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Abstract: How to obtain internal cavity features and perform image matching is a great challenge for
laparoscopic 3D reconstruction. This paper proposes a method for detecting and associating vascular
features based on dual-branch weighted fusion vascular structure enhancement. Our proposed
method is divided into three stages, including analyzing various types of minimally invasive surgery
(MIS) images and designing a universal preprocessing framework to make our method generalized.
We propose a Gaussian weighted fusion vascular structure enhancement algorithm using the dual-
branch Frangi measure and MFAT (multiscale fractional anisotropic tensor) to address the structural
measurement differences and uneven responses between venous vessels and microvessels, providing
effective structural information for vascular feature extraction. We extract vascular features through
dual-circle detection based on branch point characteristics, and introduce NMS (non-maximum
suppression) to reduce feature point redundancy. We also calculate the ZSSD (zero sum of squared
differences) and perform feature matching on the neighboring blocks of feature points extracted from
the front and back frames. The experimental results show that the proposed method has an average
accuracy and repeatability score of 0.7149 and 0.5612 in the Vivo data set, respectively. By evaluating
the quantity, repeatability, and accuracy of feature detection, our method has more advantages and
robustness than the existing methods.

Keywords: internal cavity features; vascular structure enhancement; vascular feature detection; MIS
images; Gaussian weighted fusion; self-adaptive threshold

1. Introduction

The implementation of augmented reality technology in minimally invasive surgery
(MIS) lies in the real-time acquisition and integration of internal cavity data by laparoscopy,
feedback on its pose and depth information, and how to achieve cognitive display corre-
lation between virtual information and real scenes, thereby reducing doctors’ workload,
improving spatial awareness, and expanding vision [1,2]. In response to the observation
limitations of laparoscopic fixed display devices, it is necessary to use advanced 3D recon-
struction technology to achieve a real-time overlay of preoperative or intraoperative 3D
virtual images on the basis of 2D imaging display.

The prerequisite for reconstruction technology is accurate feature tracking. How-
ever, for narrow, lack of features, specular reflections, and poor lighting conditions in
intracavity environments, feature tracking remains highly challenging [3]. Due to the fact
that laparoscopy can only obtain two-dimensional information about the characteristics
of the inner cavity, and cannot obtain its depth information through a single observation,
when the feature is detected again during the movement of the laparoscope, the three-
dimensional spatial information is calculated based on the principle of triangulation using
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the disparity angle of the laparoscope at different positions. Therefore, how to obtain
internal cavity features and perform data matching is a great challenge for laparoscopic 3D
reconstruction [4].

Existing research indicates that there are issues in directly applying commonly used
visual techniques to MIS due to the involvement of large-scale, free-form tissue deforma-
tion and constantly changing surgical scenes that are influenced by complex factors [5].
In this case, the accuracy and efficiency of tracking largely depend on the detection of
visual features, which need to exhibit high repeatability under image transformation and
robustness under scene changes. The inner cavity environment is very complex, with
uneven lighting, high specular reflection, soft tissue deformation in the inner cavity, and
often without strong edge features, which pose higher requirements for the robustness
of visual processing algorithms to improve the number, repeatability, and distribution of
extracted feature points in the medical image processing field.

Vascular features are the most obvious features in the lumen environment, and effec-
tive vascular structure enhancement methods can provide useful structural information for
later vascular feature extraction. Although the vascular structure is complex and detailed,
it shares the common characteristics of a tubular-like structure. The ideal enhancement
method should be able to achieve a high and uniform response to the following factors:
variable vascular morphology; intensity nonuniformity caused by blood contrast or back-
ground; other unrelated structural tissues surrounding blood vessels leading to blurred
boundaries; and a large amount of complex information such as background noise [6].

Most of the curve structure enhancement methods are based on the classical Hessian
matrix analysis of images, and the research of Frangi et al. has been widely recognized [7].
The method proposed by Meijering et al. further developed the use of Hessian matrices [8].
A Hessian matrix is based on second-order Gaussian derivatives and can be calculated at
different scales to enhance features similar to curves, which helps distinguish specific shapes
such as circular, tubular, and planar structures. In images, when dark curve structures
appear relative to the background, chromaticity measurement is used to describe the image.
However, the main drawback of the Hessian matrix is its sensitivity to noise [9]. Due to the
large eigenvalues, the curved feature response at the connections is very small, which results
in poor performance in dealing with different curved branch structures. In the field of
cardiovascular structure enhancement, Huang established an improved non-local Hessian-
based weighted filter (NLHWF) to suppress nonvascular structures and noise around real
vascular structures in contrast images [10]. In the field of neural structure enhancement,
the use of diffusion tensors has a more positive effect on vascular structure enhancement.
Jerman et al. used spherical diffusion tensors to overcome the shortcomings of using
Hessian matrices, but did not fully solve the problem of low intersection strength [11]. The
fractional anisotropic tensor (FAT) measures the variance of eigenvalues between different
structures and can detect changes in vascular anisotropy [12]. This feature enables FAT
to more reliably enhance the vascular structure, ultimately resulting in a more uniform
response. Alhasson proposed a new enhancement function based on FAT, which robustly
maintains the relationship between isotropy and anisotropy by considering the degree of
anisotropy of the target structure, in order to maintain low amplitude feature values, and
successfully achieves high-quality curve structure enhancement for retinal images [13].
Dash et al. proposed a fusion method to enhance the fusion of coarse and fine blood
vessels, combined with the advantage of the Jerman filter’s effective response to blood
vessel branches, using mean-C threshold segmentation to improve the performance of
traditional curved transformation and improve the algorithm speed [14]. The above
vascular structure enhancement methods are mainly used for extracting neural structures,
coronary angiography, or curve structures of retinal blood vessels, and have not yet been
applied in the lumen environment.

