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Abstract: Body biomechanics and dental occlusion are related, but this interaction is not fully
elucidated. The aim of this study was to investigate the association between body posture and
occlusion in patients with and without dental pathology. A cross-sectional study was carried out
with 29 patients divided into a control group and a group with pathology (malocclusions). Body
posture was evaluated by dynamic baropodometry, analyzing parameters such as the line of gait
and the anteroposterior and lateral position of the center of pressure (CoP). Occlusion was classified
radiographically according to the sagittal skeletal relationship. Results showed significant differences
in mean position phase line between groups (p = 0.01–0.02), with means of 115.85 ± 16.98 mm vs.
95.74 ± 24.47 mm (left side) and 109.03 ± 18.03 mm vs. 91.23 ± 20.80 mm (right side) for controls
and pathologies, respectively. The effect size was large (Cohen’s d 0.97 and 0.92). There were no
differences in the anteroposterior (p = 0.38) or lateral (p = 0.78) position of the CoP. In gait analysis,
significant differences were observed in left (548.89 ± 127.50 N vs. 360.15 ± 125.78 N, p < 0.001) and
right (535.71 ± 131.57 N vs. 342.70 ± 108.40 N, p < 0.001) maximum heel strength between groups.
The results suggest an association between body posture and occlusion, although further studies are
needed to confirm this relationship. An integrated postural and occlusal approach could optimize
the diagnosis and treatment of dental patients.

Keywords: body posture; dental occlusion; baropodometry; malocclusions; center of pressures

1. Introduction

Biomechanics studies the internal and external forces acting on the human body and
the movement produced by these forces. In the context of gait, biomechanics analyzes
parameters such as velocity, acceleration, ground reaction forces, momentum, and joint
power. The Zebris pressure platform (Zebris Medical GmbH, Weitnau, Germany) [1–3]
allows the assessment of dynamic biomechanics during gait by recording the distribution
of plantar pressures using sensors.

Zebris provides accurate information on several relevant biomechanical parameters,
such as the center of pressure (CoP) and its displacements in the anteroposterior and
mediolateral axes. The analysis of these variables in gait is essential to understanding the
forces involved, postural control, and gait patterns of individuals. The Zebris platform
represents an invaluable tool in clinical biomechanical research [1], allowing the detection of
subtle alterations in movement dynamics that could be related to various pathologies, such
as scoliosis [2], cerebral palsy [3], or Parkinson’s disease [4]. Body posture, which involves
the position of the body in relation to gravity, can be altered due to various factors, such as
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hyperlordosis, hyperkyphosis, or deviations of the pelvis [5,6]. Postural assessment detects
these alterations by means of methods such as visual observation or baropodometry, which
analyzes the distribution of pressures in the feet during standing [7–11]. Abnormal plantar
pressure may be associated with deformities in body alignment [12]. A possible association
between body posture and dental occlusion has been suggested [13], as well as with
problems in the stomatognathic system, although more research is needed to confirm these
relationships [14–16]. Compensatory skeletal or muscular adaptations may be influenced
by jaw position, unilateral mastication, malocclusions, or temporomandibular disorders.

Posturological analysis evaluates parameters such as spinal alignment and balance
between the feet [17–20]. The “butterfly diagram” [21–24] is used to visualize body weight
distribution during gait [25,26]. Usually, in biomechanical studies, the study of the Foot
Posture Index is used [27–29], but in this study, it is performed by gait analysis with the
butterfly diagram analyzing the relationship with body posture and its different speeds
during gait [30].

Skeletal class is a crucial concept in orthodontics and dentistry, referring to the catego-
rization of an individual’s facial and dental structure [31,32]. Three main skeletal classes
are distinguished (Class I, II, and III) [33] describing the relationships between the maxilla
and mandible. Class I indicates a normal relationship, whereas Class II [34] indicates a
receded position of the mandible, generating an overbite. In contrast, Class III [31,35]
implies a forward mandible, resulting in a crossbite. The classification essentially guides
the evaluation of malocclusions, allowing dental health professionals to determine appro-
priate treatment strategies, whether through the use of braces, orthopedic appliances, or
other orthodontic procedures. This information is also valuable in orthognathic surgery to
address more severe cases of malocclusion. In this context, it is proposed to unify samples
into two groups based on the skeletal classes, pathology and normal, thus facilitating a
more specific classification to see if there is any relation to the posturology of the foot.

