is the input orthogonal RF signal.

3.4.3. Interference Pattern Extraction

Given that interference theory remains constrained by the principles of the Fresnel
Zone, the interference pattern can be covered by the Huygens-Fresnel Principle. Figure 5
shows an example of how both the Fresnel zone and environment noise can detrimentally
impact the interference pattern. We place the receiver antenna on the right side of the
drawing area. The transmitter is placed on the left side. Horizontal zones/fringes will exist
with a single sourcesetting/double source setting, as shown in Figure 1a,b. While a user
draws a straight line from center top to center bottom and just crosses the Line-of-Sight
(LoS), the amplitude variance with a single source setup is shown in Figure 5a, we identify
the start point and the endpoints with a red dashed line. The figure clearly shows that
only one peak value is shown within this range. For purposes of a fair comparison, we
repeat the same finger motion under a double-source interference setup. We also identify
the start point and end point with red dashed lines. The amplitude variance is shown in
Figure 5b. The result indicates that three peak values are distributed in the same range
compared with a single source. We utilize a green line to separate the interference fringes
based on the peaks. On the basis of Equation (2), we could estimate the width of the fringes.
Theoretically, motion features based on personal velocity can be derived if the boundaries
of the fringes are accurately identified. Therefore, there is a pressing need for an efficient
method to detect these fringe boundaries with precision.
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(a) (b)

(c) (d)

Figure 5. Comparison of Fresnel Zones patterns and interference patterns when user’s finger moves
perpendicular to the LoS. (a) CSI of 1st Fresnel zone with single source. (b) CSI of Interference fringes
with double sources. (c) IMF of 1st Fresnel zones with single source. (d) IMF of Interference fringes
with double sources.

We apply Complementary Ensemble Empirical Mode Decomposition (CEEMD) on
the CSI matrix M̃ to detect the fringe boundaries.

M̃(t) =
N

∑
i=1

f (IMFi(t), εi) + resN(t) (4)

where f (IMFi) is the ith Intrinsic Mode Function (IMF ) component, εi is the residue of
added white noises, and resN(t) is the residue.

To simplify the pattern extraction, we can roughly divide the received CSI signals into
four layers: noises, interference variances, Fresnel zone variances and trends related to
with the distance of transmitter and target objects. Hence, N = 3 in our system, and the
residue of the decomposition represented the trend of the CSI series. We will use IMF2
as the input of the following calculation. The results of CEEMD processing are shown in
Figure 5c and 5d respectively.

3.5. Finger Gesture Recognition

In this subsection, we describe the gesture recognition methods to recognize users’
finger gestures. Unlike some existing work, they require the collection of lots of gesture
samples for training the gesture recognition network to meet the requirement for real-
world applications that may have few gesture samples for first-time usage. Also, the
recognition system is required to offer a short response for real-time applications. We
employ Convolutional Neural Network (CNN) based Long Short-term Memory (LSTM)
for finger gesture recognition. In our system, only a few gesture samples of a user are
needed for re-training the network. The gesture recognition network contains four 1d CNN
layers to suppress the data size to shorten the training time. Next, the features are fed into
a two-layer LSTM. Based on the known gesture, we use a general Principal Component
Analysis (PCA) algorithm to analyze the CSI value for removing the common features of
the same gesture.
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3.6. First Component Reverse Extraction

Principal Component Analysis (PCA) has been widely used for signal denoising to
enhance classification performance [35,36]. Most of the existing works usually keep the top
three principal components (especially the first component) of the data and ignore the rest,
as PCA ranks the principal components in descending order in terms of their variance.The
design of a first component reverse (FCR) extraction method is shown in Figure 6.

In our user identification scenario, the first component derived from the received CSI
data of the same finger motion may majorly contain the common features shared among
different users when they are performing the same gestures. As shown in Figure 7a–c,
when three users perform the same gesture digit “8”, the major CSI variance from the
same gesture is quite similar. The major CSI variance is caused by the finger motion. We
recognize the first component of PCA from these similar variances as the common feature.
It is a non-related feature for user identification. Instead, our aim is to extract user-specified
features. After remove the non-related features, the rest variances are influenced by diverse
body structures, environmental factors, and other sources of noise. Although non-related
features may aid in recognize the defined finger gestures across different people, they can
adversely impact user identification. We aspire to incorporate more user-specific features
for accurate identification. As shown in Figure 7, the CSI result of three different users
are Figure 7a, 7b and 7c, respectively. All three users are writing the digit “8” freely.
Figure 7d–f are the corresponding CSI by applying FCR extraction. The first component of
different users is almost similar to each other. Upon removing these similar components,
user-specific features become more pronounced. Therefore, in our design, we remove the
principal component to effectively reduce the impact of such non-related features, and
extract the characteristic of personal information (i.e., user-specified features) accordingly.
This methodology aids in identifying different users by filtering out interference from
non-related features without sacrificing personalized information.

