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Abstract: The existing array antenna reliability evaluation method based on the n/k system is
analyzed. As the failed T/R module’s influence on the array antenna’s performance is not considered,
the reliability of the array antenna is overestimated. To improve the accuracy of the array antenna
reliability evaluation, the performance changes caused by T/R failures in different locations are
considered. The reliability evaluation method considering the performance changes is established.
The performance and probability of the array antenna’s state are calculated, and accurate reliability
is obtained by calculating all the available state’s probabilities. The complexity of the reliability
evaluation method is analyzed, and the reliability evaluation method for large-scale array antennae
is established. The large-scale array antenna is divided into several subarrays. The performance and
reliability of each subarray are analyzed, and the array antenna’s reliability is calculated through
subarrays. The array antenna’s performance changes are considered with the proposed method, the
overestimation problem of the existing reliability evaluation method is solved, and the accuracy of
the array antenna reliability evaluation is improved.
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1. Introduction

An array antenna has characteristics such as high power, high gain, and fast beam
scanning, and it is widely used in communication systems [1–3], radar equipment [4,5]
and other applications [6–8]. A phased array antenna is composed of a large number of
transceiver channels, which consist of a transmitter and receiver module (T/R module) and
element. The T/R module mainly completes the amplitude and phase adjustment of the
transmitted and received signals. The fault of transmitting and receiving channels and the
coupling [9] between different channels are important problems in the application of array
antennas. When a fault occurs in the transceiver channel, such as the T/R module being
faulty, the array antenna’s performance will be changed. The array antenna’s performance
could decline with a large number of transceiver channel faults [10,11], and the expected
function of the array antenna could be affected seriously. Lots of array antennas with high
reliability have been designed [12–15].

Reliability is an important factor for the array antenna [16–18], and many reliability
models have been proposed. The basic reliability model used for array antenna is the
“K-out-of-N” model [19,20]. If the single T/R module in the array antenna is a failure,
only the signal radiation of the connected element is affected. The performance of the
other transceiver channel is unchanged. When a small number of transceiver channels fail,
the array antenna’s performance will be slightly reduced. Therefore, the array antenna
is a typical “K-out-of-N” system; that is, the array antenna’s total transceiver channels
are noted as n. When k transceivers are working properly, the array antenna’s expected
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function can be completed. The transceiver’s reliability function is noted as r(t), and the
array antenna’s reliability function is [19]

R(t) =
n

∑
i=k

Ci
nr(t)i(1 − r(t)) n−i. (1)

The array antenna’s mean time to failure (MTTF) is noted as θ, and the array antenna’s
average lifetime is [21]

θ =
∫ ∞

0
R(t)dt. (2)

In practical applications, when the number of failed transceiver channels is less than
10% of the system’s total transceiver channel number, the array antenna’s performance is
considered to have no significant change, and the array antenna can be used normally. That
is, k = 90% × n, and the maximum number of failed transceiver channels is f max = 10% × n.

In this reliability model, only the number of failed transceiver channels is analyzed,
and the location of the failed transceiver channel is not considered. When the location of the
failed transceiver channel is changed, its influence on the array antenna’s performance is
different. Therefore, even with the faulty transceiver channel number f < f max, if the faulty
transceiver channels are concentrated in a certain area, the array antenna’s performance
could degenerate seriously, and the requirement would not be met. Therefore, there is a
reliability overestimation problem during the array antenna’s reliability evaluation using
this reliability model.

The reliability model of an AESA subsystem is formed using the “K-out-of-N” reli-
ability configuration [22]. The reliability model [23] based on the performance margin is
developed for satellite-based phased array antennas, considering the performance degra-
dation and multiple sources of uncertainties. The distribution of the uplink sum-rate is
asymptotically analyzed for an LIS system, and the reliability of large intelligent surfaces
has been analyzed in [24]. The reliability of the array antenna with k/n redundant struc-
ture is analyzed in [25]. The reliability of irregular subarrayed phased array antenna is
analyzed in [26]. A new method that efficiently and effectively analyses the statistical
performance of phased-array antenna systems using a spherical harmonics expansion
approach is presented in [27].

