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Abstract: With the rapid development of China’s railways, ensuring the safety of the operating
environment of high-speed railways faces daunting challenges. In response to safety hazards posed
by light and heavy floating objects during the operation of trains, we propose a dual-branch semantic
segmentation network with the fusion of large models (SAMUnet). The encoder part of this network
uses a dual-branch structure, in which the backbone branch uses a residual network for feature
extraction and the large-model branch leverages the results of feature extraction generated by the
segment anything model (SAM). Moreover, a decoding attention module is fused with the results of
prediction of the SAM in the decoder part to enhance the performance of the network. We conducted
experiments on the Inria Aerial Image Labeling (IAIL), Massachusetts, and high-speed railway
hazards datasets to verify the effectiveness and applicability of the proposed SAMUnet network in
comparison with commonly used semantic segmentation networks. The results demonstrated its
superiority in terms of both the accuracies of segmentation and feature extraction. It was able to
precisely extract hazards in the environment of high-speed railways to significantly improve the
accuracy of semantic segmentation.

Keywords: remote sensing images; high-speed railway; color-coated steel sheet roof buildings;
segment anything model

1. Introduction

With the rapid development of high-speed railway networks in recent years, high-
speed trains have become an indispensable means of transportation for the public [1]. With
progress in the deployment of the new generation of high-speed electric multiple unit
(EMU) trains that can travel at 400 km/h [2], it has become crucial to ensure the safety of
the operating environment of high-speed trains. The periodic inspection and monitoring of
hazards in the environment of high-speed railways are necessary for ensuring the safety
of their operating environment [3]. There are two types of major safety hazards in the
vicinity of high-speed railways: light and heavy floating objects. Commonly encountered
light floating objects include farm mulch and dust nets [4], as shown in Figure 1, while
heavy floating objects mostly include color-coated steel sheet (CCSS) roof buildings. These
structures are often illegally constructed by using simple and unreliable methods and can
be blown onto high-speed railway tracks in windy weather to cause accidents [5]. The
regular inspection of railway tracks to identify such hazards is thus important to ensure
the safety of operation of high-speed trains.

Sensors 2024, 24, 1876. https://doi.org/10.3390/s24061876 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24061876
https://doi.org/10.3390/s24061876
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7833-5124
https://doi.org/10.3390/s24061876
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24061876?type=check_update&version=1


Sensors 2024, 24, 1876 2 of 19

(a) Dust net (b) CCSS roof buildings (c) Farm mulch
Figure 1. Accidents caused by high-speed rail hazards.

However, the high-speed railway network covers a large area, parts of which are
rarely visited by people. This makes manual inspection challenging. Due to its efficiency,
high image resolution, wide coverage, and simple method of data acquisition, remote
sensing technology has been used to monitor hazards in the environment of railway
networks [6]. Currently used target detection technology based on remote sensing images
primarily focuses on various targets, such as buildings [7,8], water resources [9,10], and
farmland [11,12]. The study of railway hazards has emerged in recent years, and existing
work has only been directed at the target of color-coated steel sheet roof buildings. Prevalent
methods for extracting color-coated steel sheet roof buildings from remote sensing images
can be classified into two categories: methods based on spectral indices, and those based
on deep learning. In the context of methods based on spectral indices, Guo et al. [13]
used Landsat remote sensing images to develop ’blue steel tile’-roofed buildings (BSTBs).
They leveraged the characteristics of visible and near-infrared reflection of the target to
obtain an accuracy of detection of 85%. Zhao et al. [14] used data from the Sentinel-2
satellite to construct the blue color-coated steel roofs (BCCSRs) index based on the blue,
red, green, and short-wave infrared bands and reported an overall accuracy of 93%. In the
context of deep learning-based techniques, Sun et al. [15] used image-related data from
GF-2 and the DeepLabV3+ model of semantic segmentation to analyze the number and
distribution of blue-colored steel plates in the Foshan region of China and obtained an
accuracy of 92%. To address the issue of the complex background in remote sensing images,
Li et al. [16] introduced the deformation-aware feature enhancement module (DFEM) and
the feature alignment gated fusion module (FAGM) to the deep learning network. This led
to improved accuracy in terms of extracting the colored steel roofs of houses from images.
All of the above studies are aimed at a single target and cannot be adapted to the complex
environment of the railway as shown in Figure 2.

(a) Dust net (b) CCSS roof buildings (c) Farm mulch

Figure 2. High-speed rail hazards.

Although the above studies have achieved excellent performance in terms of extracting
color-coated steel sheet roof buildings from images, challenges persist in identifying hazards
around high-speed railways. The spectral index-based approach relies on specific data from
satellite remote sensing images, and the indices of their spectral features are significantly
affected by the seasons and the climate. Moreover, multi-spectral remote sensing images
have a low resolution that makes them unsuitable for use in high-resolution and complex
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remote sensing environments. Furthermore, a limited amount of research has been devoted
to extracting railway hazards from remote sensing images, where this raises questions
about the scope of applicability of the spectral features. On the contrary, the deep learning-
based approach has unique advantages in terms of processing datasets of images and can
adapt to data from different remote sensing satellites. However, most relevant studies have
borrowed their design principles from network structures in other fields, because of which
the capability of the corresponding methods to fit features of railway hazards in images
has not been adequately verified.