Figure 6. Architecture of FCR extraction.

(a) (b) (c)

(d) (e) (f)

Figure 7. When three different users perform same gesture (digit “8”), the comparison of CSI
amplitude before and after FCR extraction. (a) User 1 (before FCR extraction). (b) User 2 (before FCR
extraction). (c) User 3 (before FCR extraction). (d) User 1 (after FCR extraction). (e) User 2 (after FCR
extraction). (f) User 3 (after FCR extraction).
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Applying the FCR extraction algorithm, we will have a coefficient matrix [W1,W2, . . . ,Wn].
We remove the first component to enhance the performance of one-shot learning for
user identification

X = XIMF − XIMF ×W1 (5)

where W1 is the coefficient of first component and XIMF is the IMF component of CSI.

3.7. Interference-Based Velocity Distribution Profiling

In observational experiments, we notice that users exhibit brief pause intervals during
gesture execution, causing fluctuations in instance motion velocity. Each user possesses
a unique instance velocity profile due to his/her inherent writing behavior. We calculate
the user velocity profile based on the xIMFn by analyzing the interference pattern. It’s been
observed that when a target user moves his/her finger across from the boundary of an
interference fringe to the middle part of the neighbour interference fringe, a maximum
value Amax

i and a minimum value Amin
i of the CSI amplitude occur in corresponding CSI

time series, as shown in Figure 5d. For two neighboring extreme values, we derive the
width of the fringe ∆dist which is calculated by Equation (2). Hence, the instantaneous
velocity is

v(inst)(t) =
∆dist

∆t
(6)

where ∆t is decided by the sampling rate.
For each receiver, we segment the signal with a small time window winl , and calculate

the velocity profile by the interference fringes. The two velocity profiles from two receivers
RX1 and RX2 can be identified as the horizontal velocity profile V(vx) and vertical velocity
profile V(vy), because in the MeshID system, receivers are perpendicular to each other. For
each time window, we search for the extreme values of the one-dimensional IMF time series
to identify the corresponding fringe boundaries, and use them to derive the instantaneous
velocity V(vx, vy). A two-dimensional VDP matrix VDP[M × N] with size [M × N] by
quantizing the discrete instantaneous velocity from horizontal and vertical directions. The
VDP combines the velocity distribution of the two velocity profiles. VDP can effectively
extracts the real-world features of the users since it reflects real-world movements. On one
hand, when a user performs the same gestures at different movements with fixed antennas
but different movements, the corresponding VDPs are similar to each other. On the other
hand, as Figure 2 shows, VDP is different from user to user.

3.8. CBAM-Based Siamese Network

In order to facilitate efficient model retraining for addressing user heterogeneity, we
leverage the Siamese neural network for few-shot learning in user identification. It aims
to train only few data from unseen users, requiring less model retraining preparation to
achieve satisfactory performance. Additionally, the few-shot learning takes advantage
from features of previously learned VDP samples, showcasing its capability to identify new
individuals with reduced effort. As shown in Figure 8, our proposed model comprises two
twin networks that share same parameters and weights.

The purpose of the Siamese network is to minimize the pairwise distances between
personal drawing features from the same people and maximize the distances of features
from different people. The process can be illustrated as follows:

δ(X(i),X(j)) =

{
min∥F(X(i))−F(X(j))∥, U(i)=U(j)

max∥F(X(i))−F(X(j))∥, U(i) ̸=U(j)
(7)

where F is a non-linear transform based on a twin network.
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Figure 8. Few-shot learning overview.