Human luminal vascular feature extraction refers to the automatic or semi-automatic
extraction of key points of blood vessels from medical images, such as bifurcation points,
endpoints, and intersections. The lumen environment measured by laparoscopy is often
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unknown. Considering factors such as image quality, lighting conditions, background gen-
erated by image correction, uncertain environmental descriptions, and noise, robust features
can provide effective and accurate two-dimensional information for three-dimensional re-
construction of the lumen environment. The traditional feature extraction methods started
with Harris’s definition of corners [15], and then classic methods such as the features from
the accelerated segment test (FAST) [16] and scale invariant feature transform (SIFT) [17]
were successively proposed. Improved algorithms for SIFT, such as the speed up robust
features (SURF) algorithm [18], have better computational speed but poor stability.

Although the oriented FAST and rotated BRIEF (ORB) algorithm [19] solves the
rotational invariance in binary robust independent elementary features (BRIEF), it is prone
to errors caused by local homogenization of feature points and cumulative drift. Faced
with the complex environment of minimally invasive surgery, traditional feature extraction
methods applied in large-scale environments with sufficient light and strong edge features
are no longer applicable. Therefore, Stamatia proposed an affine invariant anisotropic
feature detector based on automatic feature detection (AFD), which only responds to
features with low anisotropy, compensating for the shortcomings of LoG and DoG and
effectively processing isotropic features [20]. Lin proposed the vessel branching circle
test (VBCT) based on Frangi and verified its robustness and saliency for MIS images
through monotonic mapping [21]. Subsequently, due to the presence of a certain pixel
width in blood vessels, more than one branch point may be detected on a branch, leading
to redundancy. Udayakumar put forward the ridgeness-based circle test (RBCT), which
simplifies the structure of blood vessels into single pixels, making feature extraction of
blood vessels more efficient [22]. They used the patch search process of parallel tracking
and mapping (PTAM) [23] to perform feature matching by calculating the zero mean zero
sum of squared differences (ZSSD). However, due to the large-scale nature of branch points,
their positioning error is about 1.6 ± 0.7 pixels, and the large error introduces uncertainty to
subsequent 3D reconstruction. Li et al. added a decision tree based on the C4.5 algorithm to
the traditional FAST algorithm, making the feature extraction performance of MIS images
more stable and feature point extraction more efficient [24].

On the other hand, rough feature matching methods often have mismatches and
the feature point matching methods based on certain structures are adopted according
to different application scenarios. For example, matching based on lines and matching
based on various stable geometric structures [25]. Davison proposed an active matching
method [26], while random sample consensus (RANSAC) and its improved algorithm
eliminated the occurrence of mismatches in active matching [27]. Wu propose a feature
point mismatch removal method that combines optical flow, descriptor, and RANSAC,
to eliminate incorrect feature point matches layer by layer through these constraints and
exhibits robustness and accuracy under various interferences such as lighting changes,
image blurring, and unclear textures [28]. Liu et al. proposed an improved ORB feature
matching algorithm that utilizes non-maximum suppression (NMS) and retinal sampling
models to solve mismatch problems in complex environments [29].

In addition to the direct impact of the accuracy of intracavity feature matching on
the localization estimation of laparoscopy, the computational complexity of intracavity
feature matching is also an important factor affecting the real-time performance of the
entire algorithm. Puerto Souza proposed new hierarchical multiaffine (HMA) and adaptive
multiaffine (AMA) algorithms to improve the feature matching performance of endoscopic
images [30,31]. Zhu proposed a feature matching method for endoscopic images based
on motion consensus. A spatial motion field was constructed based on candidate feature
matching, and the true match was identified by checking the difference between feature
motion and the estimated field, achieving a 3.7 pixel average reprojection error [32]. Li
designed a global and local point-by-point matching algorithm based on feature fusion
for extracting contour features from gastrointestinal endoscopic images, which used fast
Fourier transform (FFT) to reduce the dimensionality of dense feature descriptors and
achieve robust and accurate contour feature extraction and matching [33]. Currently, in the
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medical field, most visual-based 3D reconstruction methods still rely on matching features
obtained by traditional methods; even by directly estimating and fusing keyframe depth
maps [34] or combining them with camera pose estimation [35] to avoid the need for feature
matching. Therefore, feature extraction and matching of the inner cavity environment
remains a challenging task.

The main contributions of the proposed method are summarized as follows:

1. To solve the problems of noise and false detection caused by different inner cavity
environment boundary areas and highlight areas, we analyze the characteristics of
the inner cavity environment, design a targeted preprocessing framework, use a
self-adaptive threshold to generate binary masks, introduce a local variance threshold
to automatically detect highlight areas, and use the fast marching method (FMM)
method for highlight repair.

2. In order to robustly extract effective structural information for vascular features, a
Gaussian weighted fusion algorithm for single-pixel enhancement of the vascular
structure using dual-branch Frangi measure and multiscale fractional anisotropic
tensor (MFAT) is designed. The structural similarity (SSIM) index is introduced
to achieve self-adaptive Gaussian weighted fusion, solving the problems of struc-
tural measurement differences and uneven response between venous vessels and
microvessels, ensuring the continuity and integrity of the vascular structure.

3. To enhance adaptability to different scale vascular structures, a dual-circumference
detection of vascular features is implemented. Redundancy is reduced by introducing
NMS. Feature matching of neighboring blocks of the results before and after frames is
achieved by calculating the zero sum of squared differences (ZSSD).

2. Methods

This paper proposes a method for detecting and matching vascular features based on
dual-branch weighted fusion vascular structure enhancement, as shown in Figure 1. An
image preprocessing framework is designed based on the characteristics of the internal
cavity environment to improve the method’s performance. Binary mask images of bound-
ary regions are generated using a self-adaptive threshold to preserve pixels with valid
information in the field of view. The green channel is selected with the highest contrast
and the threshold judgment and FMM are used to repair the highlighted areas. Based on
the characteristics of the vascular structure, a single-pixel, dual-branch weighted fusion
vascular image enhancement algorithm is designed by combining the vascular structure en-
hancement function based on Frangi measurement and the vascular structure enhancement
function based on MFAT. Finally, the double circles detection based on the characteristics
of branch points is performed and NMS to extract feature points is introduced. Then, the
ZSSD is calculated for the neighboring blocks of feature points extracted from the frames
before and after, followed by feature point matching.