The treatment of postural and occlusal disorders requires a multidisciplinary approach,
including physiotherapy, neuro-occlusal rehabilitation, or orthodontics. The goal is to
restore musculoskeletal balance and a bilateral physiological masticatory pattern to prevent
or correct possible postural compensations.

The primary aim of this research is to delve into the intricate relationship between body
posture and dental occlusion. Conducting both postural analysis and functional assessment
of occlusion yields pertinent insights crucial for accurate diagnosis and comprehensive
treatment across multiple disciplines. Our hypothesis posits a correlation between gait
irregularities and resultant skeletal class alterations in patients.

2. Materials and Methods
2.1. Study Design

A cross-sectional study was performed including two groups of patients (i.e., patients
with dental pathology vs. non-pathological). This study was approved by the Research
Ethics Committee of the Catholic University of Valencia (UCV/2021-2022/200) in accor-
dance with the ethical guidelines of the Declaration of Helsinki [36]. In addition, the
design and progression of participants throughout the trial were performed according
to the STROBE guidelines [37] (Supplementary Materials). All patients were recruited
from the same clinic. Prior to the testing procedures, all patients gave written informed
consent [36,37].

2.2. Participants

A total of 29 patients were divided into two groups, depending on whether they had
dental pathology. Participants’ measured characteristics are presented in Table 1. The inclu-
sion criteria were: (i) permanent dentition, (ii) absence of previous orthodontic treatment,
(iii) absence of systemic pathology, and (iv) good general health. The exclusion criteria
were: (i) having received orthodontic treatment, (ii) presenting craniofacial syndromes,
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(iii) severe skeletal asymmetries, (iv) history of maxillofacial surgery, and (v) presence of
less than six teeth per arch (see Figure 1).

Table 1. Descriptions and t-tests of general group descriptions per group.

Variable All Participants
(n = 29)

Group Control
Non-Pathologic

(n = 13)

Group
Pathology

(n = 16)
p-Value

Age 21.73 ± 8.10 21.23 ± 10.34 22.12 ± 6.20 0.77
Height cm 165.00 ± 13.21 162.38 ± 14.10 167 ± 12.55 0.35
Weight kg 64.74 ± 14.36 61.69 ± 16.29 67.06 ± 12.72 0.32

Body mass index,
kg/m2 23.36 ± 2.08 22.88 ± 2.47 23.73 ± 1.71 0.27
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Figure 1. Flow diagram of the selection process and analysis of the participants included in the
present study.

2.3. Evaluation

The evaluations were carried out at the UCV University Clinics. During the first
visit, an intraoral clinical examination was carried out to identify possible dental and
skeletal alterations. Subsequently, a lateral skull teleradiography was performed with a
cephalostat to standardize the patient’s position. This radiograph was used to classify the
class in the sagittal plane and to determine whether or not there was dental pathology (see
Figure 2). Class 1 was classified as non-pathological (Group control) and Class 2 and 3 as
dental pathologies. All measurements were performed with NemoCeph NX software 1.0
(Nemotec, Madrid, Spain).
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Figure 2. Radiography to measure skeletal class and to classify patients into pathological and
non-pathological.

2.4. CoP Analysis

For the biomechanical analysis, the patient was asked to walk on the Zebris FDM
platform (see Figure 3). The butterfly diagram was used [24,30] to examine the path of
the center of pressure (CoP) during specific step cycles. This diagram, which presents
the CoP tracks in different colors corresponding to speed levels (see Figure 4), provides a
useful visual representation to understand the distribution of body weight during gait. In
addition, both the anteroposterior and lateral displacement of the CoP were evaluated to
analyze the dynamics of the movement. This detailed approach using the Zebris platform
provides essential information on postural stability and CoP dynamics, which facilitates a
comprehensive gait assessment and the identification of abnormal patterns.
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As for the anteroposterior displacement (mm), we evaluated the forward or backward
movement of the CoP intersection point along all steps. In this measure, we consider the
displacement toward an anterior position positive, and negative when the CoP moves
toward a posterior position.