In this paper, a reliability evaluation method of array antenna considering performance
changes is proposed. The performance degeneration process caused by the transceiver
channel faults is considered, and a more accurate reliability is calculated. The rest of this
paper is organized as follows. In Section 2, the Reliability evaluation method considering
performance changes is presented, and the reliability calculation flow considering perfor-
mance changes is presented and analyzed in Section 3. The reliability calculation flow
considering performance changes for larger-scale array antenna is proposed in Section 4.
The proposed Reliability evaluation method of array antenna considering performance
changes is simulated and verified in Section 5. Finally, conclusions are reached in Section 6.
Furthermore, more suggestions are put forward for future research.

2. Reliability Analysis Flow Considering Performance Changes

To improve the accuracy of the array antenna’s reliability analysis, the performance of
the array antenna in each state is calculated first. The available state and unavailable state
are determined according to the performance threshold. Then the probability function of
the available state is analyzed, and the reliability of the array antenna and its average life
can be calculated. The steps of the reliability analysis flow are shown in Figure 1.
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Figure 1. Array antenna reliability evaluation process.

Six steps are included in the array antenna reliability evaluation process, as shown in
Figure 1. The transceiver channel’s failure will be analyzed first. Then the array antenna’s
status and performance would be evaluated. Based on the array antenna’s performance
analysis, the array antenna’s state could be divided into available-state and non-available-
state. Then the probability of all available states could be calculated, and the array antenna’s
reliability function could be established. At last, the array antenna’s average life could
be calculated.

(1) Transceiver channel failure analysis. According to the structure and composition of
the array antenna, the failure characteristic of the transceiver channel is analyzed. The
basis for the array antenna’s state-changing analysis is provided.

(2) Array antenna’s status and performance evaluation. According to the array antenna’s
scale and structure, all possible states of the array antenna are defined. The array
antenna’s performance in different states is calculated.

(3) Available-state and non-available-state divisions. According to the array antenna’s
performance in each state and the performance requirements during the application
process, all possible states of the array antenna are divided into available states and
non-available states. In the available state, the array antenna’s performance could
meet the application requirements and the array antenna can be used normally. In
non-available states, the application requirement cannot be satisfied by the array
antenna’s performance, and the array antenna cannot be used normally.

(4) Available state probability function calculation. According to the fault law of the array
antenna’s transceiver channel, considering the transition between different states, the
probability function of each available state is calculated, and the probability of the
array antenna being in the available state at different times is determined.

(5) Array antenna reliability function calculation. Based on the array antenna available
state probability function calculation, the array antenna availability probability is ob-
tained by adding all the available state probabilities together. And the array antenna’s
reliability function can be obtained.

(6) Array antenna’s average life calculation. Based on the calculation of the array an-
tenna’s reliability function, the array antenna’s average life can be calculated with
Formula (2).

The array antenna reliability evaluation process shown in Figure 1, evaluates each
working state of the array antenna is evaluated. Each state’s performance is analyzed,
and the available state is determined according to the state performance and required
performance threshold. Then the probability function of each available state is calcu-
lated according to the state changing and the transition probability between different
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states. Based on the available state’s probability, the array antenna’s reliability function
and average life can be calculated. The impact of the failure on performance is con-
sidered in the reliability evaluation process, and the array antenna’s reliability can be
calculated accurately.

3. Reliability Calculation Flow Considering Performance Changes
3.1. Reliability Calculation Flow

To improve the analysis accuracy of array antenna reliability, it is necessary to accu-
rately calculate the performance of the array antenna in each state, and determine whether
the state is available according to the performance threshold. Then the available states and
unavailable states can be determined, the probability of each available state is analyzed,
and the array antenna’s reliability can be calculated. The steps of the reliability calculation
flow are shown as follows.

(1) Failure analysis of transceiver channels

The array antenna is composed of a large number of transceiver channels, and the
structure and function of all transceiver channels are the same. The transceiver channel
is composed of a transceiver module (T/R module) and radiation antenna, as shown
in Figure 2.
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Figure 2. Array antenna’s transceiver channel structure.