Particularly, we adopt the Convolutional Block Attention Module (CBAM) [37] in
our Siamese network to emphasize extracting informative features along both the channel
and spatial axis. CBAM is an effective attention module for most feed-forward CNN
networks. For a given feature map Υs1, CBAM calculates its channel and spatial weight
matrix sequentially and then refines the feature map based on these two weight matrices.
Specifically, the Siamese network uses the two same networks to extract features, examine
the similarity of the input anchor VDP image and store the VDP image for user identification.
Therefore, though the CBAM-based Siamese network with a learned VDP feature of an
individual, MeshID can authenticate users with a high identification accuracy.

In the training phase, the VDP matrix/spectrogram with size [M × N] triplets (anchor
VDP image, negative VDP image, positive VDP image) are fed into the CBAM-based
Siamese model. The basic idea is that the distance between drawing patterns of the same
person on the same character should be smaller than that between the drawing patterns of
different people. We take combined VDP (i.e., horizontal antenna pair RX1 and vertical
antenna pair RX2) as inputs to each stream (sub-network). The architecture of each sub-
network is mainly divided into three modules.

More specifically, the input VDP matrix/spectrogram will first be processed by a
batch normalization B. Then, the model learns the features from four convolutional layers
C(nc, ks). Here nc is the number of feature maps and ks is the kernel size. We have used
a 3 × 3 kernel size in the convolutional layer with a stride of 1. The stride determines
how many pixels the filter shifts. The depth (number of channels) of the features in each
convolutional layer is shown in Figure 8. The pooling layer is used to reduce the size
of the features. We have employed max-pooling which retains only the maximum value
within a pool. Afterward, the flattening layer is applied, which involves transforming the
two-dimensional matrix into a column matrix (vector). This column vector is then passed
to the fully connected layer. We will use a non-linear ReLU function for activation.

The CNN architecture of sub-network is abbreviated as Υs1 = F1(X): B → C(16) →
P → B → C(32) → P → B → C(64) → P → B → C(128), where P is the max-pooling
layer. We deploy CBAM in the second module F2, which adaptively refines the feature map,
defined as Υs2 = F2(Υs1). Finally, three fully connected layers F3 are applied to encode
the output of CBAM as the feature vector X. A person can be identified by calculating the
pairwise distance with the template in the database.

4. Evaluation

In this section, we begin by outlining our experimental equipment, setup and system
workflow. Subsequently, we present our experimental results and comparison with other
algorithms. Finally, we conduct an assessment of each component of MeshID.
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4.1. Experiment Setup

In principle, our approach is fundamentally applicable to a wide range of RF-based
devices, e.g., WiFi, Universal Software Radio Peripheral (USRP), Bluetooth and RFID. To
flexibly design carrier signals and baseband waveforms, we utilize USRP devices (Ettus
Research, Austin, United States) for system implementation. Specifically, we have two
USRP N210 devices (RX1 and RX2), each equipped with an omnidirectional receiver
antenna. At the same time, we have two NI USRP 2953R devices with two omnidirectional
antenna transmitter pairs. The transmitter sends a simple sinusoidal waveform at a fixed
frequency. The transmitters are connected to the PXI Chassis(Ettus Research, Austin,
United States). All of the devices are synchronized to the CDA-2990 Clock Distribution
Device(Ettus Research, Austin, United States).

To capture two-dimensional CSI variance, we set the two transmitter pairs orthogo-
nally. When performing gestures, the drawing area typically aligns parallel to the user’s
orientation. Therefore, the optimal orientation is that placing two transmitter pairs and two
receivers orthogonally in front of the user so that the finger could cross more double-source
interference fringes. Utilizing only one transmitter pair would render the system sensitive
primarily to motions perpendicular to the transmitter pair.

Specifically, the transmitter pair 1 (TX1) operates at 5.76 GHz is placed horizontally
positioned with a 50 cm apart, while the transmitter pair 2 (TX2) operates at 5.72 GHz is
placed vertically positioned, also with a 50 cm apart, as shown in Figure 9a. The optimal
node distance of a transmitter pair is 50 cm, which will be discussed in later Section 4.2.
The distances between TX1 and RX1, TX2 and RX2 are both 1 m. Since the frequency of the
TX1 pair and TX2 pair have a slight difference, the transmitted signals only interfere with
each other inside each transmitter pair. The devices are shown in Figure 9b. Both receivers
and transmitters are deployed on a customized shelve with an orthogonal setting. Our
algorithms are performed in a DELL server with an i7-6850K 3.6 GHz Processor and 64 G
RAM. The operation system of the server is Windows 10 with 64-bit.

