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Abstract: In this paper we propose the method for detecting potential anomalous cosmic ray particle
tracks in big data image dataset acquired by Complementary Metal-Oxide-Semiconductors (CMOS).
Those sensors are part of scientific infrastructure of Cosmic Ray Extremely Distributed Observatory
(CREDO). The use of Incremental PCA (Principal Components Analysis) allowed approximation of
loadings which might be updated at runtime. Incremental PCA with Sequential Karhunen-Loeve
Transform results with almost identical embedding as basic PCA. Depending on image preprocessing
method the weighted distance between coordinate frame and its approximation was at the level from
0.01 to 0.02 radian for batches with size of 10,000 images. This significantly reduces the necessary
calculations in terms of memory complexity so that our method can be used for big data. The use
of intuitive parameters of the potential anomalies detection algorithm based on object density in
embedding space makes our method intuitive to use. The sets of anomalies returned by our proposed
algorithm do not contain any typical morphologies of particle tracks shapes. Thus, one can conclude
that our proposed method effectively filter-off typical (in terms of analysis of variance) shapes of
particle tracks by searching for those that can be treated as significantly different from the others
in the dataset. We also proposed method that can be used to find similar objects, which gives it
the potential, for example, to be used in minimal distance-based classification and CREDO image
database querying. The proposed algorithm was tested on more than half a million (570,000+) images
that contains various morphologies of cosmic particle tracks. To our knowledge, this is the first study
of this kind based on data collected using a distributed network of CMOS sensors embedded in the
cell phones of participants collaborating within the citizen science paradigm.

Keywords: high-energy particles; image-based detection; anomalies detectionl; principal components
analysis; image processing; sequential karhunen-loeve transform; big data; citizen science

1. Introduction

The problem of automatic anomaly detection is seen as one of the significant challenges
in the analysis and recognition of measurement data. Anomaly detection concerns the
search for those observations that deviate from the definition of normality for the considered
set of observations [1,2]. Sometimes, interchangeable terms such as outlier detection or
novelty detection are also used in this context, although they are not necessarily completely
analogous [3–7]. This area has been actively developed in recent years, and many methods
have been proposed in this field of research [8,9]. Among the first techniques proposed to
deal with anomalies detection were statistical methods [10,11], especially those related to
density estimation like KDE (Kernel Density Estimation) [12]. Nowadays, many solutions
apply various machine learning methods, like shallow and deep models [5,13,14].

Anomaly detection techniques are applied to analyze and solve a wide range of prob-
lems in various areas. Examples of practical applications include cybersecurity (intrusion
detection systems) [15–19], economy and healthcare (fraud detection) [20–25], industry
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(fault diagnosis, damage detection) [26–31], medicine (medical diagnosis, disease out-
break detection) [32–36], earth sciences (event detection) [37–40], bioinformatics [36,41–43],
genetics [44,45], physics [46–50] or astronomy [51–56].

The ability to detect non-trivial observations that deviate from a consistent data stream
is a particularly big challenge in particle physics and astronomy [57]. The search for unusual
data can lead to the discovery of unknown physical phenomena [58–60]. Creating effective
tools for such type of automatic analysis and identification is a very important research
subject in particle physics and astronomy.

Research in particle physics is performed on data acquired from experiments per-
formed on large-scale stationary particle accelerators at projects such as LHC/CERN (Large
Hadron Collider) [61–64], SLAC (Stanford Linear Accelerator Center) [65], Thomas Jef-
ferson National Accelerator Facility [66,67], J-PARC (Japan Proton Accelerator Research
Complex) [68,69] and many others. There are also large-scale observatories that measure
cosmic radiation arriving from space. Among them are Pierre Auger Observatory [70,71],
IceCube [72] or Telescope Array Project [73]. Stationary observatories of this type perform
very accurate measurements. However, the observations they make are limited to the
area where their research infrastructure is located. Due to this fact, they observe only a
certain fraction of cosmic radiation reaching the Earth’s atmosphere. To overcome the
limitations of stationary observatories, several projects have been developed in recent
years that allow distributed observations of cosmic radiation. These projects are based on
the citizen science paradigm and use CMOS/CCD camera-based particle detectors [74].
Projects of this kind are:CRAYFIS (Cosmic RAYs Found In Smartphones) [75,76], DECO
(Distributed Electronic Cosmic-ray Observatory) [77,78] and CREDO [79,80]. CRAYFIS [81]
is a globally distributed network of cosmic-ray sensors for the exploration of cosmic rays,
with the potential to reveal unexpected or previously unobserved planet-scale phenomena
such as widely separated simultaneous extensive air showers. DECO is a similar project
which utilizes smartphone-based cosmic rays detectors. The project is conducting advanced
research on detection and classification of particle types based on deep learning models [82].
CREDO project uses smartphone-based detectors and additionally integrates data from
other sources such as simple scintillation detectors [83–87]. The data collected by the
CREDO project is stored in open repositories and are available for scientific purposes. In
all of these projects, the use of mobile detectors based on optical sensors that record traces
of particle radiation energy offers great flexibility and the possibility to extend observation
coverage on a global scale [81]. Detectors acquires a huge amount of measurement data of
various types, which requires appropriate analysis especially automatic recognition in big
data streams [88,89].

The main purpose of searching for unusual signals (anomalies) in such data sets
is to look for new physical phenomena (unknown physics) [79]. Such new phenomena
might be potentially registered as non-typical particle traces observed on detector arrays
and might be evidence of new particles or physical interactions. Such phenomena can
occur when ultra high-energy cosmic radiation strikes the Earth and creates a stream of
secondary particles observed by detectors. It should be noted that the primary particles
hitting the atmosphere can have energies far beyond the energy ranges achievable in
Earth’s laboratories, creating unique physical conditions. Detection of unusual particle
images observed on a globally distributed set of detectors also has the potential to reveal
unexpected or previously unobserved phenomena occurring at the planetary scale [81].
Such phenomena might be revealed for example if similar types of anomalies occur in
remote geographic locations corresponding to independent or simultaneous extensive air
showers (EAS). Statistical analysis of anomalies in a large dataset is also a useful tool for
tuning detection and filtering algorithms for observed events. Such analysis also makes it
possible to study the response of a variety of CMOS sensors to radiation by analysis of a
statistically significant number of actual measurements.

The problem addressed in this paper concerns the detection of anomalies in CREDO
data acquired from smartphone-based mobile detectors. The primary carrier of information



Sensors 2024, 24, 1835 3 of 22

in this case are images of particle tracks recorded on CMOS arrays [74,90]. Since the data
is collected in continuous mode, it is necessary to take into account the possibility of
streaming digging through the dataset for unusual observations. So far CREDO data has
been analyzed for both background signal filtering and artifacts removal [91–93], as well as
classification and recognition [92,94–96]. There have also been initial works on detecting
abnormal data based on various techniques such as rough sets [97].