2.1. Preprocessing

As medical optical equipment, endoscopes have a wide variety of types and are
applied in different fields. The requirement for minimally invasive surgery limits the size
of the optical field that doctors can see. Therefore, in order to maximize the doctor’s field
of view, a circular projection created by some laparoscopic descending optical systems is
placed inside the image sensor, as shown in Figure 2. As a result, the obtained endoscopic
images have noncontent areas, namely dark and uninformed boundary areas, with clear and
sharp edges between them and the content areas [36]. For binocular laparoscopy, parallax
correction can also result in boundary areas containing noise in the corrected image. At
the same time, the large area of bleeding also lacks vascular information, so this paper
defines it as a boundary area. The boundary region will generate interference information
during image enhancement, so self-adaptive threshold [37] is used to generate effective
mask images for different types of laparoscopic images, improving the generalization of
the method.



Sensors 2024, 24, 1880 5 of 23
Sensors 2024, 24, x FOR PEER REVIEW 5 of 25 
 

 

Enhancement of vascular structure 
based on Frangi measurement

Weighted fusion of
 vascular structures

Enhancement of vascular structure 
based on MFAT

Constructing an anti Gaussian 
function to calculate weights

Constructing Gaussian function
 to calculate weights

Single Pixel ization of 
Vascular Structure

Input internal cavity image through laparoscopy

Feature detection
 based on double circles

NMS

Neighborhood block 
matching based on ZSSD

Mask imageFrangi vascular measurement 
construction enhancement function

MFAT
construction enhancement function

SSIM Best weight coefficient

Single Pixel ization of 
Vascular Structure image

Preprocessing

Vascular image 
enhancement

Adaptive threshold

Green channel extraction

Threshold judgment
highlights area

FMM
 highlight repair

Feature 
association.

 
Figure 1. The flowchart of the proposed method. 

2.1. Preprocessing 
As medical optical equipment, endoscopes have a wide variety of types and are ap-

plied in different fields. The requirement for minimally invasive surgery limits the size of 
the optical field that doctors can see. Therefore, in order to maximize the doctor’s field of 
view, a circular projection created by some laparoscopic descending optical systems is 
placed inside the image sensor, as shown in Figure 2. As a result, the obtained endoscopic 
images have noncontent areas, namely dark and uninformed boundary areas, with clear 
and sharp edges between them and the content areas [36]. For binocular laparoscopy, par-
allax correction can also result in boundary areas containing noise in the corrected image. 
At the same time, the large area of bleeding also lacks vascular information, so this paper 
defines it as a boundary area. The boundary region will generate interference information 
during image enhancement, so self-adaptive threshold [37] is used to generate effective 
mask images for different types of laparoscopic images, improving the generalization of 
the method. 

Figure 1. The flowchart of the proposed method.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 25 
 

 

Resultant content area

Image sensor

Background area

Circular Projection  
Figure 2. Laparoscopic image sensor area allocation. 

For each pixel (x, y), the window size centered on it is (w, h), and the grayscale mean 
and median of all pixels in the window are calculated to obtain a binary threshold. As 
shown in Equation (1), pixels (x, y) that are greater than the threshold are assigned to the 
foreground or content area, otherwise they are the background or boundary area to obtain 
a masked image. 

( ) ( ) ( )




 ⋅−−






>= 

otherwise

yxImediankyxI
hw

1kyxIyx,mask m

0

),,()1(,
*

),(1
(1)

Among them, Im(x, y) represents the binarization threshold of pixel points (x, y); 

∗ ∑ 𝐼(𝑥. 𝑦) represents the average grayscale around a pixel (x, y); median(x, y) repre-
sents the median grayscale around a pixel (x, y); and k is the sensitivity coefficient used to 
control the threshold size. This binary mask image is applicable to various types of MIS 
images. We selected three typical environments from the Hamlyn data set and Vivo data 
set, as shown in Figure 3, where (a) represents the left image “0000000000” after inspection 
and correction in the Hamlyn data set Rectificed01 (binocular) and its corresponding bi-
nary mask images, (b) represents the image “base” in the Vivo data set clip2 and its cor-
responding binary mask images, and (c) represents the image “base” in the Vivo data set 
clip3 and its corresponding binary mask images. 

  
(a) 

Figure 2. Laparoscopic image sensor area allocation.



Sensors 2024, 24, 1880 6 of 23

For each pixel (x, y), the window size centered on it is (w, h), and the grayscale mean
and median of all pixels in the window are calculated to obtain a binary threshold. As
shown in Equation (1), pixels (x, y) that are greater than the threshold are assigned to the
foreground or content area, otherwise they are the background or boundary area to obtain
a masked image.

mask(x, y) =

{
1 Im(x, y) > k

(
1

w∗h

)
∑ I(x, y)− (1 − k) · median(I(x, y)),

0 otherwise
(1)

Among them, Im(x, y) represents the binarization threshold of pixel points (x, y);(
1

w∗h

)
∑ I(x, y) represents the average grayscale around a pixel (x, y); median(x, y) repre-

sents the median grayscale around a pixel (x, y); and k is the sensitivity coefficient used to
control the threshold size. This binary mask image is applicable to various types of MIS
images. We selected three typical environments from the Hamlyn data set and Vivo data
set, as shown in Figure 3, where (a) represents the left image “0000000000” after inspection
and correction in the Hamlyn data set Rectificed01 (binocular) and its corresponding binary
mask images, (b) represents the image “base” in the Vivo data set clip2 and its correspond-
ing binary mask images, and (c) represents the image “base” in the Vivo data set clip3 and
its corresponding binary mask images.