Regarding lateral displacement (mm), we analyzed the left-to-right movement of the
CoP intersection point during the pitch cycles. We associate a positive value when the CoP
is located on the right side and a negative value when it is positioned on the left side.

This detailed approach using the Zebris platform provides us with essential informa-
tion on weight distribution, postural stability, and CoP dynamics, allowing for a compre-
hensive assessment of gait and facilitating the identification of abnormal patterns that may
require specific therapeutic interventions.

2.5. Variables

To reduce potential bias, this study used standardized radiographic measurements
to classify occlusal relationships and an independent examiner performed all statistical
analyses without knowledge of group assignment.

Variable Butterfly diagram
Length of Line of March

The parameter known as “Length of Line of March” refers to the position of the focal
pressure point (FPP). Only the ground contacts on one side of the body are considered. This
characteristic encompasses the FPP advance on all recorded steps on one side of the body.

Half Support Phase

This parameter denotes the average extent of the lines showing the progression of the
FPP of one side of the body, taking into account all ground contacts.

Anteroposterior Position

This metric clarifies the anterior or posterior displacement of the FPP intersection
point in a chronological sequence within the cyclogram display, considering all steps. The
starting point or zero is the most posterior position where the heel makes contact with
the ground.

Lateral Displacement
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This indicator delineates the left/right displacement of the FPP intersection point in a
chronological sequence within the cyclogram display, encompassing all steps. A negative
value denotes a shift to the left, whereas a positive value indicates a shift to the right.

The starting position or zero is represented as the center point of the display.

Gait analysis variables

In the analysis of gait parameters, several variables are examined that provide detailed
information about the walking process. These include geometric measurements, time
phases, and force characteristics that reveal key aspects of human locomotion.

Foot rotation, expressed in degrees, describes the angle between the longitudinal axis
of the foot and the direction of motion. A negative value indicates inward rotation, whereas
a positive value indicates outward rotation. The step width, measured in centimeters,
indicates the distance between the right and left foot during gait. On the other hand, step
length, also in centimeters, represents the distance between the heel contact on one side of
the body and the heel contact on the opposite side.

The step time, expressed in seconds, corresponds to the phase within a gait cycle
between heel contact on one side of the body and heel contact on the opposite side. The
stance phase, measured in percent, describes the period of a gait cycle in which the foot
has contact with the ground. This period is divided into subphases, such as the loading
response phase, which spans from initial ground contact to toe-off of the contralateral toe,
and the mid-stance phase, which involves toe-off of the contralateral toe and transfer of the
body’s center of gravity onto the weight-bearing foot.

The swing phase, also measured in percent, refers to the period of a gait cycle in
which the foot has no contact with the ground. This includes subphases such as the pre-
swing phase, which begins at initial contact on the opposite side and ends at toe-off on the
observed side of the body, and the swing phase, which is the period during which the foot
is in the air.

In addition to these geometric and temporal measurements, force aspects, such as
average force and peak pressure, are considered and plotted throughout the gait cycle.
These parameters provide information on the load distribution and forces acting during gait,
which is crucial for understanding the biomechanics and efficiency of human movement.

2.6. Statistical Analysis

An observer outside the experimental setup performed all analyses. Mean and stan-
dard deviation (SD) were used to express the data. The Kolmogorov–Smirnov test was
used to evaluate the assumption of normality. Levene’s test was also used to calculate the
assumption of homogeneity of variance. The significance level was set at p > 0.05. SPSS 24
(SPSS 24 Inc., Chicago, IL, USA) and Jeffreys’s Amazing Statistical Package (JASP V0.16.4,
Amsterdam, The Netherlands) were used for statistical analysis and graphical representa-
tion of the data, respectively. To determine whether anthropometric characteristics between
groups were homogeneous (p > 0.05), a one-way t-test was used to examine the data. The
difference between the groups with and without dental pathology was performed using the
t-test for independent samples (Student’s t-test). In this analysis, the groups were used as
independent variables. The ES was calculated by determining Cohen’s d coefficient, which
was then expressed as the standardized mean change difference. The SE was classified
as trivial (<0.20), small (0.20–0.59), moderate (0.60–1.19), large (1.20–1.99), or very large
(>2.00) [38].