1.1. Novelty of This Research

To our knowledge, this is the first study which proposes a method that can detect
potential anomalies in a continuous data stream and find objects with similar morphological
structure in cosmic rays unlabeled data collected by a distributed network of CMOS sensors
embedded in the cell phones. The proposed solution has been implemented and validated
on the largest dataset of its kind to date, containing over 570,000 images. An important
fact is that our approach has no limitations due to the size of the dataset, as embedding
can be calculated and updated relatively quickly using small batches of new data. We
were able to achieve this by using incremental PCA (Principal Components Analysis)
feature extractions [98–101], appropriate image preprocessing and density-based anomalies
search. In practice, the method presented in this paper has the potential for immediate
detection of potential anomalies in the data stream incoming from the entire CREDO
observatory network.

1.2. Paper Structure

The rest of the article is organized as follows. Section 2 discusses the structure of
the CREDO data subset used in the article, explains the preprocessing of the raw image
data, the mathematical basis of Incremental PCA, and the scheme of the anomaly detection
algorithm. We have divided the presentation and discussion of the results into two sections.
Section 3 presents technical aspects of the proposed method. Section 4 contains detailed dis-
cussion and interpretation of results. The Section 5 summarizes the scientific contributions.

2. Material and Methods

Since the research problem addressed in this article concerns the search for anomalies
in CREDO imaging data, it is necessary to start by defining how we understand these
anomalies. Due to the nature of the observations, we are dealing with traces left by energy-
carrying particles on a CMOS array. From a physics point of view high-energy particles
should left traces in the shape of low-density point or thin lines [80]. Observations of
this shape are the majority of the dataset. Patterns that deviate significantly from these
standards can be treated as anomalies. We are unable to identify a reference pattern for
anomalies, as they can have morphologically very different shapes.

2.1. Datasets

The CREDO dataset is currently the largest open dataset containing recorded traces
of potential cosmic ray particles acquired by mobile detectors. To our knowledge, there
is no other such comprehensive dataset of this modality, which is additionally constantly
updated with new recorded events. For this reason, we applied it to our research as a
state-of-the-art data repository in the field of citizen science-based cosmic rays observations.
A subset of CREDO data from Android-based mobile detectors was used to verify the
solutions proposed in the article. It consists a set of observations saved in digital images
with resolution 60× 60. Each recorded observation is also associated with metadata such
as acquisition time, geographic coordinates, etc. Those additional information is not
considered in the algorithms presented. The data was recorded during 2023 year and
passed the standard anti-artifact filter used in the project [74]. The size of the dataset we
used in this research is 573,335 images.
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2.2. Image Prepossessing (Aligning)

Image aligning might improve results of further image analysis [102–105]. In case
of CREDO dataset, the aligning is based on translating images so that the pixels with the
highest grayscale intensity will be in the center of the image, and rotating images so that
the brightest collinear pixels will be horizontal. This type of alignment might be done with
the aid of PCA. The proposed aligning algorithm works as follows:

• Input image is converted to grayscale;
• PCA is computed on a dataset constructed from pixels of grayscale image. Each pixel

has its coordinate in the image. If the pixel is black (has value equals 0) its coordinates
are not included in the dataset. If the pixel has a value greater than zero, we add to the
dataset as many points with coordinates of that pixel as the value of that pixel (from
1 to 255). This means that the brighter the pixel is, the more data it appends to the
dataset from which the PCA is calculated;

• Most significant PCA axis is used to rotate image while dataset mean is used to
translate image;

• After image rotation and translation result image is cropped to original size of input
image. Due to this fact some pixels in image borders might not have calculated pixels
value. In order to calculate those border pixels we perform pixel extrapolation. We
have used following pixel extrapolation methods which are defined in OpenCV [106]
(see Table 1).

– B. Constant–no matter of image colors “abcd”, border (not defined by transform)
pixels are assigned to have constants color “o”.

– B. Reflect–border pixels (not defined by transform) are reflections of image colors.
For example if image colors are “abcd” left border will have extrapolated values
“. . . dcb” and right border will have extrapolated values “cba. . . ”.

– B. Replicate–border pixels (not defined by transform) are the same pixels that
are positioned on the edge of image which has pixels defined by a transform.
For example if image colors are “abcd” left border will have extrapolated values
“. . . aaa” and right border will have extrapolated values “ddd. . . ”.

The images are converted to grayscale as part of processing, however in all figures we
present original images in RGB color scale.

The proposed algorithm pseudo code is presented in Algorithm 1. In Table 1 we
present image aligning methods we used during dataset preprocessing. We have tested
four methods: no preprocessing (None) which use raw data and Algorithm 1 with all three
extrapolation methods we have described above.

Table 1. Image aligning methods we used during dataset preprocessing. Column titled “Aligning and
pixel extrapolation with example” gives example results of pixel extrapolation algorithm for borders.

Image Alignment Aligning and Pixel Extrapolation with Example

None Algorithm 1 is not applied (further processing of rough data)
B. Constant Algorithm 1, ooo|abcd|ooo with specified o
B. Reflect Algorithm 1, dcb|abcd|cba
B. Replicate Algorithm 1, aaa|abcd|ddd

2.3. PCA-Based Features

Principal components analysis is a statistical method based on covariance analysis
that finds the transformation matrix which allows projecting the dataset to lower dimen-
sion with linear transform that preserves maximal number of information in the sense
of preserving variance. In other words object in a dataset can be described with fewer
dimension than with initial one. There are several methods that can be used in place of
PCA for feature extractions. Popular methods of this type include Independent compo-
nent analysis (ICA) [107] or utilizing the latent space from various Encoder-Decoder deep
neural networks (E-D) [108]. Among the most important limitations of PCA are the facts
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that it is only a linear transformation, as well as usually requires scaling of individual
features. In our case, feature scaling is not necessary because we are dealing with image
files where the signal representation is limited and quantized. Unlike ICA, PCA does not
require that the signals we want to extract meet the assumptions of independence, having
non-Gaussian histograms, and having lower complexity than mixture signals. PCA also
has some advantages over the E-D approach. PCA allows exact calculation of information
loss due to dimensionality reduction, since in PCA one can easily estimate the percentage of
variance explained by a subset of the selected coordinate system axes. Thanks to that, one
can control the size of PCA embedding without the necessity of recalculating the projection
matrix. In case of E-D the latent space is derived from the network’s bottleneck and its size
cannot be modified without retraining the whole architecture.