In the transceiver channel structure shown in Figure 2, the probability of the antenna’s
failure is small. The T/R module is an electronic module composed of a variety of RF de-
vices. The probability of the T/R module’s failure conforms to the exponential distribution
law, that is, its fault probability function is [21]

F(t) = 1 − e−λt, (3)

where λ is the failure rate.
For the transceiver channel composed of the T/R module and radiant antenna, since

the probability of the antenna’s failure is very small, the failure probability of the transceiver
channel is equal to the T/R module’s failure probability. So the failure probability function
of the transceiver channel is the same as Formula (3).

(2) Array status and performance evaluation

In the working process of the array antenna, the array antenna would be in differ-
ent states, with the continuous failure of the different transceiver channels. When the
array antenna is working in a different state, its performance changes too. Array an-
tenna performance is usually represented by the antenna pattern and the parameters
such as the maximum secondary lobe level, the half-power beam width, and the antenna
direction coefficient.

For the array antenna to be analyzed, the total number of transceiver channels is
recorded as N, and the signal normalization amplitude of each transceiver channel is
A = [Ai], i = 0, 1, . . ., N − 1. All the array antenna’s possible states with different failure
transceiver channels are traversed, and the array antenna’s parameters such as maximum
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secondary lobe level, half-power beam width, and antenna direction coefficient are calcu-
lated in each state. The performance of the array antenna in a certain state is evaluated
with its key parameters. The calculation process is shown in Figure 3.
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There are three steps in the evaluation process shown in Figure 3, state generation,
direction map calculation, and performance parameter calculation:

(a) States generation. All possible states of the array antenna are generated. For the array
antenna with N transceiver channels, the number of faults n = 0, 1, . . ., N − 1. Under
each fault number, the corresponding total number of states is Cn

N . Then the total
number of the array antenna in all possible states is C0

N + C1
N + · · ·+ CN

N = 2N . The
set of array antenna’s states is denoted as S = {Si}, where Si is the ith state of the array
antenna, which contains 0, 1 values with the number of N, when Si(j) = 1, it means
that the array antenna’s jth transceiver channel is normal; When Si(j) = 0, it means
that the array antenna’s jth transceiver channel is faulty.

(b) Pattern calculation for each state. For each state Si, the channel signal amplitude
of A.*Si is regenerated according to its state. The antenna pattern in that state is
calculated according to the pattern formula.

(c) Performance parameter calculation. Based on the calculation results of the antenna
pattern, the array antenna’s performance parameters are calculated according to the
definition of each performance parameter.

(3) Available state and non-available state division

Based on the performance evaluation of the array antenna in each state, every state is
marked as an available state or non-available state, according to the application require-
ments of performance.

The application requirements of performance parameters are denoted as maximum
secondary lobe level maxSLLL, average secondary lobe level avSLLL, half-power beam
width HPBWL, first null beam width FNBWL and direction coefficient DL. For the array
antenna under the status Si, its maximum secondary lobe level, average secondary lobe
level, half-power beam width, first null beam width and direction coefficient are denoted
as maxSLLSi, avSLLSi, HPBWSi, FNBWSi and DSi. When its performance parameters
meet maxSLLSi > maxSLLL, avSLLSi > avSLLL, HPBWSi < HPBWL, FNBWSi < FNBWL,
DSi > DL, the state Si is an available state. If any of the parameters cannot meet the
application requirements, the state is a non-available state.

The performance parameters and their thresholds are set according to the application
scenarios of the array antenna.

(4) Available state probability calculation

For the available state of the array antenna, the occurrence probability of the state is
calculated based on the number of faulty transceiver channels.

For the available status Si, the number of normal transceiver channels in the array
antenna is Nn

Nn =
N

∑
j=1

Si(j), (4)

In this state, the number of faulty transceiver channels in the array antenna is Nf = N − Nn.
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At time t, the probability of a transceiver channel failure is shown in Equation (3), and
then the occurring probability of the available state Si is

psi (t) =
(

1 − e−λt
)N f

(
e−λt

)Nn
. (5)

(5) Array antenna’s reliability function calculation

Based on the analysis of all available state’s probability, the array antenna’s reliability
function is calculated. The array antenna’s reliability function is the sum of all the available
state’s probability. Note that the array antenna reliability function as R(t), then

R(t) = ∑ psi (t). (6)

In Equation (6), Si is all available states.
By substituting Formula (6) into Formula (2), the average life of the array antenna can

be obtained.