3. Results
3.1. Participation Flow and Sample Characteristics

A total of 29 subjects were enrolled to participate in this study. Upon examination
of baseline data, no significant differences between groups were observed across any
parameter, as outlined in Table 1.
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3.2. Results and Main Outcomes of Butterfly Diagram

Firstly, concerning the length of the marching line, there were no statistically significant
differences observed in either the left (p = 0.14) or right (p = 0.20) sides between the group
with no pathology (217.21 ± 30.49 mm and 213.15 ± 32.72 mm, respectively) and the group
with dental pathology (198.76 ± 34.28 mm and 196.53 ± 35.08 mm, respectively). Effect
sizes, measured by Cohen’s d, were moderate (0.57 and 0.49 for the left and right sides,
respectively) (see Table 2).

Table 2. Data butterfly diagram.

Group Control
Non-Pathology (SD)

Group Dental
Pathology (SD) p-Value Cohen’s d

Running line length I, mm 217.21 ± 30.49 198.76 ± 34.28 0.14 0.57
Running line length D, mm 213.15 ± 32.72 196.53 ± 35.08 0.20 0.49

Phase line of mean position I, mm 115.85 ± 16.98 95.74 ± 24.47 0.01 * 0.97
Mean position phase line D, mm 109.03 ± 18.03 91.23 ± 20.80 0.02 * 0.92

Ant./post. position, mm 2.76 ± 3.67 1.44 ± 4.17 0.38 0.34
Lateral displacement, mm 1.68 ± 4.70 2.23 ± 5.77 0.78 −0.11

Max gait line velocity, cm/s 244.88 ± 56.50 247.87 ± 95.84 0.92 −0.04

* p < 0.05.

However, significant differences were noted in the medio-lateral position of the march-
ing line. The group with no pathology exhibited a significantly greater medio-lateral
position compared to the group with dental pathology, both on the left (p = 0.01) and
right (p = 0.02) sides (115.85 ± 16.98 mm vs. 95.74 ± 24.47 mm for the left side and
109.03 ± 18.03 mm vs. 91.23 ± 20.80 mm for the right side). The effect sizes for these
differences were large, measuring 0.97 and 0.92 for the left and right sides, respectively (see
Figure 5).
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Figure 5. The figure shows the differences produced in main outcomes per group. Statistically
significant differences between groups.

No significant differences were observed between the two groups in terms of ante-
rior/posterior position (p = 0.38), with mean values of 2.76 ± 3.67 mm for the group with
no pathology and 1.44 ± 4.17 mm for the group with dental pathology. Likewise, there
were no significant differences in lateral displacement (p = 0.78), with mean values of
1.68 ± 4.70 mm for the group with no pathology and 1.44 ± 4.17 mm for the group with
dental pathology. Cohen’s d values for these parameters suggested small effect sizes (−0.11
and 0.34, respectively).

3.3. Results and Main Outcomes of Gait Analysis

In the non-pathology group, the mean left phase line position was 115.85 ± 16.98 mm,
whereas in the control group, it was 95.74 ± 24.47 mm. For the right gait, values of
109.03 ± 18.03 mm and 91.23 ± 20.80 mm were recorded, respectively (See Table 3). These
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differences are more pronounced and show a large effect size according to Cohen’s d (0.97
and 0.92, respectively), suggesting that the presence of medial pathology has a significant
and considerable impact on the medial position of the phase line during gait.

Table 3. Descriptive data (means, ±SD) between groups on gait study variables.