Large models have recently been used for image segmentation to assist in the task of
feature extraction. The segment anything model (SAM), released by Meta AI [17], can serve
as a foundational model in the domain of image segmentation. This model is trained on a
large number of unlabeled datasets and can be used for remote sensing without requiring
additional training data [18,19]. This characteristic is advantageous for the identification of
railway hazards around high-speed railways, as it can reduce the demand for labeled data.
Hence, we consider using the SAM as a branch feature extraction module and leverage
the capability of generalization of its pre-training dataset to enhance the performance of
the network in terms of feature extraction. The ultimate goal is to improve the accuracy of
extraction of railway hazards from images.

In response to the limited research on the extraction of railway hazards around high-
speed railways from images and the fact that the existing research only focuses on color-
coated steel roof buildings, which is a single target and cannot be adapted to the actual
scenarios, we propose a dual-branch semantic segmentation network with the fusion
of large models (SAMUnet) to achieve multi-target railway hazards segmentation in this
study. Our approach combines a large model for semantic image segmentation with spectral
features to construct a branch feature extraction module. Moreover, we design a multi-
feature attention fusion module to efficiently integrate the features obtained by the network.
This integration is designed to extract railway hazards around high-speed railways from
remote sensing images with complex environmental backgrounds. The proposed method
reduces reliance on traditional modules for feature extraction and enhances the precision
of feature fusion by the model.

2. Architecture of SAMUnet
2.1. Feature Extraction Based on SAM

Remote sensing images contain a large number of details and complex spatial infor-
mation due to improvements in their resolution. Current models of semantic segmentation
struggle to segment complex datasets of images. Such issues as regional misjudgment and
the loss of local information on hazardous targets are commonly encountered in images
of high-speed railway lines with intricate spatial information. Some researchers have
proposed a combination of traditional algorithms of image classification and deep learning
models. They achieve this by adding additional branch structure inputs to reduce the
data-related requirements and improve the accuracy of the model. However, traditional
methods of threshold segmentation have limited accuracy, and their application to the
environment of the railway is affected by various factors, such as the seasons and the
weather, which make it challenging for them to effectively train the network model. The
SAM image segmentation algorithm proposed by the Meta team offers a new approach. It
relies on active learning and large-scale datasets to obtain zero-shot segmentation, which
means that it can perform image segmentation without being specifically trained on a
given dataset. The pre-training weights of the SAM are obtained from its SAM-1B dataset,
which contains images of various locations and fields from all over the world. This dataset
contributes to the high capability of generalization of the model and enables it to segment
input images even in scenarios for which it has not been trained.

However, without specific guidance, the SAM tends to segment images into as many
categories as possible such that this results in numerous categories of images without clear
labels. A large number of segmented categories of images can lead to the fragmentation
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of their complex features in applications. Therefore, we use the SAM network for the
unsupervised segmentation of remote sensing images. The mean values of the spectral
bands of each segmented category are used as regional features to create feature maps, thus
combining the capability of generalization of the large SAM with the spectral information
of the original image.

By considering safety hazards in the environment of high-speed railways, such as
color-coated steel sheet roof buildings and sand control nets that have consistent internal
spectral characteristics, we aim to minimize the fragmentation of the feature maps of the
target. The process of extraction and its results are depicted in Figure 3. The original
image is segmented by using the SAM to obtain regions of classification, and spectra of
the original image are averaged within each region of classification to obtain a new feature
map. The calculation is as follows:

SAM

Spectral 

channel 

average

Image
SAM classification 

results

Feature extraction 

results

Figure 3. Schematic diagram of feature extraction by the SAM.

In Algorithm 1, the input is Image and SAM large model, and the output is a Feature
Feature map, Arenclasses and nclasses represent the number of segmentation categories
obtained by SAM segmentation, and the image of each class, avg represents the spectral
mean operation, and sum represents the area feature map stitched together to obtain the
final overall feature map.