3.2. Suitable Size Analysis of Array Antenna

For array antennas with size N, the total number of array antenna states that need to
be analyzed is 2N. It can be seen that the calculation amount in the reliability evaluation
process is increased exponentially with the array antenna’s size. For array antennas with
different sizes, the number of states that need to be calculated is shown in Table 1.

Table 1. State number for array antenna with different sizes.

Array Antenna Scale N State Number

10 1024
20 1.05 × 106

30 1.07 × 109

40 1.10 × 1012

50 1.13 × 1015

60 1.15 × 1018

70 1.18 × 1021

80 1.21 × 1024

90 1.24 × 1027

100 1.27 × 1030

As can be seen from Table 1, when the array antenna’s size is greater than 50, the total
number of states calculated is bigger than 1.13 × 1015. The reliability evaluation process
would be seriously time-consuming, so the method in this paper only targets small-scale
array antennas with a scale of less than 50.

Because every possible state needs to be analyzed during the calculation process
shown in Figure 1, the calculation amount of the array state and its performance evaluation
is rapidly increased with the array antenna’s size. For small-scale array antennas, the
reliability and average life can be accurately obtained by this method. For large-scale array
antennae, the total number of available states is increased dramatically, the computing
amount increases significantly, and the cost of computing time will be unbearable.

4. Reliability Calculation Flow Considering Performance Changes for Larger Scale
Array Antenna

To improve the accuracy of reliability calculation, reduce the reliability calculation
amount of large-scale array antenna, and improve the calculation speed, the reliability cal-
culation flow considering performance changes for larger-scale array antenna is proposed.
Based on the “K-out-of-N” reliability model shown in Equation (1), the more accurate
reliability function is obtained by eliminating the fault state probability. The specific steps
are shown in Figure 4.
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There are five steps in the reliability calculation flow for large-scale array antennas
shown in Figure 2. That is array antenna performance analysis, subarray division and
determination of the minimum number of faults, fault state function calculation, array
antenna reliability function and average life calculation.

(1) Array antenna’s performance analysis. The array antenna’s performance is analyzed
with different faults occurring in different scale subarrays. The subarray is a small
array composed of some transceiver channels in the array antenna. The basis for
subarray division and determination of T/R modules’ minimum failure number is
provided with the analysis result.

During the array antenna’s performance analysis, the analysis range is determined
as a circle. And the center of the array antenna is taken as the center of the circle, and
the fixed length r is taken as the radius. Within the analysis range, the fault number is
set as f ∈ [1, f max], and the fault position is assigned randomly. Then the array antenna’s
performance is calculated. In the process of performance analysis, the changes of gain and
maximum sidelobe level are analyzed emphatically. In the performance calculation process
of each analysis range, for the fixed failures number f, the performance calculation under
multiple random failures can be performed, and the mean of the calculation results is taken
as the performance of the analysis range r under the n failure number f.

(2) The subarray division and the determination of the minimum failure number. Ac-
cording to the performance of the array antenna under different analysis ranges and
different fault numbers, the array antenna is divided into multiple subarrays con-
cerning the working performance requirements. And the minimum failure number
is determined. if the number of failures that occurred in the subarray is bigger than
the minimum failure number, the array antenna’s performance would not satisfy the
working requirement. If the array antenna can be divided into m subarrays, for the ith
subarray, I ∈ [0, m − 1], its radius, T/R module number and minimum fault number
are recorded as ri, ni, and fi, respectively, as shown in Table 2.
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Table 2. Subarray division.

Subarray Sequence
Number Radius r TR Number

in Subarray
Minimal Failure

Number

0 r0 n0 f 0
1 r1 n1 f 1
2 r2 n2 f 2

. . . . . . . . . . . .
m − 1 rm−1 nm−1 fm−1

In the array antenna, the transceiver channel that is closer to center of the array antenna
has a greater impact on the array antenna’s performance. For the two subarrays with the
sequence numbers i and j, if the radius ri < rj, there will usually be ni ≤ nj, fi ≤ fj.