Group Control
Non-Pathology (SD)

Group Dental
Pathology (SD) p-Value Cohen’s d

G
A

IT
PH

A
SE

S

Forefoot left, N 710.12 ± 165.21 485.57 ± 199.32 2.59 × 10−3 1.24
Forefoot right, N 717.70 ± 171.85 486.52 ± 198.39 2.32 × 10−3 1.26

Heel to the left, N. 548.89 ± 127.50 360.15 ± 125.78 <0.001 * 1.49
Heel to the right, N. 535.71 ± 131.57 342.70 ± 108.40 <0.001 * 1.58

Forefoot left, % 104.83 ± 7.02 93.76 ± 8.63 <0.001 * 1.42
Forefoot right, % 105.87 ± 6.08 93.99 ± 8.50 <0.001 * 1.64

Heel left, % 81.43 ± 8.90 71.48 ± 6.52 2.33 × 10−3 1.25
Heel right, % 79.55 ± 10.49 68.65 ± 6.52 2.98 × 10−3 1.22

G
EO

M
ET

R
Y Foot rotation I, grade 7.16 ± 4.57 3.78 ± 7.63 0.15 0.55

Foot rotation D, grade 8.74 ± 4.48 5.26 ± 6.42 0.10 0.64
Step length I, cm 58.39 ± 9.41 41.08 ± 10.12 <0.001 * 1.78
Step length D, cm 58.36 ± 9.96 42.18 ± 9.48 <0.001 * 1.66

Double step length, cm 116.75 ± 19.28 83.25 ± 19.46 <0.001 * 1.73
Step extension, cm 11.18 ± 2.35 12.06 ± 2.57 0.34 −0.36

TH
R

EE
FO

O
T

Z
O

N
E

A
N

A
LY

SI
S

Maximum force 1 I, N 723.09 ± 167.97 516.25 ± 174.21 3.13 × 10−3 1.21
Maximum force 1 D, N 727.54 ± 182.09 523.90 ± 195.14 7.32 × 10−3 1.08

Moment of maximum force 1 (t1) I, % 17.19 ± 2.79 19.85 ± 3.63 0.03 * −0.83
Moment of maximum force 1 (t1) D, % 17.38 ± 3.81 19.77 ± 3.09 0.08 −0.68

Maximum force 2 I, N 705.86 ± 166.43 499.97 ± 180.92 3.62 × 10−3 1.19
Maximum force 2 D, N 710.99 ± 169.98 479.89 ± 175.84 1.66 × 10−3 1.34

M
A

X
IM

U
M

FO
R

C
E,

N

Maximum force forefoot I, N 688.10 ± 156.79 466.90 ± 197.32 2.30 × 10−3 1.26
Maximum force forefoot D, N 696.52 ± 163.65 466.58 ± 193.59 1.77 × 10−3 1.29
Maximum force midfoot I, N 132.41 ± 72.18 103.91 ± 59.75 0.26 0.43
Maximum force midfoot D, N 153.32 ± 98.17 109.77 ± 57.88 0.17 0.53

Maximum force heel I, N 493.71 ± 118.78 318.38 ± 116.15 <0.001 * 1.49
Maximum force heel D, N 470.62 ± 110.98 299.44 ± 97.82 <0.001 * 1.63

M
A

X
IM

U
M

PR
ES

SU
R

E

Maximum pressure forefoot I, N/cm2 38.73 ± 8.77 26.00 ± 10.44 1.36 × 10−3 1.33
Maximum pressure forefoot D, N/cm2 37.78 ± 8.17 25.61 ± 11.04 2.04 × 10−3 1.27
Maximum pressure midfoot I, N/cm2 14.84 ± 4.57 9.65 ± 2.14 <0.001 * 1.40
Maximum pressure midfoot D, N/cm2 14.83 ± 4.30 10.11 ± 2.90 2.23 × 10−3 1.26

Maximum pressure heel I, N/cm2 31.67 ± 7.59 25.52 ± 8.72 0.05 0.76
Maximum pressure heel D, N/cm2 29.64 ± 5.18 22.41 ± 5.05 <0.001 * 1.41

Note: contrast of student. * Brown–Forsythe contrast is significant (p < 0.05), suggesting non-compliance with the
assumption of equality of variances.

As for the force exerted on the forefoot and heel during gait, significant and large mag-
nitude differences were observed. For example, in the left forefoot, the non-pathology group
exerted a force of 710.12 ± 165.21 N, whereas in the control group, it was 485.57 ± 199.32 N,
with a Cohen’s d of 1.24, indicating a large size effect. Similarly, in the left heel, values of
548.89 ± 127.50 N and 360.15 ± 125.78 N were recorded, respectively, with a Cohen’s d of
1.49, indicating a very large size effect (see Table 3).