We thoroughly evaluate our prototype across three different indoor environments: a
standard office (3.4 m × 3.8 m), a meeting room (5 m × 7 m), and a hallway (2.8 m × 35 m),
as shown in Figure 10. During data collection, ambient individuals within these environ-
ments were not required to vacate the premises.

(a) (b)

Figure 9. Experimental setup. (a) Setting. (b) Devices.

Our experiments involve the collection of two datasets. During data collection, users
are instructed to freely perform in-air gestures at their desired speed and size. The first
dataset contains 2268 gesture samples (6 users × 3 scenes × 6 gestures × 21 samples). We
select 6 in-air finger gestures from three categories: digits, letters, and symbols for user
identification, as they are the most commonly used in passwords. Specifically, we use “3”
and “6” for digits, “d” and “M” for letters, and “@” and “&” for symbols. The second
dataset serves to evaluate the system. The data is collected from another 18 users. This
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dataset comprises a total of 3600 gestures samples (18 users × 10 gestures × 20 samples).
Users are instructed to perform 10 Arabic numerals “0–9” to further analyze user-to-user
feature variations. Digits are a basic and familiar form of characters for most people. They
are universally understood and accepted across different languages and cultures, making
them accessible to a wide range of users without language barriers. In total, our dataset
comprises 24 users, including 18 males and 6 females with heights ranging from 155 cm to
185 cm and weights ranging from 45 kg to 80 kg. Standard cross-validation techniques are
employed in our evaluation process.

(a) (b) (c)

Figure 10. Three indoor environments. (a) Office. (b) Meeting room. (c) Hallway.

4.2. Impact of Node Distance between Transmitters

In MeshID, the resolution of the signal is determined by the density of the mesh,
which in turn relies on the node distance between each transmitter pair. This subsection
explores the impact of such node distance on the mesh pattern. Since the interference setting
mandates the node distance to be a multiple of the wavelength (approximately 5 cm in our
setup), within the 100 cm × 100 cm area, we varied the node distance from 1 × λ to 10 × λ,
incremented by 5λ. The theoretical interference patterns are illustrated in Figure 11a–c.
The findings indicate a direct proportional relationship between the node distance of each
transmission pair and its density when the radio frequency remains constant. Opting for a
denser mesh pattern necessitates a larger node distance, and vice versa.

(a) (b) (c)

Figure 11. Double−source interference pattern at three different distance of a TX pair. (a) Distance of
a TX pair is λ. (b) Distance of a TX pair is 5 × λ. (c) Distance of a TX pair is 10 × λ.

We employ the first dateset for the subsequent two subsections, where six users are
tasked with performing six gestures across three categories. To be specific, “3” and “6” for
digits, “d” and “M” for digits, and “@” and “&” for symbols. Performance evaluation for
gesture recognition and user identification is conducted using the standard cross-validation
method. Few samples (4 in our model) of the one user are used for retraining and the rest
of the samples from this users are used for testing. The data from another five users are
only used for pretraining).
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The experiments results for three different transmitter node distances (e.g., 30 cm,
50 cm and 70 cm) are shown in Figures 12 and 13. The results demonstrate that using 5 cm
node distance setting achieve the highest average accuracy for both gesture recognition ac-
curacy and user identification. In Figure 12, with the node distance set to 50 cm, the gesture
recognition accuracy of three types of symbols are 93.75%, 95.83% and 93.23%, respectively.
The average accuracy of gesture recognition across the three different transmitter node
distances is 88.19%, 94.27% and 88.72%, respectively. Figure 13 illustrates the impact of
employing three different node distances on user identification. The average accuracy for
user identification in different settings is 91.12%, 95% and 95.13%, respectively. The system
may fail in gesture recognition, but it still possible to identify user successfully. This is
attributed to the fact that although the FCR extraction is trained based on the result of
gesture recognition, but we transformed CSI time series to several components, only few
top components (the first component in our FCR design) is removed. Consequently, user-
specified features for user identification may still be retained. Hence, the user identification
could has better performance than gesture recognition.

Figure 12. Gesture recognition accuracy under different distance of a transmitter pair.

Figure 13. User identification accuracy under different distance of a transmitter pair.