(3) Array antenna’s fault state function F(t) calculation. When the number of faulty
transceiver channels f is less than f max, it means f < f max, the probability function
that the array antenna is unavailable is denoted as F(t). F(t) is the sum of the failure
probability of each subarray causing the array to be unavailable. Taking subarray i as
an example, the minimum failure number that causes the array to be unavailable is fi,
and then the probability function Fi(t) that the array would be unavailable is

Fi(t) = r(t)n−ni ·
fmax

∑
j= fi

Cj
ni r(t)

ni−j(1 − r(t))j − r(t)n−ni−1 ·
fmax

∑
j= fi

Cj
ni−1 r(t)ni−1−j(1 − r(t))j. (7)

Array antenna’s fault state function is

F(t) =
m−1
∑

i=0
Fi(t)

=
m−1
∑

i=0

[
r(t)n−ni ·

fi+1−1, fmax

∑
j= fi

Cj
ni r(t)

ni−j(1 − r(t))j

] . (8)

(4) Array antenna’s reliability function and average life calculation. Based on the k out of
n reliability model of Equation (1), subtract the array antenna’s fault state function,
and the array antenna’s reliability function R(t) can be obtained

R(t) =
n
∑

i=k
Ci

nr(t)i(1 − r(t)) n−i − F(t)

=
n
∑

i=k
Ci

nr(t)i(1 − r(t)) n−i −
m−1
∑

i=0

[
r(t)n−ni ·

fi+1−1, fmax

∑
j= fi

Cj
ni r(t)

ni−j(1 − r(t))j

] , (9)

where k = 0.9n and f max = 0.1n.

Bring Formula (9) into Formula (2), and the average life of the array antenna can
be calculated.

5. Simulation and Analysis
5.1. Reliability Analysis for Small-Scale Array Antenna

Taking the Chebyshev linear array as an example, the reliability calculation is carried
out by using the existing method and the proposed method in this paper. The linear array
scale N is set to 20, the array spacing d = 0.5λ, λ is the wavelength of the radiated electro-
magnetic wave. And the maximum secondary lobe level SLL = −30 dB. After the array
antenna’s pattern synthesis, the maximum secondary lobe level (maxSLL), mean secondary
lobe level (avSLL), half-power beam width (HPBW), first null beam width (FNBW) and
direction coefficient D of the array antenna under different faults are calculated.

The failure rate of the transceiver channel is set as λ = 4.5 × 10−6/h. The maximum
number of faults tolerated is 2 when the existing method is used for array antenna reliability
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analysis. And the number of normal transceiver channels k is 18~20, and the array antenna’s
reliability function is

R(t) =
20

∑
i=18

Ci
20

(
e−4.5×10−6t

)i(
1 − e−4.5×10−6t

)20−i
(10)

The array antenna’s reliability is analyzed with the proposed method. When the
array antenna is working normally, the maximum secondary lobe level threshold is set
as SLLL = −21 dB. Then the 232 = 1,048,576 states of the array antenna are analyzed, and
the maximum secondary lobe level of each state is analyzed. All the available states are
determined according to the threshold, and finally, the total number of available states is
120. The probability function of each available state is calculated using Equation (5), and
the array antenna’s reliability is calculated with Equation (6). The array antenna’s reliability
is evaluated with the proposed method and the existing method [19], as shown in Figure 5.
When calculated using existing methods, the average life of the array antenna is 35,203 h.
When calculated using the proposed method in this paper, the average life of the array
antenna is 18,937 h.
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As can be seen from Figure 5 and Table 3, the number of faulty transceiver channels
was only considered in the evaluation of existing methods, and the impact of faults in
different locations was not considered. For the array antenna with a scale of 20 in this paper,
when the number of fault transceiver channels is 1, if the fault location is in the center of
the array, the array antenna’s performance cannot meet the requirements. Although the
number of failures meets the requirements, its performance does not meet the requirements,
and the array antenna in this state is unavailable. In the existing reliability evaluation
methods, the array antenna status is treated as non-available states only based on the
number of fault transceiver channels, resulting in an overestimation of the reliability
evaluation results. The available state and unavailable state are determined according to
the array antenna’s performance in the proposed method, and the reliability evaluation
results are more accurate.
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Table 3. Array antenna’s average life of small-scale array antenna with different methods.