Algorithm 1: Image aligning PCA-based algorithm [109]
Data: Input: I image to be aligned, mode–pixel extrapolation algorithm
Result: Ia aligned image with accumulated pixels intensity centered and directed

horizontally.
// Initialize empty list of points coordinates
Υ← ∅;
// Convert input image to grayscale using weighted formula

(see [109])
Ig ← grayscale(I);
// For each pixel in image Ig
for p ∈ Ig do

a← 0;
// Add coordinates of non-zero pixels so many times as the value

of pixels is
while a < p.value do

Υ← Υ ∪ p.xy;
a← a + 1;

end
end
// Perform PCA on dataset in list Υ, calculate eigenvectors [2× 2]

matrix V and eigenvalues vector λ (there are two eigenvalues) and
vector with coordinate of mean value m

V, λ, m← PCA(Υ);
// Calculate rotation of principal axis
α← atan2(V[1,2], V[1,1]);
// Calculate rotation and translation matrix A

A←
[

cos(α) −sin(α) m1 · (1− cos(α)) + m2 · sin(α)
sin(α) cos(α) m2 · (1− cos(α))−m1 · sin(α)

]
;

// Multiply coordinate of each pixel of Ig by A to get new
coordinates

Ia ← A× Ig;
// Crop image to initial (rectangular) shape of Ig and extrapolate

pixels colors in regions, that do not have values
Ia ← crop_interpolate(Ia, mode);
return Ia

Let the dataset Ψ contains n images. Each image Ii has resolution d1 × d2, i ∈ [1 . . . n].
Values of pixels in image are in range [0, 1]. For the rest of the paper let us consider two-
dimensional image as one dimensional vector of length d = d1 · d2. To make this 2d to 1d
conversion we store each row of the image one by another in a single row vector. In order
to calculate PCA-based embedding (we will call it also “basic PCA”) of image we can adapt
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eigenfaces-based image representation similar to one used in [110]. In order to do so we
need to create a matrix that contains all observations:

X ←= [I1, . . . , In]
T (1)

where X has n× d dimensions. The number of rows is the same as the number of images
in the dataset while number of columns is the same as images dimension. The next
step is to calculate mean vector of each column of the matrix X, meancol(X) and then
covariance matrix:

T =
(X−meancol(X))T × (X−meancol(X))

d
(2)

where T is a square d× d matrix.
Matrix T is then a subject of eigendecomposition in order to find set of eigenvectors

stored in matrix V and corresponding to them eigenvalues
−→
λ . Let us assume that PCA

loadings are positioned in columns. After ordering eigenvectors in order of descending
absolute values of eigenvalues the embedding E is calculated according to equation:

E = (V × (X−meancol(X))T)T (3)

where E is a n× d dimensional embedding. In order to perform dimensional reduction,
we need to skip certain rows in matrix V, for example when we leave only 5 first rows the
embedding will be 5 dimensional and matrix E will become n× 5.

2.4. Potential Anomalies Detection

After applying PCA and dimensions reduction we can use a new obtained embedding
(latent) space to examine similarity between objects. We can define an anomaly as an
object that is not similar to other objects in the dataset in terms of distance between
objects embedding. According to this definition outliers might be considered as anomalies.
In order to detect outliers we can apply certain cluster analysis algorithm like agglomerative
clustering [111], DBSCAN [112] or even k-means [97]. In case of first two algorithms in
order to optimize performance it is required to calculate distance matrix between objects in
the dataset which might be difficult or hardly possible in case of big data. In our case we
do not need to find the answer to which cluster a certain objects belongs, rather if a certain
object is outlier. Knowing this we can adapt the anomalies searching approach derived
from the DBSCAN: an object Ij with embedding Ej is an outlier when in its neighbourhood
with radius ϵ there are less than k other objects. The anomalies set A can be defined as:

Ij ∈ A⇔ #{Ii : d(Ej, Ei) < ϵ, i ∈ [1 . . . n]} < k (4)

where # is cardinal number of the set and {Ii : d(Ej, Ei) < ϵ, i ∈ [1 . . . n]} is a set of objects
which distances between their embedding and embedding of Ij is less than ϵ and d is a
distance function (in our case Euclidean distance).

The algorithm that detect potential anomalies according to Equation (4) has complexity
O(n) = n2 however because evaluation of each object Ij in the dataset is independent of
the others it can be easily speed up by the map-reduce approach on the parallel process-
ing pipeline.

2.5. Querying the Object Database for the Most Similar Objects

The procedure of finding k most similar objects to Ij requires calculating distance
between embedding of this object and embedding of each other object and ordering them
in descending order. Objects corresponding to first k smallest distances indicate most
similar objects.

Dist(Ej) = [(d(E1, Ej), E1), . . . , (d(Ei, Ej), Ei), . . . , (d(En, Ej), En)] ordered by d(Ei, Ej) (5)
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where Dist(Ej) is ordered list of pairs, each pair contains distance between Ej and certain
element from the dataset Ψ. Pairs in list are ordered by descending order by calculated
distance, i ∈ [1 . . . n]/j.

Formally set of k most similar objects is defined as:

Sim(Ij, k) = {Ii : position(Ei) in Dist(Ej) ⩽ k} (6)

where position(Ei) returns index of element Ei in ordered list Dist(Ej).
According to Equation (6) if two or more objects have the same distance to Ej it is

possible that more than k objects will be returned.
Searching the image database for the k most similar objects to Ij thus reduces to

finding all Ii that satisfy (6). If Algorithm 1 for image aligning and (3) or Algorithm 2
for embedding calculation is applied, the search process reduces to the pairwise distance
calculation problem.

2.6. Approximation of PCA for Big Data

The calculation of PCA features with an algorithm given in the Section 2.3 has a
memory and computational bottleneck when the covariance matrix is calculated according
to Equation (2). The rest of the computation is done on a fixed-size matrix. The matrix X
(see (1)) occupies n · d1 · d2 · bc in memory, where bc is the number of bytes allocated to
represent the floating-point number. For the real world data considered in this work, in the
case of large image datasets, for example, with quantity of 106 images and a resolution of
60× 60 pixels, the matrix T stored with double precision (8 Bytes) occupies in memory:
106 · 60 · 60 · 8 ≈ 26.8 GB and grows linearly as the number of images in the dataset increase.
In order to reduce the memory and computational complexity of the algorithm finding
image embedding, one can use PCA approximation based on incremental calculation of
PCA with, for example, the algorithm proposed in the paper [101]. That algorithm is an
extension of the Sequential Karhunen-Loeve Transform [113]. A mean update is calculated
according to a Youngs and Cramer variance update procedure [114]. The method is called
Incremental PCA and works as described in Algorithm 2. Returned matrices VT

a and Sa
being approximations of PCA can be used in (3) to calculate embedding.