Additionally, the results indicate minor differences between different node distances
in MeshID. Hence, the antennas placement in MeshID is flexible to accommodate various
real-world scenarios with practicability. Considering our scenario is to identify the users
through finger gestures, we need to make sure that the mesh cell size is able to match the
finger width (approximately 2–3 cm) of an average person. Therefore, we default to setting
node distance as 10 × λ (λ = 5 cm) by default in our subsequent experiments.
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4.3. Performance of MeshID

Table 1 presents the results of gesture recognition and user identification across three
different environments, spanning from a compact office space to an expansive hallway.
These assessments utilize the first dataset and adhere to the standard cross-validation pro-
cedure. Results reveal that the gesture recognition accuracy of MeshID achieves 94.27% in
an office, 94.1% in a meeting room and 93.4% in a hallway. Notably, since the differences of
the results across these environments are minor, MeshID is able to achieve a fair robustness
in adapting to diverse indoor settings. MeshID attains identification accuracy of 94.3% in an
office, 95.03% in a meeting room and 97.1% in a hallway, respectively. Notably, the highest
identification accuracy is recorded in the hallway environment, attributed to the minimal
presence of multipath effects. On average, MeshID system achieves an identification accu-
racy of 95.48%. According to the results, the identification accuracy on average of three
gesture categories is 95.25% for digits, 95.52% for letters, and 95.67% for symbols. It can be
observed that all types of gestures perform well in three indoor environments. Delving
into specific gestures, the average accuracy of gesture “3” is 93.3%, gesture “6” is 97.2%,
gesture “d” is 97.5%, gesture “M” is 93.5%, gesture “@” is 99.1% and gesture “&” is 92.2%.
Digits are universally understood and accepted across different languages and cultures,
making them accessible to a wide range of users without language barriers. Therefore,
to make the evaluation more general, we choose digits as the identification gestures for the
following experiments.

Table 1. MeshID performance in different environments.

Recognition Gesture Office Meeting Room Hallway

Gesture Recognition
Digits 93.8% 95.8% 93.2%
Letters 96.9% 92.2% 93.2%

Symbols 93.2% 94.8% 92.2%

User Identification
Digits 92.9% 97.4% 95.5%
Letters 90.9% 97% 98.8%

Symbols 99.2% 90.8% 97.1%

4.4. Performance of User Identification

To further investigate the performance of our user identification system, we employ
a larger second dataset for subsequent evaluations. 18 users are asked to perform the
same finger gestures 20 times. Data from the remaining 6 users are only used for intrude
detection in later. Other 12 users are evaluated using the standard cross-validation method.
Without loss of generality, we test digital numbers (“0” to “9”) 20 times for each user.
Consistency was maintained in the stroke order for each digit, with users instructed
to write the digits in a clockwise manner (e.g., writing digit “0” clockwise). The user
identification results are shown in Figure 14. The average identification accuracy across
the 10 gestures stands at 93.19%. With the exception of digit “1”, the accuracy of all other
digits exceeds 84%. Specifically, four digits demonstrate outstanding accuracy: 98.9% for
digit “0”, 96.3% for digit “4”, 96.8% for digit “5”, and 98.4% for digit “8”. Conversely,
the identification accuracy for finger gesture "1" and "9" is comparatively lower than others.
This discrepancy could be attributed to the simplicity of the strokes for “1” and “9”, where
different users might not exhibit significant variations in their finger gestures. Conversely,
for the remaining finger gestures, we observe a notably high identification accuracy.

To further evaluate the security level of the system, we conducted an intrusion de-
tection scenario where we enlist 6 unseen users to act as spoofers. These 6 spoofers are
replicate the gestures of target users in an attempt to bypass the user identification process.
We employ the true negative value to measures the probability that MeshID correctly
identifies an unauthorized user. The results, presented in Table 2, reveal a detection accu-
racy exceeding 80% for all 6 spoofers, with four of the six users achieving approximately
90%. While our primary focus lies on user identification rather than binary classification,
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the framework of MeshID could still achieves an overall detection accuracy of 91.7% with
no prior information of the testing environments.

Figure 14. Comparison of key components.

Table 2. Detection accuracy of spoofer.

Spoofer s1 s2 s3 s4 s5 s6 Avg

Detection accuracy 95% 95% 85% 100% 80% 95% 91.7%

4.5. Impact of Signal Interference

As mentioned in Section 3, we have learned in theory why signal interference can
improve the sensing sensitivity. To further understand how the signal interference affects
the performance, we conducted a comparative analysis of experimental results using
spectrograms based on our double-source interference setting and the traditional single-
source setup. We transform the CSI signals obtained from both settings to Continuous
Wavelet Transform (CWT) spectrograms. Since the VDPs serve as a unique feature based
on interference patterns, we opted for the more commonly used CWT for the comparison.