Among the three RGB channels in MIS images, the most prominent colors for blood
vessels are red and green, while the background color is closer to blue. The contrast between
the red and blue channels is very poor and noisy, and the corresponding channel pixels
do not provide much information about blood vessels [38]. Therefore, the green channel
provides the best contrast between blood vessels and the background, with blood vessels
being the clearest.

Using the local variance threshold to automatically identify the highlight areas in the
image, based on the special grayscale distribution and spatial distribution characteristics
of the highlight areas, the threshold for each pixel point in the image is determined by
calculating the variance of the surrounding pixels as follows:

T(x, y) = k · var(R(x, y)) + C (2)

where T(x, y) represents the threshold of the local neighborhood centered on (x, y), var(R(x,
y)) represents the pixel value variance of the local neighborhood centered on (x, y), and k
and C are scaling factors and constants, respectively, used to adjust the size and position of
the threshold. Then, FMM is used to achieve highlight restoration, as shown in Figure 4.
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The highlight area is used as the initial boundary condition, and new pixel values are
calculated with neighboring points based on the weight of different distances to replace the
values of adjacent point sets in the highlight area [39] as follows:

Iq(p) = I(q) +∇I(q)(p − q). (3)

Among them, q is a point of Bε(p). Due to the different influence of pixels with different
distances within the neighborhood on the new pixel values of point p, it is necessary to set
the respective weight for each pixel as follows:

I(p) =
∑q∈Bε(p) w(p, q)[I(q) +∇I(q)(p − q)]

∑q∈Bε(p) w(p, q)
. (4)
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w(p, q) = dir(p, q) · dst(p, q) · lev(p, q) (5)

where w(p, q) is the weight function used to quantify the impact of each pixel in the
neighborhood on new pixel values. The weight functions are shown in Equations (6)–(8)

dir(p, q) =
p − q

∥p − q∥ · N(p) (6)

dst(p, q) =
d0

2

∥p − q∥2 (7)

lev(p, q) =
T0

1 + |T(p)− Y(q)| (8)

Among them, d0 and T0 are distance parameters and horizontal parameters, usually
taken as 1. dir(p, q) is the directional factor, dst(p, q) is the geometric distance factor, and
lev(p,q) is the horizontal set distance factor. The preprocessing results are shown in Figure 5.
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2.2. Vascular Structure Enhancement
2.2.1. Analysis of Vascular Features Based on the Hessian Matrix

The Hessian matrix is based on second-order Gaussian derivatives, where the first
derivative represents the grayscale gradient and the second derivative represents the rate of
change of the grayscale gradient. It can be calculated at different scales to enhance features
similar to curves, which helps to distinguish specific shapes, such as circular, tubular, and
planar structures. In an image, the chromaticity measurement is used to describe the image
when the dark curve structure appears relative to the background. The Hessian matrix
H is used to calculate the eigenvalues λ1 and λ2 pixel by pixel for L, which represent the
anisotropy of image changes in the two eigenvector directions. By analyzing the symbols
and sizes of Hessian eigenvalues, as shown in Table 1, the selective enhancement can be
performed on local image structures independent of direction based on the shape of the
structure and foreground and background brightness. The spotted structure tends to be
isotropic, and the stronger the linearity, the more anisotropic the structure. This method
can be used to distinguish the linear vascular structures in the inner cavity, as shown in
Equation (9)

H =

(
H11 H12
H21 H22

)
=

 ∂2L
∂x2

∂2L
∂x∂y

∂2L
∂y∂x

∂2L
∂y2

 (9)
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Table 1. The eigenvalues of the Hessian matrix.

λ1 λ2 Directional Feature

L L Background, no direction
N N Noise, directionless
L H− Tubular structure (bright)
L H+ Tubular structure (dark)

Ideally, in a two-dimensional image, it is assumed that |λ1| ≤ |λ2|, where H repre-
sents high eigenvalues, L represents low eigenvalues, N represents noise, +/− represents
the sign of the eigenvalues, and λ2 represents a bright (dark) structure on a dark (bright)
background. The tubular structure is a vascular target that enhances the human lumen.

2.2.2. Vascular Enhancement Based on the Frangi Measure Filtering

The classic Frangi filter is an enhanced filtering algorithm based on the Hessian
matrix [7], where the value RB is approximately zero when the image structure is a tubular
structure; that is, a blood vessel. The Frangi vascular enhancement function uses response
RB to distinguish between speckled and tubular structures, and measures S to distinguish
the background. The calculation is shown in Equations (10) and (11)

RB =

∣∣∣∣λ2

λ1

∣∣∣∣ (10)

S =

√
λ1

2 + λ2
2 (11)

Then, construct an enhancement function based on RB and S as shown in Equation (12)

F(x, y, σ) =

{
0 λ1 ≥ 0,

exp( RB
2

2·β2 ) · (1 − exp(−S2

2·c2 )) otherwise
(12)

where β is used to adjust the sensitivity of the distinguishing block and strip regions, and c
is used to adjust the overall smoothness of the filtered image.

2.2.3. Vascular Enhancement Based on MFAT

The Frangi vascular enhancement function aims to suppress the components of circular
structures, but not all vascular structures elongate. In the process of exploring three-
dimensional vascular structure enhancement, image analysis is usually closely related to the
formation of neural processes and dihedral differentiation. Jerman et al. analyzed multiple
vascular enhancement functions and summarized the advantages and disadvantages of
solving vascular structure enhancement problems based on different functions [11]. For
two-dimensional images, the Frangi vascular enhancement function was simplified. Based
on ex ≈ 1 + x, it was found that

F′(x, y, σ) = 1 − exp(
−S2

2 · c2 ) ≈
1

2c2

(
λ2

1 + λ2
2

)
(13)

Through analysis, it was found that the main reason for Frangi’s function design,
which is proportional to the size of the feature values, is to suppress noise in low-intensity
and uniform-intensity image regions, where all feature values have low and similar sizes.
This method usually relies on the values of eigenvalues, which leads to several problems as
follows: (1) in a slender or circular structure with uniform strength, the eigenvalues are
uneven, (2) the feature values vary with the intensity of the image, and (3) enhancement
is uneven at different scales. Therefore, redefining characteristic values, −λ is for bright
structures on a dark background, and λ is for dark structures on a bright background.
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According to Meijering et al. [8], the Hessian matrix has been improved as shown in
Equation (14)