Algorithm 1 SAM Pre-classification

Input: Image, SAM
Output: feature
1: Arenclasses, nclasses = SAM(image)
2: for i = 0 to nclasses do
3: Featurenclasses = avg(Arenclasses)
4: end for
5: Feature = sum(Featurenclasses)
6: return Feature

2.2. Semantic Image Segmentation Based on SAMUnet Network

Research on the extraction of color-coated steel sheet roof buildings in the environment
of high-speed railways based on remote sensing images is still in its early stages. Currently
available techniques for extracting features from images of color-coated steel sheet roof
buildings have limited applicability owing to their specific spatial and spectral resolutions,
where this makes it difficult to apply them universally. We propose a dual-branch network
for feature extraction based on a large model (SAMUnet). Figure 4 shows the framework
of SAMUnet, which consists of an encoding and a decoding network. In the SAM pre-
segmentation module, the SAM large model pre-classification results are combined with
the original spectrum to obtain a new feature map as the subsequent network input. The
encoding network is composed of modules for residual feature extraction (Resblock) and
maximum pooling-based downsampling (Maxpool) and uses a dual-branch structure. The
main branch uses a residual network (ResNet) to extract features from the input image
and gradually downsamples them to reduce the scale of the feature map to learn abstract
features from it. The auxiliary branch performs max pooling-based downsampling on
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the SAM map of spectral feature fusion. The decoding network contains a multi-feature
attention fusion module (MAFM) that fuses spectral features with feature maps at the
same scale. Skip connections are used to merge feature maps at the same scale to enable
the network to capture large-scale contextual information and improve the accuracy of
segmentation. Bilinear interpolation is used for upsampling to restore the image to its
original size for pixel-wise classification.

Resblock

Resblock

Resblock

Resblock

Maxpool

Maxpool

Maxpool

Maxpool

Resblock

MFAM

MFAM

MFAM

MFAM

Encoder

Decoder

SAM

Spectral 

channel 

average

Image SAM classification 

results

Feature extraction 

results

Pre-classification

Figure 4. Structure of the SAMUnet model.

2.3. Backbone Network Branch

The hazards around high-speed railways have complex features in remote sensing
images such that they can be confused with the background. Deep learning models
often require deeper network layers to accomplish feature extraction. However, deeper
networks can increase the cost of training, reduce its efficiency, and lower the capability
of generalization of the model to lead to overfitting and network degradation. Therefore,
we chose ResNet [20] as the backbone network for downsampling, as shown in Table 1.
Residual networks can use the residual structure to construct deep networks and address
issues like network degradation and the vanishing gradient. When ResNet is used as
the backbone network, layer-wise downsampling can be used to capture rich semantic
information that is transmitted to the decoding network.

The residual structure introduced by the residual network can mitigate the degradation
in the performance of the model caused by the deepening of the network layers. Its structure
is illustrated in Figure 5. The residual unit incorporates a skip connection, because of which
the final output function contains an identity term in the process of backward propagation.
This solves the problem whereby the gradients become increasingly smaller after several
multiplication operations in the deep network. In this way, the error can be propagated
back to the shallower layers to significantly enhance the capability of feature extraction of
the network.
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Table 1. ResNet feature extraction network architecture.

Layers Output Structure

Layer 0 112 × 112 7 × 7, 64, 3 × 3 Maxpool

Layer 1 56 × 56
[

3 × 3, 64
3 × 3, 64

]
× 2

Layer 2 28 × 28
[

3 × 3, 128
3 × 3, 128

]
× 2

Layer 3 14 × 14
[

3 × 3, 256
3 × 3, 256

]
× 2

Layer 4 7 × 7
[

3 × 3, 512
3 × 3, 512

]
× 2

Weight layer

Weight layer

relu

relu

F(x)+x

F(x) x

Figure 5. Residual structure.

2.4. Multi-Feature Attention Fusion Module (MAFM)

The main idea of the multi-feature attention fusion module (MAFM) developed here is
to reference the skip connections in Unet, integrate contextual information at different scales,
and simultaneously fuse the results of segmentation of the SAM. This yields adequate
pixel-level attention to the advanced feature maps and enhances the capability of the model
to segment hazards of various sizes in images of the environment of high-speed railways.
The structure of the module is shown in Figure 6.

The multi-feature attention module consists of three inputs: a low-scale feature map
Xlow, a map of features predicted by the SAM XSAM, and a high-scale feature map Xhigh.
The low-scale feature map Xlow is first subjected to bilinear interpolation during feature
fusion, followed by a 3 × 3 convolution to aggregate information from the channels. This is
complemented by the batch normalization and ReLU activation functions to complete the
upsampling of the feature map. Weighted addition is subsequently performed on the input
feature map predicted by the SAM, and a skip connection is used to concatenate it with
the feature map at the same scale in the channel dimension. Equation (1) illustrates the
process of feature fusion, where X f usion represents the result of fusion, concat[] represents
concatenation in the channel dimension, upsampling() represents bilinear interpolation-
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based upsampling, and ξ represents the sequential convolution, batch normalization, and
ReLU activation operations.

X f usion = concat[ξ(XSAM), ξ(ξ(upsampling(Xlow)) + ξ(Xhigh))] (1)

Conv/BN/relu

Upsampling

Conv/BN/relu

Conv/BN/relu

Conv/BN/relu

Concate

Xlow

Xhigh

CBAM

Xfusion

Spatial 

attention

Channel 

attention

Spatial 

attention

Channel 

attention

Xfusion

X’fusion

X’’fusion

X’’fusion

XSAM

Attention 

section

Feature fusion 

section

Figure 6. Multi-feature attention fusion module (MAFM).