In single-source experiments, only one ominidirectional antenna is connected to a
transmitter, resulting in no signal interference within the finger movement area, in contrast
to the double-source setup. In double-source interference scenario, two ominidirectional
antennas, referred to as an antenna pair, are connected to a transmitter. Both antennas
operate under the same transmission settings, including frequency. Data from 10 users of
second dataset are used in this experiment. The other setting remains consistent with those
previously introduced.

Figure 15 illustrates the Cumulative Distribution Function (CDF) of the identification
error rate with interference and without interference. We can see that the average accuracy
of double-source interference setting significantly surpasses that of the single-source setup.
Specifically, the inclusion of interference in the signal enhances the system’s identification
accuracy by 28.3% compared to scenarios without interference. Therefore, double-source
interference setup creates a fine-grained signal mesh within the designated area, leading to
high user identification accuracy.
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Figure 15. CDFs of MIMO and MeshID.

4.6. Impact of Ambient People Moving

In a typical public room, it is a common condition that other people may dynamically
move around when the user is performing finger gestures. Since the wireless signal
is sensitive to ambient environment changes, ambient people moving may easily affect
the CSI variances, which may have a side effect on user identification. We study the
performance of MeshID under the impact of ambient people moving. Figure 16 showcases
identification results when a single gesture is performed while an individual moves within
a 3-m range. Similarly, Figure 17 depicts results when two consecutive gestures are executed
amidst ambient movement. The presence of ambient movement causes a slight decrease
in identification error rates, which remain within acceptable bounds for most scenarios.
Furthermore, increasing the number of finger gestures performed by the user enhances
identification accuracy. This result demonstrates that MeshID is performed as robust to
the impact of ambient people moving. Theoretically, the proposed interference wave,
comprising a superposition of two waveforms with same frequency, results in stronger CSI
variances, facilitating more resilient feature extraction for user identification compared to
traditional single-wave setups. Consequently, MeshID effectively mitigates the adverse
effects of ambient movement, enhancing overall robustness.

Figure 16. User identification error rate of user performing one gesture when ambient people
walk around.
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Figure 17. User identification error rate of user performing two sequential gestures when ambient
people walk around.

4.7. Performance of FCR Extraction and CBAM

FCR extraction and the CBAM Module are two key components of MeshID. The former
removes the non-related features from the input feature space, while the latter extracts
features from both channel and spatial axes and focuses on the places with more important
information. In order to investigate how these two components affect the performance, we
compare our algorithm with a traditional CNN and test the impact of each component.

As shown in Figure 14, employing only the basic CNN yields an average accuracy of
83.2%. Introducing the PCA reverse extraction algorithm enhances the average accuracy
to 86.8%, surpassing the basic CNN by 3.6%. Furthermore, integrating both the PCA
reverse extraction algorithm and the CBAM Module elevates the average accuracy to 93.5%,
marking a 6.7% improvement. Therefore, both components significantly contribute to
enhancing user identification accuracy.

4.8. Comparison with Baseline Approaches

MeshID could be a more robust and flexible extended authentication component in
existing recognition systems. We evaluated our system on user identification by comparing
it with two alternative state-of-the-art approaches, FingerPass [38] and FreeAuth [18]. Both
of them are leveraging wireless information for user authentication. Specifically, FingerPass
utilizes segmented CSI time series as learning features and adopts the LSTM-based DNN
model. FreeAuth proposes a CNN-based method for extracting CSI features. FreeAuth
applies a Recurrent Neural Network (RNN) model to extract users’ gesture characteristics
and maximize the individual uniqueness characterized by a Gaussian Mixture Model
(GMM). To control the variable, the training and evaluation process for the baselines follow
the same rules of MeshID (e.g., the number of training epoch). We utilize the same dataset,
which is our first dataset, for training and evaluation purposes. The comparison results of
user identification are summarized in Table 3. Both MeshID and FreeAuth exhibit superior
identification results, achieving over 90% accuracy, compared to FingerPass when tested
with seven users.

Table 3. Method Comparison with Different User Number.