H′ =
[

H11 + αH22 (1 − α)H12
(1 − α)H12 H22 + αH11

]
(14)

Then, construct neuron measures as shown in Equations (15) and (16)

N =

{
λmax
λmin

if λmax < 0,
0 if λmin ≥ 0,

, λmax= max(λ1, λ2), λmin= min
(
λmax, λ′

1, λ′
2
)

(15)

λ′
1 = λ1 + αλ2, λ′

2 = λ2 + αλ1 (16)

Among them, λmax is the maximum eigenvalue and λmin is the minimum eigenvalue,
representing the normalized eigenvector and eigenvalues of H′. The above neuron measures
suppress background intensity discontinuity points and darker linear structures that are
immune to first-order derivatives (λmax (x) ≥ 0). Meanwhile, the neuron measure is a
scalable function that can be used as a scale parameter σ Gaussian kernel and is used to
suppress noise. Therefore, Alhasson et al. proposed an improved diffusion tensor measure
FAT based on to enhance the vascular structure in three-dimensional images [40]. We
applied it to two-dimensional internal cavity images and introduced auxiliary techniques
λ3, which is defined as the three-dimensional shape of blood vessels in a two-dimensional
image to obtain the regularized eigenvalues λp and its cutoff threshold τ. Construction λp1,
λp2 through the upper limit cutoff threshold is passed τ1 and lower cut-off threshold τ2,
respectively. And λp1, λp2 are used to adjust λ3

FATσ
λ =

√
3
2

√√√√(
λρ1 − Dλ

)2
+

(
λ2 − Dλ

)2
+

(
λρ2 − Dλ

)2

λ2
ρ1 + λ2

2 + λ2
ρ2

(17)

Dλ =
λp1 + λ2 + λp2

2
, λp =


λ3(x, σ) if λ3(x, σ) > τmaxx(λ3(x, σ)),

τmaxx(λ3(x, σ)) if 0 < λ3(x, σ) ≤ τmaxx(λ3(x, σ)),
0 otherwise

(18)

Correspondingly, to suppress background noise, construct a response Rσ
λ as shown in

Equation (19)

Rσ
λ =


0 if λρ > λρ − λ2 ∨ λρ ≥ 0 ∨ λ2 ≥ 0∨ > λρ − λ2maxx

(
λρ − λ2

)
,

1 if λρ − λ2 = minx
(
λρ − λ2

)
,

1 − MFATσ
λ otherwise

(19)

According to the concept of amplitude regularization, construct a multiscale enhance-
ment function MFATλ based on the maximum cumulative response through each scale σ,
as shown in Equations (20) and (21)

MFATσ
λ = MFATσ−1

λ + σtanh(Rσ
λ − σ) (20)

MFATλ = maxσ

(
MFATσ

λ, Rσ
λ

)
(21)

2.2.4. Gaussian Weighted Fusion and Single-Pixel Vascular Structure

The Gaussian function has a higher weight near the center, and as the distance from the
center increases, the weight gradually decreases. This paper combines two enhancement
results by constructing a Gaussian weighting function to achieve compensation. The
vascular enhancement result after Gaussian weighted fusion, denoted as Ivessel, is shown in
Equation (22)

Ivessel =
w1

w
· IFrangi +

w2

w
· IMFAT (22)
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Among them,
w = w1 + w2 (23)

w1 = e
−(

(I−IFrangi)
2

2·µ2 )
, w2 = 1 − e

−(
(I−IMFAT )2

2·µ2 )
(24)

Among them, w is the Gaussian weight; IFrangi and IMFAT are the Frangi enhancement
results and MFAT enhancement results, respectively; and µ is the parameter that controls
the shape of the Gaussian function. Considering that there is no gold standard for the
structure of the lumen blood vessels, the optimal weights for different types of images are
obtained based on SSIM, which refers to the parameter with the best score between the
vascular structure and the lumen image, thereby improving the generalization of fused
image applications.

Blood vessels have a certain width, and the multipixel vascular features used for
the vascular structure cannot accurately locate branch points and segments. Therefore,
single-pixel vascular centerlines can be used to replace the original vascular morphology.
Analyze the grayscale gradient changes of all pixels in the width direction of blood vessels,
and use weighted operations to calculate the Iridge of the vessel centerline, as shown in
Equation (25)

Iridge(x, y, ϑ) = Ivessel(x, y, ϑ)
·abs{ sign(∇I(x+ ∈ u2, u+ ∈ v2, ε))− sign(∇I(x− ∈ u2, u− ∈ v2, ϑ))}/2

(25)

where ∇ is the gradient operator, (u2, v2)
T = V2 and ε = 1.0 is the pixel width. However,

most of the blood vessel width obtained are two pixels. In order to obtain a more accurate
single-pixel width ridge, it is necessary to obtain the local maximum value of each centerline
pixel in the direction of the feature vector V2, as shown in Equation (26)

Iridge(·) =
{

Iridge(·), if Iridge(x± ∈ u2, y± ∈ v2, ϑ) < Iridge(·)
0, otherwise

(26)

where Iridge represents ridge degree. As shown in Figure 6, (a) is the enhancement result
of the Frangi enhancement method, and (b) is enhancement result of this paper method.
The blood vessels after single-pixel transformation are thinner and have clearer branches
compared to the original method blood vessel images in the human lumen.
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Figure 6. Enhancement results of vascular structure enhancement: (a) the Frangi enhancement
method; (b) the method proposed in this paper.