To enhance the effect of feature fusion, the fusion module introduces a spatial–channel
attention mechanism [21] in the self-attention part. This includes both the channel attention
and the spatial attention modules. Channel attention aggregates the input image at the
spatial scale and infers unique features through average pooling and max pooling. Spatial
attention complements channel attention by applying average pooling and max pooling
connections along the channel to generate a spatial attention feature map that contains the
positions that require attention. The spatial–channel attention process can be represented
as follows:

X′
f usion = Mc(X f usion)⊗ X f usion (2)

X′′
f usion = Ms(X′

f usion)⊗ X′
f usion (3)

Mc(X′
f usion) = δ

(
MLP

(
AvgPool(X f usion)

)
+ MLP

(
MaxPool(X f usion)

))
(4)

Ms(X′
f usion) = δ

(
f7×7

(
concat

(
AvgPool(X f usion); MaxPool(X f usion)

)))
(5)

In the above equations, δ represents the sigmoid function, and AvgPool and Maxpool
denote average pooling and max pooling operations, respectively. MLP is a shared-weight
two-layer network, f7×7 represents a convolution operation with a kernel size of 7 × 7, and
⊗ represents element-wise multiplication. The input image with fused features X f usion
sequentially passes through the channel and spatial attention modules, and a feature map
updated with attention is finally obtained.
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2.5. Union Loss Function

The task of extracting targets from remote sensing images often encounters the issue
of an unbalanced sample distribution, which is particularly severe when extracting color-
coated steel sheet roof buildings in the vicinity of high-speed railways from images. A single
deep learning-based loss function considers only a single performance metric, and this
often results in training outcomes that do not comprehensively address various parameters.
Therefore, we use a union loss function by combining polynomial loss [22] with dice
loss [23]. This approach addresses both the problems of sample imbalance and sample
similarity to ensure the precision of training of the network. The loss function is expressed
as follows:

Loss = λLossPoly−N + (1 − λ)Lossdice (6)

where LossPoly−N represents the polynomial loss function, Lossdice represents the dice loss
function, and λ is the parameter of weight adjustment. The polynomial loss function
decomposes commonly used loss functions (cross-entropy loss and focal loss [24]) into a
series of weighted polynomials that can be expressed as follows:

LossCE = − log(Pt) =
∞

∑
j=1

1/j(1 − Pt)
j = (1 − Pt) + 1/2(1 − Pt)

2 + . . . (7)

LossFL = −(1 − Pt)
γ log(Pt) = (1 − Pt)

1+γ + 1/2(1 − Pt)
2+γ + . . . (8)

In the above equations, LossCE and LossFL represent cross-entropy loss and focal loss,
respectively, Pt is the predicted probability of the target class label, and γ is the modulating
factor. Optimizing the loss function by using gradient descent depends on the gradient
with respect to Pt. The derivative of the loss with respect to Pt is calculated as follows:

−dLossCE
dPt

=
∞

∑
j=1

(1 − Pt)
j−1 = 1 + (1 − Pt) + (1 − Pt)

2 + . . . (9)

−dLossFL
dPt

=
∞

∑
j=1

(1 + γ/j)(1 − Pt)
j+γ−1

= (1 + γ)(1 − Pt)
γ + (1 + γ/2)(1 − Pt)

1+γ + . . .

(10)

The polynomial terms in gradient expansion have different sensitivities to Pt. The
leading gradient term is one, and it provides a constant gradient that leads to overfitting.
The suppression factor γ, introduced by focal loss, caters to scenarios where Pt is close to one
to avoid overfitting. By following this idea of decomposition, we present polynomial loss
as an infinite series of polynomials. In theory, adjusting an infinite number of polynomial
coefficients is clearly impractical during training. To address this issue, polynomial loss
perturbs the first N important terms in the polynomial coefficients while keeping the
remaining ones unchanged. The final polynomial loss function is expressed by considering
the first two terms because this is generally sufficient to ensure satisfactory performance.

LossPoly = α1(1 − Pt) + α2(1 − Pt)
2 + . . . + αN(1 − Pt)

N

= (ε1 + 1)(1 − Pt) + . . . + (εN + 1/N)(1 − Pt)
N + 1/(N + 1)(1 − Pt)

N+1 + . . .

= − log(Pt) +
N

∑
j=1

ε j(1 − Pt)
j

(11)

The dice loss function is a metric of set similarity that is commonly used to calculate
the similarity between samples. In segmentation tasks, |X| and |Y| represent the label of
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the image and its predicted label, respectively, and “smooth” is the smoothing parameter
that is usually set to one to prevent the denominator from being zero.