2.7. Detecting Potential Anomalies in Big Dataset under Condition of Continuously
Incoming Objects

To perform anomaly detection on the dataset described in Section 2.1, one needs
to do image aligning using Algorithm 1, generate an embedding of the dataset using
Equation (3) and then use (4) at a fixed (ϵ, k). However, this approach requires calculating
the memory-expensive Equation (2). If cosmic ray particle images are acquired continuously,
the Equation (2) will have to be repeated from time to time, for example, when a new large
enough batch of data is collected. We cannot assume that the dataset we have gathered so
far is representative and skip updating (3), because new devices may be incorporated into
the CREDO sensor network, from which the resulting data will have different characteristic
from those acquired earlier. This will also requires updating the statistical parameters
obtained from the PCA. In order to reduce the number of necessary calculations, the step
of determining PCA with a basic algorithm, for example, based on SVD (Singular value
decomposition), can be replaced by approximation of PCA by Algorithm 2. Algorithm 2
will be run every time a batch of new data of the certain size is collected. The rest of the
data processing pipeline will look identical like in the case with the basic PCA. Note that (3)
can be performed iteratively for individual images or groups of images, not necessarily for
all of X at once. Anomalies detection with (4) can be run after each update of embedding,
either for whole X or only for new objects in batch. The procedure depends on the strategy
adopted, for example, whether one wants to repeatedly analyze the same (old) data in
search of potential anomalies. Evaluation of the dependence of the obtained embedding on
the size of the training dataset and the differences in the found anomalies will be analyzed
in the following sections.
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Algorithm 2: Incremental PCA algorithm
Data: Input: X is two-dimensional data array with n rows and d columns;

bs–batch size.
Result: VT

a is d× d matrix with approximation of PCA loadings; Sa is d× d
diagonal matrix with eigenvalues corresponding to eigenvectors in VT

a .
// Number of samples from X analyzed so far
nsa← 0;
// Approximation of mean value of matrix X columns
−−→mean← −→0 ;
a← 0;
while nsa + bs < n do

// Get bs rows from matrix X and store them in matrix X
′

X
′ ← X[a : (a + bs)];
−→
ls ← −−→mean · nsa;
// Sum values in each column of X

′
and store it in vector −→ns

−→ns ← columnsum(X
′
);

nts← nsa + bs;
// Element-wise multiplication
−−−−→
colmean←

−→
ls +−→ns

nts ;
if nsa = 0 then

// First iteration

// From each column of X
′
subtract vector

−−−−→
colmean

X
′ ← X

′ −
−−−−→
colmean;

end
else

// Next iterations
// Calculate mean value of each column of X

′
and store it in

vector −−−−→meancb

meancb ← columnmean(X
′
);

// From each column of X subtract vector −−−−→meancb

X
′ ← X

′ −−−−−→meancb;
−−−−→meancor ←

√
nsa
nts · bs · (−−→mean−−−−−→meancb);

// Create matrix X
′
with d + bs + 1 rows and d columns, each

matrix vector is stacked row after row

X
′ ←

 Sa ·VT
a

X
′

−−−−→meancor


end
;
// Calculate singular values decomposition of X

′

[Ua, Sa, VT
a ]← SVD(X

′
);

// Sign correction is applied so that the rows in V that are
largest in absolute value are always positive

VT
a ← sc(VT

a );
nsa← nts;
−−→mean←

−−−−→
colmean;

end
return [VT

a , Sa]
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3. Results

We implemented our solution using Python 3.8. The source code of the proposed
algorithm and the dataset can be downloaded from GitHub repository https://github.c
om/browarsoftware/anomalies_bigdata (accessed on 20 December 2023). We have used
numba 0.5, numpy 1.22, opencv-python 4.5, scikit-learn 1.0, scipy 1.8 Python libraries. Plots
were made in R langauge 3.6.

The purpose of the evaluation was to test the effectiveness of detecting potential
anomalies using image preprocessing (aligning) methods described in Section 2.2, PCA-
based features described in Section 2.3 and anomalies detection approach in Section 2.4.

The dataset presented in Section 2.1 was set randomly. In Table 2 we present a
comparison of the resulting coordinate frames computed using basic PCA for four different
preprocessing algorithms. The comparison of axes is intended to numerically calculate the
difference between the potential embeddings and to indicate the effect of using different
preprocessing methods on the calculation of PCA. The comparison of coordinate systems is
done using coordinate frames weighted distance (cfd):

c f d((V1, λ1), (V2, λ2)) =
d

∑
i=1

λ1,i + λ2,i

2
∡(sc(V1,i), sc(V2,i)) (7)

where (V1, λ1) is eigenvectors matrix and eigenvalues vector of first PCA, (V2, λ2) is eigen-
vectors matrix and eigenvalues vector of second PCA, (V1,i, λ1,i) is i-th eigenvector and i-th
eigenvalue of first PCA, sc is a sign correction (see Algorithm 2) and ∡ is an operator for
calculating the angle between vectors. Note that all eigenvalues of PCA are non-negative;
cfd is measured in radians (rad).

Table 2. A comparison of the resulting coordinate frames computed using basic PCA for four different
preprocessing algorithms. The comparison of coordinate systems is done using coordinate frames
weighted distance (cfd) and it is measured in radians.

None B. Constant B. Reflect B. Replicate

None 0 0.531 0.176 0.178
B. Constant 0.531 0 0.520 0.522
B. Reflect 0.176 0.520 0 0.042
B. Replicate 0.178 0.522 0.042 0

To perform embedding we used 62 features out of 3600 that is, we reduced the
dimensionality of embedding to 62 dimensions. Such a reduction explains, depending
on the preprocessing method adopted, between 98% and 99% of the total variance in our
dataset. We decided to adopt such a number of dimensions because it allowed us to more
easily manipulate the value of ϵ in (4), which must be determined depending on the number
of dimensions and in practice cannot be determined other way than experimentally, as in
DBSCAN algorithm.

We made a comparison of the sets of potential anomalies returned by the method
described by Equation (4) for different preprocessing algorithms from Section 2.2 and
embedding calculated with basic PCA algorithm from Section 2.3. We used Jaccard index
(J) [115] and Overlap coefficient (OC) [116] to compare the sets of anomalies:

J(A1, A2) =
A1 ∩ A2

A1 ∪ A2
(8)

where A1, A2 are potential anomalies sets to be compared.

OC(A1, A2) =
A1 ∩ A2

min(#A1, #A2)
(9)

https://github.com/browarsoftware/anomalies_bigdata
https://github.com/browarsoftware/anomalies_bigdata
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Figures 1 and 2 present comparison of results of potential anomalies detection with
(4) evaluated with (8) and (9). Types of preprocessing and values of ϵ are in Table 3. The k
parameter in (4) was arbitrarily set to 3. The first sixteen potential anomalies for each of the
four preprocessing methods calculated for basic PCA with (α = 2.4, k = 3) are shown in
Figure 3.