These differences in gait parameters suggest a significant alteration in foot biomechan-
ics in the group with a pathology compared to the healthy group. These findings may have
important implications for the oral health of the patients.

4. Discussion

The primary aim of our research was to investigate the relationship between body posture
and dental occlusion, a topic of increasing significance in the dental community [14,39,40].
This interdisciplinary field not only deepens our understanding of how dental structure
interacts with the biomechanics of the human body but also presents new avenues for
diagnosing and treating various dental and postural conditions.

Situated within this context, our study sought to explore and analyze the association
between body posture and dental occlusion. Through a comprehensive approach, we
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conducted detailed evaluations of body posture in motion alongside analyses of gait and
occlusion in a representative patient sample.

Our findings unveiled notable differences between patients with skeletal pathologies
and those with normal skeletal structures. These distinctions may stem from excessive
traction of the musculature during the unipodal forward stance phase. Previous studies
have also identified a correlation between skeletal class and foot conditions, such as flat
foot, pes cavus, and normal foot [41]. Unlike prior research, which typically focused on
tooth structure and foot shape, our study pioneered an examination of the interaction
between dynamic body posture, gait, and dental occlusion.

These results suggest that assessing musculature could serve as a pivotal entry point
for designing targeted therapeutic interventions [42,43] and conducting comprehensive
examinations in patients undergoing dental treatments. Continued research is imperative
for establishing robust correlations between the analyzed variables. Furthermore, under-
standing the biomechanical dynamics of the human body has significant implications for
physical performance and health, particularly in the realm of oral and dental studies.

In addition to the above, we aimed to correlate known rachis positions affecting
balance and plantar pressures [44] with skeletal class and occlusal pathologies. Prior
studies have indicated that cervical posture correlates with skeletal class [45,46], and
there’s evidence linking temporomandibular disorders with postural changes and abnormal
plantar pressure distributions [47]. Our study, utilizing quantitative data through Zebris
FDM, a validated measuring instrument for gait and plantar pressure analysis, found
significant differences between groups.

Another crucial aspect of our study was analyzing center of pressure (CoP) dynam-
ics [4] and the potential association with skeletal class. Although no significant differences
were found in anteroposterior CoP displacement among skeletal classes, similar to previ-
ous findings [13,48,49], our results suggest that jaw biomechanics could influence body
weight distribution, subsequently affecting posture and balance. Significant differences in
maximum heel forces were found with a large effect size relative to non-pathological cases,
with existing studies linking lower limb differences to plantar pressures [50]. Moreover,
foot function affects cervical function [51], just as walking in heels and anteriorizing plan-
tar pressures modify spine curvature and gait velocity [52]. Our study also highlighted
statistically significant differences in step length between groups, with those without
dental pathology exhibiting greater mean step lengths. This study represents the first
attempt to quantitatively relate Zebris FDM data with pathological skeletal classes and
plantar pressures.

Limitations of this Study

This study, although it provides a first approximation to the possible connection
between body posture and dental occlusion, has several limitations that should be taken into
account. Firstly, the sample size was relatively small (n = 29), which limits both the statistical
power and the ability to generalize the results to larger populations. Furthermore, due to
the cross-sectional design of this study, it is not possible to establish causal relationships
between the variables analyzed. Further longitudinal and experimental studies would be
necessary to confirm the existence of direct effects of posture on occlusion. In addition,
the assessment of posture was mainly focused on the analysis of the center of pressures,
excluding other relevant body regions. For future research, it would be important to
incorporate more comprehensive assessments covering different body segments and planes.
Finally, possible confounding variables, such as the presence of cervical pain or low back
pain, which could influence the relationship between occlusion and posture, were not taken
into account.

5. Conclusions

In conclusion, our study highlights the need for more extensive and detailed research
to better understand the complex interrelationships between body posture and dental
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occlusion. Studies with larger samples and more precise assessment methods are needed to
confirm and extend our findings. However, these preliminary results underscore the impor-
tance of considering both body posture and dental occlusion in the diagnosis and treatment
of dental patients. This integrated perspective may lead to better clinical outcomes and
more holistic patient care.
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