Lossdice = 1 − 2|X
⋂

Y|+ smooth
|X|+ |Y|+ smooth

(12)

3. Experimental Results and Analysis
3.1. Dataset

The datasets used in this study were derived from remote sensing images of the
Xuanhua section of the Beijing–Zhangjiakou Railway. The images were captured by the
GF-2 satellite in October 2020. The study area is located in Xuanhua District of Zhangjiakou
City in Hebei Province, with latitude and longitude coordinates of 40◦40′ N–40◦35′ N and
114◦57′ E–115◦8′ E. A remote sensing image of the study area is shown in Figure 7. It has a
size of 39,128 × 18,298 and a spatial resolution of 0.8 m.

Figure 7. Remote sensing image of the study area.

According to the site survey in Xuanhua District, Zhangjiakou City, the area with
a large number of hidden danger targets is selected in the region. Based on the spectral
characteristics and shape features of the railway hazardous targets, two railway hazardous
datasets were obtained after visual interpretation with the advice of experts in the relevant
fields, which were the single-target color-coated steel sheet roof buildings dataset and the
multi-target dataset, and the multi-target dataset contained color-coated steel sheet roof
buildings, dust nets, and farm mulch.

To validate the effectiveness of the model, we used two publicly available datasets for
comparative experiments. The first was the Inria Aerial Image Labeling Dataset (IAIL) [25].
It consisted of aerial orthorectified colored images captured at a resolution of 0.3 m and
covering various urban settlements including Chicago, San Francisco, and Vienna, for a
total area of 800 km2. The second dataset considered here was the Massachusetts Buildings
Dataset [26]. It comprised 151 aerial images of the Boston region, each with a resolution of
1500 × 1500 pixels, and covered an area of approximately 340 km2.

3.2. Data Pre-Processing and Experimental Parameters

Data pre-processing included label creation, image cropping, image normalization,
and data augmentation. Labels in JSON format were converted into common binary
image labels during label creation. Due to limitations of the GPU memory of the local
hardware and the speed-related requirements of the SAM, the dataset was cropped to a
size of 256 × 256 and input to the network. Image normalization increased the speed of
convergence of the model. The data augmentation operations included horizontal, vertical,
and diagonal flipping as well as the processing of Gaussian noise [27]. The final training
dataset is shown in Table 2.
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Table 2. Information on the datasets used for the experiments.

Dataset Resolution Number of Images Area Image Sizes Class

Massachusetts 0.3 m 15,225 340 km2 256 × 256 Buildings
Aerial 0.3 m 64,980 80 km2 256 × 256 Buildings

Railway-CCSS 0.8 m 5045 24 km2 256 × 256 CCSS buildings
Railway-multi 0.8 m 1890 24 km2 256 × 256 CCSS buildings, dust net, farm mulch

We implemented SAMUnet and the other deep learning models compared with it in
PyTorch 2.0.1. Python v3.9 and CUDA version 11.4 were also used. The CPU was Intel
i9-10900X (Intel, Santa Clara, CA, USA), and four NVIDIA 3090 GPUs (NVIDIA, Santa
Clara, CA, USA) were used as well. Training was conducted for 100 epochs by using the
Adam optimizer with a dynamic learning rate. The initial learning rate was set to 0.001,
and a cosine strategy for a decay in the rate of learning was used. The batch size for each
training epoch was set to 16.

3.3. Evaluation Metrics

We used a confusion matrix, which is commonly used in classification tasks, to analyze
the classification performed by the models on the test samples and used the results to
calculate their parameters. The binary confusion matrix of classification is represented in
Table 3. Based on the confusion matrix, we used the following evaluation metrics: precision,
recall, F1-score, overall accuracy (OA), and mean intersection over union (IoU) [28,29].
These metrics were calculated as follows:

precision =
TP

TP + FP
(13)

recall =
TP

TP + FN
(14)

F1 − score = 2 × precision × recall
precision + recall

(15)

OA =
TP + TN

TP + TN + FP + FN
(16)

IoU =
TP

TP + FP + FN
(17)

Precision represents the ratio of pixels correctly predicted to positive to all pixels
predicted to positive, recall represents the ratio of pixels actually undergoing changes to
all pixels that are predicted to change, and the F1-score is the harmonic mean of precision
and recall. The OA represents the percentage of pixels correctly classified in the image to
all pixels, and the IoU is the ratio of the intersection of the union of the true labels to the
predicted values in pixel classification.

Table 3. Binary confusion matrix.

Predicted Actual
Positive Negative

Positive TP FP
Negative FN TN

3.4. Comparative Analysis

To confirm the effectiveness of SAMUnet, we compared its performance with that
of FCN-8s [30], Segnet [31], Enet [32], Unet [33], PSPnet [34], DeepLabV3+ [35], and
Upernet [36]. Table 4 presents the results of these networks on the IAIL and Massachusetts
datasets. It is evident that SAMUnet achieved the optimal results on multiple metrics. It
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outperformed the other networks in terms of precision (1.01% improvement), F1-score
(1.08% improvement), OA (0.37% improvement), and IoU (0.7% improvement) on the
Massachusetts dataset, with only a slightly lower recall. SAMUnet also delivered superior
results on the Aerial dataset, with only a lower precision, but still outperformed the
other networks.