Table 3. Description of Algorithms in Figures 1 and 2. Columns show algorithm id, type of prepro-
cessing and value of ϵ in (4).

Algorithm id Image Alignment α

1 None 3.0
2 None 2.8
3 None 2.6
4 None 2.4
5 B. Constant 3.0
6 B. Constant 2.8
7 B. Constant 2.6
8 B. Constant 2.4
9 B. Replicate 3.0
10 B. Replicate 2.8
11 B. Replicate 2.6
12 B. Replicate 2.4
13 B. Reflect 3.0
14 B. Reflect 2.8
15 B. Reflect 2.6
16 B. Reflect 2.4
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Figure 1. Comparison of results of potential anomalies detection with (4) evaluated with Jaccard
index (8). Types of preprocessing and values of ϵ are in Table 3. The k parameter in (4) was arbitrarily
set to 3.
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Figure 2. Comparison of results of potential anomalies detection with (4) evaluated with Overlap
coefficient (9). Types of preprocessing and values of ϵ are in Table 3. The k parameter in (4) was
arbitrarily set to 3.

Figure 3. The first sixteen potential anomalies for each of the four preprocessing methods calculated
for basic PCA with (α = 2.4, k = 3) in (4).
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The next stage of the evaluation was to test the effectiveness of using Incremental
PCA (see Section 2.6) in the procedure for detection of potential anomalies in dateset under
condition of continuously incoming data (see Section 2.7). In order to do so, we made a
comparison of coordinate frames obtained with basic PCA to coordinate frames obtained
with Incremental PCA for a different number of data used when approximating PCA with
Algorithm 2. The results are shown in Figure 4. Each point on the plot shows the cfd
value (7) for the PCA coordinate axes calculated on the whole data and the coordinate
axes calculated by Incremental PCA on a certain percentage of the whole data, that is,
for example, the PCA axes calculated on the whole set with B. Replicate preprocessing and
the axes calculated with Incremental PCA with B. Replicate preprocessing calculated on
10%, 20%, 30% of the data etc. We presented the selected cfd values for this evaluation in
Table 4. For Incremental PCA, we assumed a batch size (bs) of 10,000.

Table 4. Coordinate frames weighted distance between PCA and Incremental PCA. Weighted distance
is expressed in radians [rad]. Each batch contains 104 images.

Batch Number None B. Constant B. Reflect B. Replicate

1 0.107 0.107 0.115 0.133
3 0.089 0.093 0.102 0.117
5 0.078 0.107 0.074 0.104
7 0.072 0.068 0.059 0.098
9 0.071 0.070 0.047 0.106
11 0.072 0.067 0.051 0.100
13 0.081 0.071 0.052 0.096
15 0.067 0.066 0.049 0.091
17 0.063 0.058 0.047 0.080
19 0.062 0.051 0.040 0.078
21 0.064 0.060 0.041 0.075
23 0.057 0.056 0.042 0.075
25 0.054 0.048 0.041 0.057
27 0.053 0.041 0.038 0.058
29 0.058 0.040 0.040 0.059
31 0.051 0.040 0.037 0.069
33 0.051 0.039 0.044 0.070
35 0.050 0.040 0.037 0.062
37 0.049 0.039 0.042 0.059
39 0.048 0.042 0.044 0.063
41 0.047 0.038 0.041 0.055
43 0.047 0.035 0.039 0.055
45 0.048 0.031 0.035 0.055
47 0.047 0.029 0.036 0.060
49 0.045 0.026 0.032 0.050
51 0.043 0.025 0.032 0.036
53 0.035 0.023 0.025 0.042
55 0.031 0.019 0.024 0.026
57 0.020 0.010 0.012 0.013

Then we made a comparison of Jaccard Index and Overlap Coefficient of the method
for finding potential anomalies (4) with the parameters (α = 2.4, k = 3) for PCA and
Incremental PCA calculated on increasing numbers of data. Since the results for each image
alignment were very similar on Figure 5 we present the results for B. Reflect only. We
always performed embedding on the entire dataset and we calculated Incremental PCA
for some subset of the data, thus simulating a constant increment of the data on which
embedding is performed relative to the data used when counting embedding. The number
of data used by Incremental PCA is coded in Figure 5 as follows:

1. basic PCA (calculated on full dataset),
2. Incremental PCA calculated on 56 · 104 images.
3. Incremental PCA calculated on 46 · 104 images,
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4. Incremental PCA calculated on 36 · 104 images,
5. Incremental PCA calculated on 26 · 104 images,
6. Incremental PCA calculated on 16 · 104 images,
7. Incremental PCA calculated on 6 · 104 images,

The last step of the evaluation is to check the effectiveness of the method that detects
similar objects according to Equation (6). For this purpose, we used the preprocessing
algorithm B. Reflect and we generated features using basic PCA. We do not present the
results obtained with Incremental PCA because, as will be shown in the discussion, they are
virtually identical to basic PCA. We selected 9 sample images representing characteristic
shape morphologies of particle tracks in the dataset and found k = 7 most similar images
according to Equation (6). We presented the results in Figure 6.
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Figure 4. Comparison of coordinate frames obtained with basic PCA to coordinate frames obtained
with Incremental PCA for a different number of data used when approximating PCA with Algorithm 2.
Each point on the plot shows the cfd value (7) for the PCA coordinate axes calculated on the whole
data and the coordinate axes calculated by Incremental PCA on a certain percentage of the whole
data, that is, for example, the PCA axes calculated on the whole set with B. Replicate preprocessing
and the axes calculated with Incremental PCA with B. Replicate preprocessing calculated on 10%,
20%, 30% of the data etc.
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Figure 5. A comparison of Jaccard Index and Overlap Coefficient for the method of finding potential
anomalies (4) with the parameters (α = 2.4, k = 3) for PCA and Incremental PCA counted on increasing
numbers of data. We performed embedding and potential anomalies detection on the entire dataset.

Figure 6. Test of the effectiveness of the method that detects similar objects according to Equation (6).
For this purpose, we used the preprocessing algorithm B. Reflect and we generated features using
basic PCA. The first column contains image Ij (see Equation (6)). Each subsequent column contain
the most similar images, the further to the left the Euclidean distance between embedding Ei and Ej

is higher (second from left is most similar to first, first from right is the least similar from all seven).
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4. Discussion

Based on the results shown in Table 2, it can be concluded that the individual coor-
dinate frames calculated on datasets with different embeddings differ from each other
considering the cfd measure (7). In the case of lack of preprocessing (None) and B. Constant
the differences between the obtained coordinate frames are the largest. This is due to the
fact that B. Constant attaches black pixels on borders to the resulting image, which are not
present in such numbers in raw images. There is a little difference between coordinate
frames calculated on data processed with B. Reflect and B. Replicate, it amounts 0.042 rad.
Although the difference is small, there is no guarantee that the embedding calculated
with PCA on the set preprocessed with one method can be used interchangeably with
the embedding calculated on the set preprocessed with another method. The choice of a
particular preprocessing method determines the necessity of its use in subsequent stages of
dataset analysis.