User Number
System FingerPass FreeAuth MeshID

7 users 83.6% 93.93% 97.4%
8 users 78% 87.24% 96.5%
9 users 76.8% 70.76% 95.3%

10 users 71.1% 68.69% 94.7%
11 users 62.6% 67.0% 94%
12 users 60.9% 66.3% 93.4%
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To ascertain the relationship between system performance and the number of users,
we evaluated the three systems with varying numbers of users, ranging from 7 to 12.
FingerPass and FreeAuth experience a significant degradation in identification accuracy
as the number of users increases. However, our system maintains an average identification
accuracy of over 90% for up to 12 users. MeshID achieves better overall performance
than the other two approaches, specifically, outperforming FingerPass by about 6% and
FreeAuth by nearly 30% with up to 12 users. We noticed that emphasizing user-specified
features can mitigate the side effect of the same gesture, and improve the robustness of the
system with a larger user number.

It satisfies the demands of most families and some small groups. The performance
of MeshID keeps consistency as the number of users increases from 7 to 12. In reality, the
challenge of user heterogeneity increases significantly with a large number of users (e.g.,
thousands of users). However, collecting and labeling finger gestures from such a massive
user pool for evaluation purposes poses considerable‘difficulties.

5. Discussion

Impact of user height. Different user height may impact the identification accuracy. To
investigate the relationship between identification accuracy and user height, we analyzed
the height distribution of users. As the statistical result shows in Figure 18, shorter users
tend to achieve higher identification accuracy. The height distribution, ranging from 155 cm
to 185 cm, is represented on the left axis. In our experiments, we fixed antenna pairs at
relatively low positions to accommodate users of different heights. Consequently, taller
users may experience more reflected signals from lower parts of their body, such as the chest.
Despite this challenge, MeshID maintains a high capability of identification, as gesture
pattern retain their uniqueness with interference settings. However, it’s worth noting that
antenna height adjustments can be made to suit different scenarios.

Impact of user weight. The weight of the users varies from 45 kg to 80 kg. The right
axis in Figure 18 represents the weight of the user. The figure shows that the identification
decrease is not caused primarily by user weight. Although some of the statistical values
show that identification accuracy is better when user has lower weight. That is because
user who is shorter usually has lower weight. To delve deeper into this relationship, we
conducted a focused analysis on data from users within the same height range. Surprisingly,
our findings reveal no discernible pattern in the distribution of identification accuracy,
indicating that weight alone does not dictate accuracy levels.

Figure 18. Statistics of users.

Impact of motion speed. In our experiments, users are free to perform gestures
de-pending on their habits. Different motion speeds may result in different sample
lengths.However, RF devices usually have a related high sampling rate (e.g., more than
250 Hz), hence the sampling interval is less than 0.004 s. It is short enough to capture
the normal motion finger. The sampling rate of USRP is much higher; it could be up to
200 MHz. In our setup, the signal sampling rate is 651 Hz, It is adequate for different
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motion speed samples. There-fore, the motion speed is not the significant factor that affects
the identification accuracy.

Impact of different environments. The multipath effect is a phenomenon prevalent in
radio frequency applications where signals travel multiple paths from transmitter, encoun-
tering reflections, diffraction, and scattering off objects and surfaces in the environment.
Consequently, the receiver detects various versions of the transmitted signal, each arriving
at slightly different times and exhibiting diverse amplitudes and phases. In principle, RF
systems in outdoor environments usually perform better than indoor. Since in indoor envi-
ronments, with numerous reflective surfaces and obstacles, the multipath effect becomes
particularly pronounced, leading to signal degradation and complicating signal processing.
We conducts MeshID in three environments: an office, a meeting room and a hallway.
According to the identification results, which are 94.3% in the office, 95.03% in the meeting
room and 97.1% in the hallway. These outcomes suggest that reduced multipath effects
likely contribute to the system’s enhanced performance.

Latency. It takes about 1 s to 30 s to perform a gesture in our evaluation. This timeframe
is sufficient to satisfy most users, including those with physical limitations who can only
draw gestures slowly. We also implement MeshID on a desktop with 12th Gen Intel(R)
Core(TM) i3-12100F 3.30 GHz. The time consumption of MeshID mainly comes from the
noise removal module and the data transformation module. It demands, on average, 1.743 s
to identify the user when eight users are in the database after segmenting the gesture. We
believe it is adequate for the majority of identification application scenarios for users.