Table 4. Experimental results on public datasets.

Method Massachusetts Dataset IAIL Dataset
Precision Recall F1-Score OA IoU Precision Recall F1-Score OA IoU

FCN-8s 0.8377 0.6386 0.7284 0.9230 0.7435 0.9136 0.8825 0.8987 0.9772 0.8952
Segnet 0.8330 0.7147 0.7693 0.9307 0.7734 0.8970 0.8819 0.8894 0.9749 0.8865
Enet 0.7896 0.6832 0.7326 0.9193 0.7437 0.8591 0.8240 0.8412 0.9644 0.8433
Unet 0.8241 0.7684 0.7953 0.9360 0.7936 0.9125 0.8767 0.8942 0.9763 0.8912

Deeplabev3+ 0.8421 0.7499 0.7930 0.9368 0.7929 0.9055 0.8948 0.9001 0.9773 0.8966
PSPnet 0.7901 0.6957 0.7399 0.9209 0.7491 0.8945 0.8830 0.8887 0.9747 0.8858

Upernet 0.8313 0.7615 0.7949 0.9364 0.7936 0.9146 0.8872 0.9007 0.9776 0.8972
SAMUnet 0.8522 0.7648 0.8061 0.9405 0.8037 0.9072 0.8981 0.9026 0.9778 0.8989

Bold represents the optimal value.

Figures 8 and 9, respectively, display the results of extraction by all networks on the
Massachusetts and the IAIL datasets. SAMUnet exhibited superior capabilities of edge
extraction to the other networks and provided smoother and clearer outlines of buildings,
especially in densely populated areas with small buildings. Moreover, it demonstrated a
better capability of identifying areas with large buildings, particularly in terms of dealing
with shadow coverage and identifying the brown roofs of buildings that can be easily
confused with the background. Figures 10 and 11 show the results of extraction of buildings
from images on the IAIL dataset. SAMUnet exhibited advantages in distinguishing the
complex internal structures of large buildings and more precisely extracted the edges of
buildings than the other methods.

(a) Image (b) Label (c) FCN-8s (d) Segnet (e) Enet

(f) Unet (g) Deeplabv3+ (h) PSPnet (i) Upernet (j) SAMUnet

Figure 8. Extraction of small buildings from images in the Massachusetts dataset.

We also applied SAMUnet and the other deep learning models to extract hidden
color-coated steel sheet roof buildings in the Xuanhua section of the Jingzhang Railway.
The results are presented in Table 5 and Figures 12–14. It is clear from them that SAMUnet
delivered better performance in extracting both large and small hidden targets than the
other methods. While its precision was slightly lower, by 0.01%, than that of Upernet, its
performance in terms of the other indicators was significantly better than that of the second-
best model, with a recall that was higher by 1.86%, F1-score that was higher 0.72%, OA that
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was higher by 0.20%, and an IOU by 1.44%. This means that it could accurately extract
color-coated steel sheet roof buildings from the images. Its success can be attributed to the
feature extraction module of the SAM, which provided pre-classified pixels to compensate
for a lack of information on the edges of pixels that the network might have otherwise
overlooked. Figure 14 shows the results of extraction of color-coated steel sheet roof
buildings from images along a large stretch of the railway. The classical network models
were noticeably inaccurate and confused cement surfaces with colored steel roofs and
incorrectly identified regular houses as color-coated steel sheet roof buildings. SAMUnet
addressed these issues and was able to accurately extract the contours.

(a) Image (b) Label (c) FCN-8s (d) Segnet (e) Enet

(f) Unet (g) Deeplabv3+ (h) PSPnet (i) Upernet (j) SAMUnet

Figure 9. Extraction of large buildings from images in the Massachusetts dataset.

(a) Image (b) Label (c) FCN-8s (d) Segnet (e) Enet

(f) Unet (g) Deeplabv3+ (h) PSPnet (i) Upernet (j) SAMUnet

Figure 10. Extraction of small buildings from images in the IAIL dataset.

Table 5. Results of segmentation of color-coated steel sheet roof buildings in images.