Although the different methods create different embedding of the images, the sets of
anomalies they find are not significantly different. According to the results in
Figures 1 and 2, the number of anomalies found naturally decreases as ϵ increases. This
can be observed when comparing two anomalies detection methods with a larger and
smaller ϵ value–the Jaccard Index has a smaller value when there is a larger difference of
ϵ between those two methods. As expected for a certain preprocessing method, as the ϵ
decreases, new objects are added to the set of anomalies without removing those found
with a larger ϵ. This can be observed from the Overlap Coefficient, which always has
a value of 1 within a single preprocessing method regardless of ϵ. It can also be seen
from the Overlap Coefficient analysis that the use of a preprocessing method (other than
None) results in each of the detection algorithms returning a very similar set of potential
anomalies–OC equals almost always 1 and the smallest value is in the case of B. Constant
ϵ = 2.4 and B. Replicate ϵ = 2.8 and equals 0.74. If we compare embedding based on
preprocessing None with other methods Overlap Coefficient ranges from 0 to 1, which
means that different sets of potential anomalies are returned. Thus, one can conclude
that preprocessing affects the anomalies that we detect. In the case of the Jaccard Index,
the values of this coefficient are in most cases less than 1. This means that for the same
values of ϵ, the different preprocessing methods affect embedding in such a way that they
search for sets of potential anomalies of different quantity. This confirms the results from
Table 2 that the coordinate frames are different from each other and the distances between
objects in the PCA-designated spaces are also different.

When designing potential anomaly search algorithm using PCA embedding, we do
not define the particle trajectory morphologies of interest. We expect that if we do not
apply preprocessing but work on embedding generated from raw dataset (in our case
preprocessing equals to None), the returned potential anomalies are different from those
found when we apply preprocessing. This expectation is confirmed in Figure 3. The set
of the first 16 retrieved anomalies for each method at ϵ = 2.8 in the case of preprocessing
None returns a dataset different from those returned by Replicate, Reflect and Constant.
However those three preprocessing methods returns very similar particle tracks. This
means that moving and rotating the objects so that the largest variance of bright points is
along the horizontal axis significantly affects the result. Basing on what we know about
PCA in other image domains, it can be concluded that image alignment is a beneficial
process for variance analysis. For this reason, we recommend the use image aligning.
The sets of potential anomalies returned by proposed algorithm do not contain any typical
morphologies of particle tracks shapes (see, for example, the results of Figure 3). Thus, one
can conclude that our proposed method effectively filter-off typical (in terms of analysis of
variance) shapes of particle tracks by searching for those that can be treated as significantly
different from the others in the dataset.

Based on the results from Table 4 shown in Figure 4, it can be seen that as the number
of data processed by Incremental PCA increases (in our case with batch size set to 10,000),
the cfd between PCA approximation and basic PCA expressed in radians decreases. Already



Sensors 2024, 24, 1835 16 of 22

for an approximately 40% of dataset, the difference between those two values is between
0.04 and 0.06 radians. The similarity of the coordinate frame calculated with basic PCA
and Incremental PCA also affects the similarity of the obtained embedding and thus
the detected anomalies. We performed such an analysis for preprocessing B. Reflect.
As can be seen in Figure 5 for Incremental PCA calculated on 97% of data with batch
size 10,000, J = 98, OC = 0.99, so the returned sets of potential anomalies are almost
identical. As the data used to calculate Incremental PCA decreases, both coefficients also
decrease but not significantly. For Incremental PCA calculated on 80% of data J = 98,
OC = 0.99, for 62% J = 96, OC = 0.98, for 45% J = 95, OC = 0.98, for 28% J = 91,
OC = 0.97, for 10% J = 0.88, OC = 0.96. This means that using Incremental PCA, which
is recalculated with incoming data with a batch size of 10,000, we get almost identical
anomalies detection results as for basic PCA. It can be concluded that our method, if the
dataset is shuffled (and is representative) a small portion of the dataset used to calculate
Incremental PCA can detect almost identical set of anomalies as calculated with basic PCA.
The method we proposed in Section 2.7 for detecting of potential anomalies in large dataset
under condition of continuously incoming objects works almost identically to the method
using the entire dataset for PCA calculation. As a result, the approach we have proposed
significantly reduces the memory and computational requirements of the algorithm for
detecting anomalies and makes it possible to use it for big datasets.

Also the use of (6) to detect similar objects works as expected. It returns morpholog-
ically similar objects to the one being searched for. The results shown in Figure 6 for B.
Reflect confirm that the returned objects Ii have a very similar shape to the searched image
Ij. Thanks to using image aligning, the method is not sensitive to translation and rotation
of objects in images. As can be seen, the method based on (6) handles well the morphology
of dots, lines, worms and various types of complex shapes. When searching for similar
objects, the method also returns objects with similar levels of background noise, which may
not be entirely beneficial (compare first and second row in the Figure 6). At the moment,
however, with the preprocessing method described by Algorithm 1 it is not possible to
remove the background. This is a certain drawback of that method if it will be applied to
search for morphologically similar objects not considering background. Despite this fact,
its search results give very satisfactory results in terms of morphology search.

The proposed anomalies detection algorithm worked as expected. The images it found
have anomalous features according to their definition (4), that is, they contain traces of
potential particles whose morphology differs significantly from typical image classes, that
is, dots, lines and worms. The use of PCA as a feature extraction method did not create
concentric clusters of objects. Due to this fact, one cannot use distance-based measures
to find the central object of potential clusters, e.g., the “most typical dot class trajectory”
around which there are similar objects. This behavior was expected because PCA does
not statistically differentiate the correct signal from background noise present in some
images. For this reason, density-based clustering seems to be an appropriate approach
for grouping objects with similar morphology. Because (4) defines anomalies using a
density-based approach, it is impossible to say which potential particle trace is “more
anomalous” than the other. By controlling the parameters (α, k) in (4) and using various
types of preprocessing, we have the ability to search the entire dataset. As we indicated in
Figures 1 and 2, the preprocessing method slightly affects the returned sets of anomalies.

We cannot exclude the possibility that some of these images are artifacts due to the
access of visible light to the CMOS array. At this stage, we do not yet know the physical
interpretations of the anomalies we are detecting. The main goal of our study was to create
a method that would allow us to find them efficiently in large data sets. The physical
interpretation of the results obtained is beyond the scope of this work and requires further
research. Our proposed method is intended to be a useful mathematical tool for defining
and finding potential anomalies.