From the results, it is convincing that the proposed mesh and one-shot DL approach
can address the challenge of user heterogeneity, enabling MeshID with high robustness.

6. Related Work
6.1. Behavioral Identification

Behavioral identification as a subset of biometric authentication has been well pro-
posed using a range of sensing technologies. Vision technology [39,40] can identify dif-
ferent users through physical activity characteristics captured from image frames using
high-resolution cameras, but it may easily fail in the conditions of luminous changes
and obstacles placed in line-of-sight (LoS) [4], in particular raising severe user privacy
concerns. Bioelectrical technology [41–44] can utilize bioelectrical sensors, e.g., electrocar-
diogram (ECG), electromyogram (EMG) and electroencephalogram (EEG), to precisely
extract unique biomedical information through body’s electrical activities. Ashraf et al. [45]
propose a fusion system that uses biometric features of the iris and foot. It achieves a very
high accuracy of 98%. Ref. [46] utilizes the phase transform method and Fourier decom-
position method to identify individual ECG features. Since these sensors are required to
be attached carefully to the user’s body, such wearable requirements may compromise
user experience, leading to inconvenience in reality [47]. In contrast, since our identifica-
tion system is essentially developed by RF technology, MeshID can enable user-friendly
device-free identification with the advantages of being illumination-free and having fewer
privacy concerns.

6.2. RF-Based Behavioral Identification

Existing works focus on different individual behavioral characteristics [10,15], e.g.,
daily activities, walking gaits, vital signs, and gestures. For gait-based identification,
WiWho [48] uses commercial WiFi devices to verify a small group of users using walking
gaits. WiFi ID [49] explores the relationship between the feature pattern of subcarrier-
amplitude frequency (SAF) based on WiFi CSI and individual walking style, and employs
a linear-kernel support vector machine (SVM) to identify users. For daily activity-based
identification, E-eye [50] proposes to identify users using the WiFi CSI profiles caused by
the activities across the home on a mobile device, while Au-Id [5] uses the reflected RFID
signal of users’ activities for identification. Since these works usually require a long-term
user activity tracking, the real-world applications still remain limited. Besides, a numbers
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of works propose to enable gait-based identification. Shi et al. [51] extract WiFi features
of walking and stationary activities for human authentication. RFree-ID [52] identified
human targets based on walking gait by using a phase matrix from tag array. Due to
the large range of gait motion, these works may be strongly vulnerable to the impact of
ambient environments. Similarly, some works demonstrate vital sign based identification to
estimate users’ heartbeat rate [16,53,54] and respiratory biometrics [17,55] from RF signals,
but the identification may practically fail as the motion of vital signs remains brittle to body
movement artifacts and ambient noises. Since performing gestures is user-friendly in a
small motion area, gestures-based identification is promising to have much less impact
on ambient noises. WiHF [19] is proposed to recognize gestures using WiFi signals for
enabling user identification, but the proposed gestures still remain as a large range of arm
motions, resulting in much less user-friendliness compared to using in-air finger gestures.
FingerPass [38] proposes to identify users through finger gestures with fair accuracy, but the
identification performance may still be subject to the issue of low RF signal resolution due
to using a traditional RF setup. Unlike these two works, MeshID leverages on the effects of
orthogonal signal interference and an attention-based siamese network to fundamentally
improve the signal resolution and model retraining, achieving high identification accuracy
and robustness.

7. Conclusions and Future Work

This paper presents a novel RF-based user identification scheme that leverages on
the proposed mesh and few-shot deep learning approaches to enable highly accurate
user identification through finger gestures. MeshID can essentially promote the sensing
sensitivity on RF signal to extract sufficient individual biometrics from the movements
of finger gestures, accurately identifying different users even in a complex environment.
Also, MeshID is able to efficiently retrain the model to ensure high robustness, adapting
to an unseen user with little data. In practice, MeshID as an appealing add-on can be
easily integrated into existing RF-based gesture recognition systems at low cost. To further
investigate the robustness of MeshID, we plan to test our approaches on existing large
finger gesture datasets, and develop MeshID for efficient integration with existing RF-based
gesture recognition systems. Other methods [56] such as SVM, Logistic Regression and
Random Forest will be considered as the improving module in our system. Also, we plan
to further evaluate the robustness of our prototype in more real-world scenarios in our
future work.
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