Algorithm 1 describes a Gaussian weighted fusion of dual-branch Frangi measures
and MFAT for single-pixel enhancement of vascular structures.
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Algorithm 1

Input: Inner cavity image I, preprocessed inner cavity image Ipre, masked image Imask
Output: Single-pixel vascular image Iridge

1: Branch 1 uses a blood vessel enhancement algorithm based on Frangi measure filtering on
Ipre

2: for each pixel p ϵ Ipre do
3: for each scale σ do
4: Calculate the Hessian matrix and its eigenvalues (λ1, λ2) and eigenvectors (Ix, Iy)
5: Calculate Direction, RB, and S based on eigenvalues and eigenvectors
6: At scale σ Calculate the Frangi measure filtering result F(σ)
7: end for
8: Extract the maximum response and corresponding filtering result max(F(σ))
9: end for
10: Combining Imask to generate Frangi measure vascular enhancement images IFrangi, Direction
11: Branch 2 using MFAT based vascular enhancement on Ipre
12: for each pixel p ϵ Ipre do
13: for each scale σ do
14: Calculate the Hessian matrix and its eigenvalues (λ1,λ2) and Direction
15: Set λ3 = λ2. Construct new eigenvalues based on the eigenvalues λp1, λp2, and calculate

FATσ
λ , Rσ

λ
16: At scale σ calculate and update MFAT results MFATλ

17: end for
18: Remove pixels MFATλ < 1 × 10−2

19: Extract the maximum response and corresponding scale filtering result max
(

MFATλ (σ))
20: end for
21: for every steps µϵ (2, 4) do
22: Establish a Gaussian model and calculate weights w1 and w2
23: Weighted fusion of IFrangi and IMFAT to generate binary image Ivessel

24: Using single-pixel algorithm based on I, Ivessel, and Direction
25: Gaussian Filter Smoothing Image I
26: Generate grid coordinate matrix [X, Y]
27: for each coordinate (x, y) ϵ [X, Y] do
28: Calculate the feature direction gradient ∇ and inner product
29: If there is a sign change in the gradient along the direction of maximum curvature, it is

considered as a vascular ridge line mask_ridge
30: Multiply the ridge mask with the vascular image to obtain the vascular centerline image

Iridege

31: if the single-pixel detection flag for blood vessels is true
32: Interpolate and shift vascular images to obtain IRshift1 and IRshift2

33: Compare to obtain a single-pixel ridge mask_ridge2 and its application
34: end if
35: end for
36: Generate a single-pixel vascular image Iridge

37: Calculate the SSIM score between I and Iridge

38: end for
39: Select the corresponding optimal parameter µ based on the maximum SSIM score
40: Calculate the optimal weights w1 and w2
41: Weighted fusion of IFrangi and IMFAT to generate binary image Ivessel

42: Generate a single-pixel vascular image IFrangi using a single-pixel algorithm based on I,
Ivessel, and Direction

2.3. Circle Detection of Vascular Branches

A vascular branch point is a feature point with three or more vascular branch segments
centered on it. Due to rotation and scaling, the vascular branch points can still be detected
in intracavitary vessels with a single texture feature and strong robustness. Based on this
definition and the principles of the FAST algorithm, a single-pixel wide blood vessel image
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that has undergone image preprocessing is defined as a blood vessel branch point when
there are three or more identical pixel values between the center candidate point and the
point on the circumference. This method is called the circle detection of vascular branches
(CDVB), and the intersection of the circumference with three or more blood vessels will
cause a black and white change in the color of the pixels on the circumference, as shown in
Figure 7.
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Figure 7. Vascular branching points.

Although blood vessels have been pixelated, there is still a possibility of multiple pixels
at the intersection of blood vessels and circles in the CDVB algorithm. In order to determine
the accurate position of the intersection pixels, all pixel values along the circumference are
counted, and the peak coordinates are taken as the intersection coordinates. Set a threshold
to determine feature points, as shown in Equation (27)

N = ∑
x∀(circle(p))

∣∣Ix − Ip
∣∣ > εd (27)

where P is a candidate detection target point with a pixel value of IP, and r is the radius
of the circle. Set a threshold εd, and subtract the pixel values on the circle from the pixel
values at point P to obtain IP − Ix. Compare this value with threshold εd. If there are N
consecutive pixels with a difference greater than εd from IP, then the candidate point will
be judged as a feature point.

In order to enhance the recognition ability of microvascular branching points, reduce
false detections, and enhance algorithm adaptability and flexibility, set different radius
double circles on the candidate points for judgment. If one of the circles is successfully
judged, it will be marked as a feature point and its coordinates and peak points will
be recorded.

This method can accurately detect the branching points of blood vessels in the hu-
man lumen. However, there still exists uneven distribution of feature points, especially
the accumulation of local feature points. There are two reasons for this type of accumu-
lation: first, there are multiple effective corner points in a small area, and second, due
to the width of blood vessels, it is highly possible to detect multiple feature points in a
single effective corner area, with all but one being redundant. This situation not only in-
creases the computational burden, but also poses a risk of reducing the accuracy of feature
point matching.

For the above situations, NMS is introduced to solve the problem of uneven distri-
bution of feature points [41]. Perform connectivity analysis based on the peak point of
feature point P in the neighborhood, and obtain the score value of the score function V for
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the connected component calculation. If P is the point with the highest score value in the
neighborhood, it is kept:

V = max
{

∑ (IT − IP)− εd if IT ∈ b,
∑ (IP − IT)− εd if IT ∈ d

(28)

where V represents the score, IT represents the pixel value of the template point, b is the
bright spot, and d is the dark spot.

2.4. Neighborhood Block Branch Point Matching Based on ZSSD

Based on the feature point neighborhood block matching algorithm in PTAM, the sum
of squared errors is calculated within the neighborhood range of the matching points, and
the matching point pairs are determined by the value of the sum of squared errors. In
the prematching graph S, take a small rectangular graph in S with an area of M × N. The
starting coordinate of the rectangular graph is the coordinate of the upper left corner (i,
j). The template that matches the small rectangular graph is found through the traversal
method. Whether it matches or not needs to be determined by calculating the value of the
sum of squared errors as follows:

D(i, j) =
M

∑
s=1

N

∑
t=1

[S(i + s − 1, j + t − 1)− T(s, t)]2 (29)

Among them S(x, y) is the search image of size M × N, and T(x, y) is the template
image of M × N. 1 ≤ i ≤m − M + 1, 1 ≤ J ≤n − N + 1. The smaller the average absolute
difference D(i, j), the more similar it is. Therefore, just find the smallest D(i, j) to determine
the position that can match the block.