In Figure 7 we present examples of anomalies detected by the proposed method with
parameters (α = 2.3, k = 5), B. Replicate preprocessing, basic PCA. We chose them because
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they represent a variety of deviations from the typical shapes of expected most typical
trajectories. Figure 7a contains a clearly separated trajectories similar in shape to a dot
and a worm. Figure 7b contains a circular shape in the center (larger than a typical dot)
and there is a halo surrounding it, which affects CMOS sensor less than the core of the
potential hit. Figure 7c looks like a typical worm, but the angle between its two parts is
close to a right angle, which is unusual. Figure 7d also morphologically resembles a worm,
however the trajectory forms a closed loop. Figure 7e contains a relatively wide rectilinear
band, probably with a low energy deposit, which resembles a cloud. Figure 7f is probably
the result of image file corruption because it looks like it consists of two images separated
horizontally. Figure 7h contains a single circular area, but much larger than typical dot class
representatives. In contrast, Figure 7g contains a large dot having an additional linear tail.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Examples of anomalies detected by the proposed method with parameters (α = 2.3, k = 5),
B. Replicate preprocessing, basic PCA. We chose them because they represent a variety of deviations
from the typical shapes of expected most typical trajectories: (a) two separated signals, (b) energy
deposit wit colored halo effect, (c) worm-like signal with unexpected right angle, (d) untypical closed
loop trajectory, (e) wide band with low energy deposit, (f) probably corrupted image file, (g) colored
energy deposit with tail, (h) dot-like signal with too large energy deposit.

5. Conclusions

In conclusion, the method proposed in this paper for detecting potential anomalous
cosmic ray particle tracks in big data image dataset acquired by CMOS proved to be effective
in terms of the returned results. The use of Incremental PCA allowed approximation of V
matrix which might be updated at runtime. Incremental PCA results with almost identical
embedding as basic PCA. This significantly reduces the necessary calculations in terms
of memory complexity so that our method can be used for big data. The use of intuitive
parameters of the potential anomalies detection algorithm based on object density in
embedding space makes our method intuitive to use. By manipulating the pair (ϵ, k) in
(4), we can explore outliers and calibrate the algorithm for our needs with polynomial
computational complexity even if we do not use parallel computing. The proposed method
(6) can also be used to find similar objects, which gives it the potential, for example,
to be used in minimal distance-based classification and image database querying. This
application is worth further investigation as it would allow interactive exploration of the
whole CREDO experiment dataset in real time, which is an important issue in terms of
science and cognition.



Sensors 2024, 24, 1835 18 of 22

Author Contributions: Conceptualization: T.H. and M.P.; methodology: T.H.; software: T.H.; val-
idation: T.H. and M.P.; formal analysis: T.H.; investigation, T.H. and M.P.; data curation: T.H.;
writing—original draft preparation, T.H. and M.P.; writing—review and editing: T.H. and M.P.;
visualization: T.H.; funding acquisition, T.H. and M.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Source codes can be downloaded from: https://github.com/browarsof
tware/anomalies_bigdata accessed on 20 December 2023.

Acknowledgments: We would like to thank the CREDO Collaboration as a whole and the CREDO-ML
research group in particular for providing a consistent subset of observational data for this publication.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [CrossRef]
2. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb,

G.I., Eds.; Springer: Boston, MA, USA, 2016; pp. 1–15. [CrossRef]
3. Hodge, V.; Austin, J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22, 85–126. [CrossRef]
4. Ben-Gal, I. Outlier detection. In Data Mining and Knowledge Discovery Handbook; Springer: Boston, MA, USA, 2005; pp. 131–146.
5. Ruff, L.; Kauffmann, J.R.; Vandermeulen, R.A.; Montavon, G.; Samek, W.; Kloft, M.; Dietterich, T.G.; Müller, K.R. A Unifying

Review of Deep and Shallow Anomaly Detection. Proc. IEEE 2021, 109, 756–795. [CrossRef]
6. Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249. [CrossRef]
7. Boukerche, A.; Zheng, L.; Alfandi, O. Outlier detection: Methods, models, and classification. ACM Comput. Surv. (CSUR) 2020,

53, 1–37. [CrossRef]
8. Nassif, A.B.; Talib, M.A.; Nasir, Q.; Dakalbab, F.M. Machine Learning for Anomaly Detection: A Systematic Review. IEEE Access

2021, 9, 78658–78700. [CrossRef]
9. Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep Learning for Anomaly Detection: A Review. ACM Comput. Surv. 2021, 54.

[CrossRef]
10. Goldman, A.; Cohen, I. Anomaly detection based on an iterative local statistics approach. Signal Process. 2004, 84, 1225–1229.

[CrossRef]
11. Ahmed, T. Online anomaly detection using KDE. In Proceedings of the GLOBECOM 2009–2009 IEEE Global Telecommunications

Conference, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–8.
12. Kim, J.; Scott, C.D. Robust kernel density estimation. J. Mach. Learn. Res. 2012, 13, 2529–2565.
13. Pang, G.; Aggarwal, C. Toward explainable deep anomaly detection. In Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 4056–4057.
14. Yuan, S.; Wu, X. Trustworthy anomaly detection: A survey. arXiv 2022, arXiv:2202.07787.
15. Kwon, D.; Kim, H.; Kim, J.; Suh, S.C.; Kim, I.; Kim, K.J. A survey of deep learning-based network anomaly detection. Clust.

Comput. 2019, 22, 949–961. [CrossRef]
16. Fernandes, G.; Rodrigues, J.J.; Carvalho, L.F.; Al-Muhtadi, J.F.; Proença, M.L. A comprehensive survey on network anomaly

detection. Telecommun. Syst. 2019, 70, 447–489. [CrossRef]
17. Hwang, R.H.; Peng, M.C.; Huang, C.W.; Lin, P.C.; Nguyen, V.L. An unsupervised deep learning model for early network traffic

anomaly detection. IEEE Access 2020, 8, 30387–30399. [CrossRef]
18. Burgueño, J.; de-la Bandera, I.; Mendoza, J.; Palacios, D.; Morillas, C.; Barco, R. Online anomaly detection system for mobile

networks. Sensors 2020, 20, 7232. [CrossRef] [PubMed]
19. Fotiadou, K.; Velivassaki, T.H.; Voulkidis, A.; Skias, D.; Tsekeridou, S.; Zahariadis, T. Network traffic anomaly detection via deep

learning. Information 2021, 12, 215. [CrossRef]
20. Joudaki, H.; Rashidian, A.; Minaei-Bidgoli, B.; Mahmoodi, M.; Geraili, B.; Nasiri, M.; Arab, M. Using data mining to detect health

care fraud and abuse: A review of literature. Glob. J. Health Sci. 2015, 7, 194. [CrossRef]
21. Ahmed, M.; Mahmood, A.N.; Hu, J. A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 2016, 60, 19–31.