Method Precision Recall F1-Score OA IoU

FCN-8s 0.8639 0.8178 0.8402 0.9780 0.8505
Segnet 0.8891 0.7264 0.7995 0.9742 0.8476
Enet 0.8343 0.7367 0.7825 0.9710 0.8061
Unet 0.8827 0.7944 0.8363 0.9780 0.8477

DeepLabV3+ 0.8848 0.8139 0.8479 0.9793 0.8570
PSPnet 0.8758 0.8367 0.8558 0.9801 0.8634

Upernet 0.8956 0.8231 0.8678 0.9807 0.8652
SAMUnet 0.8955 0.8553 0.8750 0.9827 0.8796

Bold represents the optimal value.
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(a) Image (b) Label (c) FCN-8s (d) Segnet (e) Enet

(f) Unet (g) Deeplabv3+ (h) PSPnet (i) Upernet (j) SAMUnet

Figure 11. Extraction of large buildings from images in the IAIL dataset.

(a) Image (b) Label (c) FCN-8s (d) Segnet (e) Enet

(f) Unet (g) Deeplabv3+ (h) PSPnet (i) Upernet (j) SAMUnet

Figure 12. Extraction of small buildings from images in the Railway dataset.

(a) Image (b) Label (c) FCN-8s (d) Segnet (e) Enet

(f) Unet (g) Deeplabv3+ (h) PSPnet (i) Upernet (j) SAMUnet

Figure 13. Extraction of large buildings from images in the Railway dataset.
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(a) Image (b) Label (c) FCN-8s (d) Segnet (e) Enet

(f) Unet (g) Deeplabv3+ (h) PSPnet (i) Upernet (j) SAMUnet

Figure 14. Extraction of large buildings from images in the Railway dataset.

3.5. Comparative Analysis

SAMUnet uses the SAM module to obtain prior results of segmentation of the target,
and uses an attention fusion mechanism to enhance and fuse the features of classification.
It filters out useful features to extract hidden hazards in images of the environment of the
high-speed railway. To validate the performance of the SAM module and the attention
fusion mechanism, we conducted an ablation experiment on the Railway dataset, and the
results are shown in Table 6. We used Unet as the baseline, with only its encoding part
replaced by ResNet-18 as the base network. The results show that incorporating the SAM
branch improved the performance of the model in terms of extracting steel buildings from
the images, and all its metrics improved. When all modules were included in the network,
its precision improved by 6.28%, recall by 5.09%, OA by 0.87%, and IoU by 4.19% compared
with the baseline. This confirms the effectiveness of each module.

Table 6. Quantitative results of the ablation experiment on the Railway dataset.

Method Precision Recall F1-score OA IoU

Baseline 0.8327 0.8044 0.8183 0.9740 0.8377
Baseline + SAM 0.8580 0.8162 0.8366 0.9775 0.8476

Baseline + CBAM 0.8588 0.8196 0.8378 0.9777 0.8493
Baseline + SAM + CBAM 0.8955 0.8553 0.8750 0.9827 0.8796

Bold represents the optimal value.

3.6. Railway Multi-Objective Segmentation Experiment

The actual remote sensing railway hazards segmentation scenario requires segmenta-
tion of multiple hazards targets, which have large differences in number, complex spectral
features, and serious category imbalance problems. Compared with single-target segmen-
tation, multi-target segmentation places higher requirements on the feature extraction
performance of the network, so we conducted experimental comparisons on the Railway
multi-target dataset, and the experimental results are as follows Table 7).

In the table, CPA represents the PA value for each class, MPA represents the average
value of PA for the three classes, CIoU represents the IoU value for each class, and MIoU
represents the average value of IoU for the three classes. It can be seen that compared with
the traditional network, SAMUnet achieves optimal results in most of the classes, MPA
improves by 2.95, and MIoU improves by 1.62. Figure 15 show the segmentation effect of
the network; color-coated steel sheet roof buildings are shown in dark blue, farm mulch is
shown in light blue and dust nets are shown in green. It can be seen that SAMUnet has a
good segmentation result for multi-targets, and it can distinguish between the farm mulch,
color-coated steel sheet roof buildings, and dust nets better.
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Table 7. Results of segmentation of railway hazards.

Method CPA
MPA

CIoU
MIoUCCSS Dust-Net Farm-Mulch CCSS Dust-Net Farm-Mulch

FCN-8s 0.6024 0.6212 0.7551 0.7424 0.5465 0.5706 0.6040 0.6708
Segnet 0.7815 0.6728 0.5893 0.7546 0.5653 0.5482 0.4927 0.6407
Enet 0.6576 - - 0.4108 0.4755 - - 0.3567
Unet 0.7734 0.5892 0.7905 0.7837 0.6079 0.5386 0.6245 0.6834

DeepLabV3+ 0.7622 0.6443 0.7285 0.7797 0.6127 0.5703 0.6134 0.6902
PSPnet 0.6775 0.6985 0.5550 0.7289 0.5533 0.5861 0.4962 0.6488

Upernet 0.7829 0.6631 0.8037 0.8081 0.6281 0.5913 0.6203 0.7023
SAMUnet 0.8283 0.7345 0.8094 0.8376 0.6374 0.5955 0.6812 0.7185

Bold represents the optimal value.