Based on the block search process, the information from previous frames is first
saved by defining a search area for each map point in the current frame. For each P point
saved in the frame, its corresponding point Q in the current frame can be obtained through
homography mapping. The search area of P is a circular area centered on Q, with a radius of
1/20 of the image width. Second, select the feature points located within the neighborhood
in the current frame, which are called neighboring points. Compare the 21 × 21-sized
neighborhood blocks of each neighboring point with the same-sized neighborhood blocks
of point P. Apply the affine warping obtained from the ground truth homography mapping
to the local blocks of point P to accommodate changes in viewpoints, and calculate the
ZSSD for each block. Finally, if the ZSSD value of a neighboring point is the minimum and
is less than the predefined threshold of 0.02, it is considered to be matched. The condition
for determining the correct pair of corresponding points is |Q′ − Q| < 3.5 pixel.

3. Results

In order to demonstrate the superiority of the algorithm proposed in this paper,
the Vivo data sets were used, including abdominal wall and small flat tissue surfaces
in the anterior part of the pelvis captured during laparoscopic colon surgery. The data
set collection range allowed for global homology mapping, including a base image for
matching with other images, manually labeled 20 well distributed feature point pairs, and
ground truth homogeneous mapping. The experimental environment is Matlab R2019a,
the running environment is Windows 10, and the computer configuration is Intel Core
i5-5200U CPU @ 2.20 GHz. The computer brand is Asus, and the origin is Suzhou, China.

3.1. Weighted Coefficient Analysis of Vascular Structure Enhancement

The analysis was conducted from both subjective and objective perspectives. When
the weight was too small, there was severe distortion in the visual effect of single-pixel
vascular structures. When the weight was too large, there was a significant loss of fine
blood vessels. Experiments were conducted for µ = 1 and µ = 5, as shown in Figure 8.
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SSIM is used as an analytical indicator to reflect the similarity between the original
image and the enhanced vascular structure image, as shown in Equation (30)

SSIM(I, Iridge) =
(2 × µI × µIridge + C1)(2 × δI Iridge + C2)

(µ2
I × µ2

Iridge
+ C1)(δ

2
I × δ2

Iridge
+ C2)

(30)

where I, Iridge represents the inner cavity image and single-pixel vascular image, µI and
µIridge is the average pixel value of I and Iridge, δ2

I and δ2
Iridge

is the variance of pixel values for I
and Iridge, and δI Iridge

is the covariance of pixel values for I and Iridge. C1 and C2 are constants,
ensuring that the denominator is not zero. As shown in Figure 9, although the significant
difference in visual effects between the two results in low SSIM scores, the limited vascular
structure information can help us evaluate the similarity between the fusion results and
the original image, in order to better understand the quality of the fusion results and make
necessary optimizations. This paper introduces the SSIM index to automatically obtain
the current optimal parameters for Gaussian weighted fusion of images, improving the
accuracy and reliability of fusion results. The highest SSIM scores for the five data sets
are shown in the Table 2, and the optimal parameters are concentrated between 2 and 4.
Therefore, in order to improve the algorithm speed, the parameter range is set to (2, 4).

Table 2. Maximum SSIM score for data set base images.

Data Set Best Weight Parameter for
SSIM Best SSIM Score

clip1 3.9 0.07547
clip2 3.8 0.07186
clip3 2.1 0.13532
clip4 3.7 0.00204
clip5 3.6 0.04381
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Figure 9. SSIM analysis: (a) clip1; (b) clip2; (c) clip3; (d) clip4; (e) clip5.

3.2. Analysis of Feature Points Extraction and Matching

Subjectively, taking images from the Hamlyn data set Rectificed01 as an example,
on the basis of enhancing the vascular structure, circles with a radius of 5 and 7 are re-
spectively set for detection and extraction of branch points. Compared with the classical
Frangi enhancement algorithm, the results are shown in Figure 10 and the green circles
marked the feature points. It can be seen that the method proposed in this paper com-
pensated for the structural measurement differences and uneven responses of the Frangi
enhancement method on venous blood vessels and microvessels, suppressed the influence
of boundary regions and highlights, solved the problem of generating a uniform response
between different vascular structures, and effectively suppressed noise without affecting
the connection as shown the regions in the red rectangles. The method proposed in this
paper covers the preprocessing framework and the fusion optimization process. Although
vascular enhancement is achieved through effective parallel processing, it still affects the
overall running speed of the method. The average time of the RBCT is 0.95931 s, while the
method in this paper increases it to 1.9515 s.

Objectively speaking, based on the feature point neighborhood block matching algo-
rithm in PTAM, ZSSD is calculated for feature matching Experiments are conducted on
base images from five data sets and a random image. For a comprehensive evaluation,
the number of branch point extracts, repeatability, average error, and variance are used as
evaluation indicators. Repeatability is the percentage of points detected in images from
different viewpoints. The average error is the average mean of all matching points. Variance
represents the distribution of feature points, and the larger the variance, the wider the
distribution range. The results are shown in Table 3 compared with the method proposed
in this paper and RBCT and the adaptive FAST (AFAST) algorithm by Liu et al. [42]. The
matching effect is shown in clip3 and clip4 as examples, as shown in Figure 11. The above
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results indicate that the method proposed in this paper has significantly improved the
number of extracted branch points, repeatability, and variance compared to the original
method, and the average error has generally decreased.
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Table 3. Comparison of feature point extraction algorithms.