Method Array Antenna Scale Average Life/h

existing method [19] 20 35,203
proposed method 20 18,937

5.2. Reliability Analysis for Larger-Scale Array Antenna

Taking the linear array containing 64 elements as an example, the array antenna’s
reliability is analyzed with the proposed method and the existing method. The linear
array is synthesized with the Chebyshev method, and the maximum secondary lobe level
SLL = −45 dB. Based on the subarray’s influence on the array antenna’s performance,
the array antenna is divided into four subarrays, and the minimum failure number is
determined based on the influence of faulty cells on the array antenna.

When the primary–secondary lobe ratio (SLR) is considered to meet SLR < 0.5·iniSLR,
that is, the primary–secondary lobe ratio drops to half of the initial primary–secondary
lobe ratio, the array antenna is considered as faulty, and the minimum failure number in
each subarray is shown in Table 4.

Table 4. Subarray division for experimented array antenna.

Subarray Sequence
Number Radius r TR Number in

Subarray
Minimal Failure

Number

0 12 24 3
1 21 42 4
2 28 56 5
3 32 64 5

The failure rate of the transceiver channel is set as λ = 4.5 × 10−6/h, and the ideal
reliability of the array antenna, the probability of the array antenna’s fault state, and the
array antenna’s reliability considering the fault impact are analyzed by using Formulas (1),
(4) and (5), respectively. And the results are shown in Figure 6 and Table 5.
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Table 5. Array antenna’s average life of large-scale array antenna with different methods.

Method Array Antenna Scale Average Life/h

existing method [19] 64 25,531
proposed method 64 21,158

As can be seen from Figure 6 and Table 5, due to the faults at different locations having
different effects on the array antenna’s performance, even if the number of faults in the
array antenna is less than 10%, the array antenna still has a large probability of failure. And
the array antenna’s reliability calculated with the existing method is overestimated. When
the array antenna’s reliability is analyzed with Equation (1), the average life of the array
antenna is 25,531 h, and the average life of the array antenna is 21,158 h when considering
the impact of faults on different subarrays.

Through the reliability analysis experimental results of large-scale array antenna and
small-scale array antenna, it can be seen that the influence of performance changes on the
array antenna’s reliability is considered in the proposed method. Each available state of
the array antenna is determined accurately by analyzing the performance of all possible
states, the array antenna’s reliability function is calculated based on all available states,
and accurate reliability evaluation for the array antenna is achieved. For the large-scale
array antenna, based on the proposed calculation process, the sub-array is further divided.
The performance of each sub-array is analyzed, and the sub-array’s reliability is calculated.
Then the accurate reliability evaluation for the large-scale array antenna is completed. Not
only the influence of different fault locations and fault numbers on the array antenna’s
performance is considered, but also the influence of the array antenna’s size on the reliability
evaluation speed is considered in the proposed method. The accurate and rapid reliability
evaluation for the array antenna is realized, and a novel method for the large-scale array
antenna’s high-precision reliability evaluation is provided.

6. Conclusions

To improve the accuracy of the array antenna’s reliability analysis, a reliability evalua-
tion process considering performance changes is established. The array antenna’s reliability
is calculated through all the possible available state analyses. Through the analysis of the
array antenna’s performance in every state, each non-available state is determined, the reli-
ability overestimation problem is solved, and the accuracy of the array antenna’s reliability
evaluation is improved. For the large-scale array antenna, based on the “K-out-of-N” model,
the array antenna is divided into multiple subarrays, and the minimum failure number
for each subarray is determined. The array antenna’s fault function is determined by each
subarray. The array antenna’s reliability model considering the performance changes is
obtained. The simulation results show that the influence of fault position and number on
the array antenna’s performance is considered in the proposed method, the overestimation
problem of existing evaluation methods is reduced and the accuracy of array antenna
reliability evaluation is improved.
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Abbreviations

T/R Transmitter and Receiver
MTTF Mean Time To Failure
maxSLL maximum Secondary Lobe Level
avSLL average Secondary Lobe Level
HPBW Half-Power Beam Width
FNBW First Null Beam width
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