(a) Image (b) Label (c) FCN-8s (d) Segnet (e) Enet

(f) Unet (g) Deeplabv3+ (h) PSPnet (i) Upernet (j) SAMUnet

(k) Image (l) Label (m) FCN-8s (n) Segnet (o) Enet

(p) Unet (q) Deeplabv3+ (r) PSPnet (s) Upernet (t) SAMUnet

Figure 15. Multi-objective segmentation results for railway hazards.

3.7. Loss Function and SAM Model Hyperparameter Experiments

In order to reduce the manual interference with the results, the SAM model we
used cancels the manual labeling points and uses the automatic labeling mode, the only
parameter that can be adjusted is the pre-training model, according to the research content
made public by Facebook, the pre-training weights of SAM are vit-b,vit-l,vit-h, the above
pre-training model is used to segment the railway hazards, and the segmentation results
are showed in Table 8.
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Table 8. Impact of pre-trained models on experimental results.

Method Parameters MPA MIoU Running Time

vit-b 86 M 0.8331 0.7058 2.67 s/item
vit-l 307 M 0.8313 0.7151 4.07 s/item
vit-h 632 M 0.8376 0.7185 4.2 s/item

Bold represents the optimal value.

As can be seen in the Table 8, the higher the number of parameters of the pre-training
model, the longer the running time, the better the segmentation effect, the difference
between the optimal result and the worst result is 0.45% for mpa, and the difference is
1.27% for MIoU. In terms of the running time, there is only a difference of 0.13 s between vit-
h and vit-l, but the difference is 1.53 s compared to vit-b, which is close to half of the running
time, but the results are not much different. Figure 16 shows the segmentation results of
three different pre-training models, and it can be seen that the vit-b model misjudges the
background in the middle, while vit-h, vit-l do not have this error, which affects the final
segmentation results.

(a) Image (b) Vit-b (c) Vit-l (d) Vit-h

(e) Label (f) Vit-b (g) Vit-l (h) Vit-h

Figure 16. Pre-trained model results under multi-objective railway hazards experiments.

In addition, in order to verify the effect of the union loss function mentioned in
Section 2.5 of this paper, we carry out experiments on railway multi-objective segmentation
data to verify the effect of the hyperparameter λ value on the experimental results, and the
indexes MPA and MIoU obtained from the experiments are shown in Figure 17.

When the hyperparameter λ is taken as 1, the union loss function degrades to Poly
loss, and when λ is taken as 0, the union loss function degrades to Dice loss; according to
the results, it can be seen that the effect of using separate Dice loss and Poly loss is lower
than that of the union loss function, where the optimal result is achieved when λ = 0.2. The
reason for this is that Dice loss aims to measure the similarity between the predicted region
and the real region, while Poly loss, as a variant of BCE loss and Focal loss, focuses on
the categorization of the pixel results and lacks the consideration of the image as a whole,
and the union loss function takes into account the advantages of both. In the context of
the railway multi-objective dataset with complex background and serious imbalance of
the three target samples to be detected, the union loss function can obtain better global
inspection effect and local target segmentation accuracy.
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Figure 17. Impact of hyperparameter λ on experiments.

4. Conclusions

Deep learning-based remote sensing image segmentation of railway hazards can
effectively monitor the sources of hazards near the railway, which is of great significance
for safeguarding railway operations. Previous studies have targeted the single target of
color-coated steel sheet roof buildings, which is not in line with the actual situation, and the
effect of traditional feature extraction is limited by the large differences between railway
hazards. In this study, the SAMUnet network is proposed to achieve railway multi-target
segmentation. The SAM preclassification module combines the large model with the image
spectral features to effectively extract the features of railway hazards. The multi-feature
fusion module fuses the extracted features using a self-attentive mechanism to enhance the
overall capability of the network feature representation.

Experiments and analyses on the public and Railway datasets demonstrate the excel-
lent performance of SAMUnet for railway hazards segmentation, which can simultaneously
segment color-coated steel roof buildings, dust nets, farm mulch, and other hazards. Its
extraction accuracy outperforms other methods with an overall accuracy of 98.27%, an
IoU of 87.9% for single-target railway hazards, MPA of 83.76%, and MIoU of 71.85% for
multi-target railway hazards. The results of the ablation experiments validate the effective-
ness of each of the modules proposed in this study.e proposed a segmentation network
to identify hazards in the environment of high-speed railways that combines the SAM
pre-trained large model with the Unet architecture. It is designed to extract and monitor
potential threats to the safety of high-speed trains and specifically focuses on hazards such
as steel-structured buildings. The SAM module for spectral feature extraction combines the
capability of generalization of large models with the spectral features of steel-structured
buildings and thus addresses the challenge posed by the difficulty of extraction of com-
plex features from images of areas in which high-speed railways operate. Moreover, the
multi-feature fusion module uses self-attention mechanisms to fuse the features of images
to enhance the overall capability of feature representation of the network.
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