Algorithms Data Set
Image I Image J

Repeatability Average Error Variance
Number of Branch Points

AFAST

clip1 1368 1409 0.162913 2.047352 0.785429
clip2 1493 1628 0.188212 2.037728 0.840030
clip3 1023 882 0.281159 1.984439 0.678100
clip4 801 1019 0.134831 2.174954 0.629708
clip5 699 545 0.294372 1.922701 0.866902

RBCT

clip1 163 177 0.361963 1.866042 0.718423
clip2 197 237 0.441624 1.614276 0.682030
clip3 304 333 0.579710 1.752783 0.755851
clip4 215 277 0.302326 1.745650 0.717040
clip5 161 117 0.440367 1.661636 0.597105

OURS
(MFAT-
RBCT)

clip1 276 278 0.433460 1.770989 0.670291
clip2 354 378 0.497175 1.571009 0.691472
clip3 406 376 0.668033 1.744668 0.783226
clip4 237 315 0.320675 1.724399 0.739681
clip5 184 158 0.452055 1.504729 0.690412
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4. Discussions

The prerequisite for reconstruction technology is accurate feature tracking, which
is a well-researched topic in computer vision. Existing research indicates that there are
significant issues in directly applying commonly used visual techniques to MIS due to
the involvement of large-scale, free-form tissue deformation and constantly changing
surgical scenes that are influenced by complex factors. In this case, the accuracy and
efficiency of tracking largely depend on the detection of visual features, which need to
exhibit high repeatability under image transformation and robustness under scene changes.
This paper analyzes the differences between MIS images and images of the retina, neurons,
etc., in response to the lack of robust and uniformly distributed features in the inner
cavity space. For MIS images containing rich specular reflections, uneven lighting areas,
smoke, and other factors, further research and design were conducted on a method for
detecting and associating vascular features based on dual-branch weighted fusion vascular
structure enhancement.

The preprocessing process analyzes the factors that lead to incorrect extraction of
branch points in different internal cavity environments. The self-adaptive threshold is
used to generate binary mask images and introduce them into the fusion processing stage.
The threshold judgment and FMM method are used for highlight repair to suppress the
influence of boundary and highlight regions. The visual effect of the experimental results
shows the effectiveness of the method proposed in this paper.

The enhancement process combines the advantages of two enhancement algorithms
to design a Gaussian weighted fusion of dual-branch Frangi measure and MFAT for single-
pixel enhancement of the vascular structure. The process introduced SSIM indicators as
self-adaptive standards to improve algorithm accuracy and reliability, analyzed indicators
to determine the weight parameter range applicable (2, 4) to the inner cavity environment,
and improved the algorithm speed.

The feature extraction and associating process set up dual-circumference detection
combined with the NMS algorithm to extract vascular feature points, and calculated
ZSSD for branch point matching based on the feature point neighborhood block matching
algorithm. Subjectively, the experimental results indicated that the algorithm proposed in
this paper compensated for the structural measurement differences and uneven responses
of the Frangi enhancement method to venous vessels and microvessels, providing effective
structural information for later vascular feature extraction. Objectively, a detailed analysis
was conducted on the methods proposed in this paper (MFAT-RBCT, MFAT-VBCT), and
classical algorithms RBCT, SIFT, FAST, and VBCT. VBCT did not perform single-pixel
processing on the vascular structure during the processing. The experiment is divided
into frame rate analysis for all data sets and overall analysis for a single data set. As
shown in Figure 12a, b, c, respectively, this study analyzed the variance, matching accuracy,
and repeatability of six methods for all frame rates in data set clip1. The accuracy and
repeatability of single-frame matching have been improved compared to RBCT and VBCT,
and are significantly better than FAST and SIFT.

As shown in Figure 13a, b, and c, respectively, this study calculated the repeatability,
matching accuracy, and number of branch points for five data sets and their synthesis.
In the first four data sets, there was a significant improvement in repeatability, matching
accuracy, and the number of branch points compared to RBCT and VBCT. Data set clip5
showed similar results to RBCT and VBCT due to poor image quality indicators. The results
showed that compared with RBCT, the overall matching accuracy improved by 3.23%, the
number of branch point detections increased by 13.08%, and the repeatability improved
by 4.91%, which meant that our method has achieved good performance on five data sets,
proving its generalization and robustness.
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5. Conclusions

The texture features in the human lumen environment are mainly vascular morphol-
ogy, and feature point extraction in this environment is based on blood vessels. Branch
points of blood vessels can still be detected in lumen blood vessels with a single texture
feature and strong robustness even under rotation scaling and other conditions. This
study proposed a vascular feature detection and matching method based on dual-branch
weighted fusion vascular structure enhancement. A universal preprocessing framework
and Gaussian weighted fusion of dual-branch Frangi measure and MFAT for single-pixel
enhancement of the vascular structure was designed. In addition, this study utilized
dual-circle detection and NMS to extract features and calculate the ZSSD algorithm for
neighborhood blocks to achieve feature correlation. The experimental results showed
that compared to RBCT, the overall matching accuracy improved by 3.23%, the num-
ber of branch point detections increased by 13.08%, and the repeatability improved by
4.91%. Through quantitative analysis of multiple indicators, it has been proven that the
method proposed in this paper can better handle vascular structures with robustness
and generalization, and is a feature detection and matching method suitable for various
lumen environments and can provide more robust feature information for subsequent
3D reconstruction.

After conducting more thorough tracking of the internal cavity features, we are explor-
ing the possibility of incorporating this method into the visual odometry section to obtain
three-dimensional information about the human internal cavity. The 3D virtual image is
superimposed in real time on the imaging display to achieve an augmented reality display
effect of the 3D MIS screen from the doctor’s viewpoint. This provides feedback on the
depth of the internal cavity and expands the doctor’s surgical field of view. It also helps to
reduce surgical trauma, alleviate the patient’s pain, and improve the quality of the surgery.
The technology seeks to promote its better application in the field of minimally invasive
surgery and clinical trials.
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