[CrossRef]
22. Zheng, Y.J.; Zhou, X.H.; Sheng, W.G.; Xue, Y.; Chen, S.Y. Generative adversarial network based telecom fraud detection at the

receiving bank. Neural Netw. 2018, 102, 78–86. [CrossRef] [PubMed]
23. Jiang, J.; Chen, J.; Gu, T.; Choo, K.K.R.; Liu, C.; Yu, M.; Huang, W.; Mohapatra, P. Anomaly detection with graph convolutional

networks for insider threat and fraud detection. In Proceedings of the MILCOM 2019–2019 IEEE Military Communications
Conference (MILCOM), Norfolk, VA, USA, 12–14 November 2019; pp. 109–114.

https://github.com/browarsoftware/anomalies_bigdata
https://github.com/browarsoftware/anomalies_bigdata
http://doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1007/978-1-4899-7502-7_912-1
http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://dx.doi.org/10.1109/JPROC.2021.3052449
http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://dx.doi.org/10.1145/3381028
http://dx.doi.org/10.1109/ACCESS.2021.3083060
http://dx.doi.org/10.1145/3439950
http://dx.doi.org/10.1016/j.sigpro.2004.04.004
http://dx.doi.org/10.1007/s10586-017-1117-8
http://dx.doi.org/10.1007/s11235-018-0475-8
http://dx.doi.org/10.1109/ACCESS.2020.2973023
http://dx.doi.org/10.3390/s20247232
http://www.ncbi.nlm.nih.gov/pubmed/33348657
http://dx.doi.org/10.3390/info12050215
http://dx.doi.org/10.5539/gjhs.v7n1p194
http://dx.doi.org/10.1016/j.jnca.2015.11.016
http://dx.doi.org/10.1016/j.neunet.2018.02.015
http://www.ncbi.nlm.nih.gov/pubmed/29558653


Sensors 2024, 24, 1835 19 of 22

24. Pourhabibi, T.; Ong, K.L.; Kam, B.H.; Boo, Y.L. Fraud detection: A systematic literature review of graph-based anomaly detection
approaches. Decis. Support Syst. 2020, 133, 113303. [CrossRef]

25. Hilal, W.; Gadsden, S.A.; Yawney, J. Financial fraud: A review of anomaly detection techniques and recent advances. Expert Syst.
Appl. 2022, 193, 116429. [CrossRef]

26. Favarelli, E.; Giorgetti, A. Machine learning for automatic processing of modal analysis in damage detection of bridges. IEEE
Trans. Instrum. Meas. 2020, 70, 1–13. [CrossRef]

27. Chow, J.K.; Su, Z.; Wu, J.; Tan, P.S.; Mao, X.; Wang, Y.H. Anomaly detection of defects on concrete structures with the convolutional
autoencoder. Adv. Eng. Inform. 2020, 45, 101105. [CrossRef]

28. Hong, G.; Suh, D. Supervised-learning-based intelligent fault diagnosis for mechanical equipment. IEEE Access 2021, 9,
116147–116162. [CrossRef]

29. Fourlas, G.K.; Karras, G.C. A survey on fault diagnosis and fault-tolerant control methods for unmanned aerial vehicles. Machines
2021, 9, 197. [CrossRef]

30. Schmidt, S.; Gryllias, K.C. The anomalous and smoothed anomalous envelope spectra for rotating machine fault diagnosis. Mech.
Syst. Signal Process. 2021, 158, 107770. [CrossRef]

31. Velasco-Gallego, C.; Lazakis, I. RADIS: A real-time anomaly detection intelligent system for fault diagnosis of marine machinery.
Expert Syst. Appl. 2022, 204, 117634. [CrossRef]

32. Adams, D.M.; Ricci, K.W. Vascular anomalies: Diagnosis of complicated anomalies and new medical treatment options. Hematol.
Clin. 2019, 33, 455–470.

33. Anyamba, A.; Chretien, J.P.; Britch, S.C.; Soebiyanto, R.P.; Small, J.L.; Jepsen, R.; Forshey, B.M.; Sanchez, J.L.; Smith, R.D.; Harris,
R.; et al. Global disease outbreaks associated with the 2015–2016 El Niño event. Sci. Rep. 2019, 9, 1930. [CrossRef]

34. Ouyang, X.; Karanam, S.; Wu, Z.; Chen, T.; Huo, J.; Zhou, X.S.; Wang, Q.; Cheng, J.Z. Learning hierarchical attention for
weakly-supervised chest X-ray abnormality localization and diagnosis. IEEE Trans. Med. Imaging 2020, 40, 2698–2710. [CrossRef]

35. Fernando, T.; Gammulle, H.; Denman, S.; Sridharan, S.; Fookes, C. Deep learning for medical anomaly detection–a survey. ACM
Comput. Surv. (CSUR) 2021, 54, 1–37. [CrossRef]

36. Han, C.; Rundo, L.; Murao, K.; Noguchi, T.; Shimahara, Y.; Milacski, Z.Á.; Koshino, S.; Sala, E.; Nakayama, H.; Satoh, S. MADGAN:
Unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinform. 2021,
22, 31. [CrossRef] [PubMed]

37. Bondur, V.; Mokhov, I.; Voronova, O.; Sitnov, S. Satellite monitoring of Siberian wildfires and their effects: Features of 2019
anomalies and trends of 20-year changes. Dokl. Earth Sci. 2020, 492, 370–375. [CrossRef]

38. Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep learning-based water quality estimation and anomaly detection using Landsat-
8/Sentinel-2 virtual constellation and cloud computing. GISci. Remote Sens. 2020, 57, 510–525. [CrossRef]

39. Tang, M.; Ji, W.Q.; Chu, X.; Wu, A.; Chen, C. Reconstructing crustal thickness evolution from europium anomalies in detrital
zircons. Geology 2021, 49, 76–80. [CrossRef]

40. Camps-Valls, G.; Tuia, D.; Zhu, X.X.; Reichstein, M. Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote
Sensing, Climate Science and Geosciences; John Wiley & Sons: Hoboken, NJ, USA, 2021.

41. Xu, J.; Zheng, Y.; Mao, Y.; Wang, R.; Zheng, W.S. Anomaly detection on electroencephalography with self-supervised learning. In
Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic of Korea,
16–19 December 2020; pp. 363–368.

42. Liu, Y.; Chen, Y.; Han, L. Bioinformatics: Advancing biomedical discovery and innovation in the era of big data and artificial
intelligence. Innov. Med. 2023, 1, 100012. [CrossRef]

43. Mandal, A.K.; Sarma, P.K.D.; Dehuri, S. A Study of Bio-inspired Computing in Bioinformatics: A State-of-the-art Literature
Survey. Open Bioinform. J. 2023, 16, e187503622305100.

44. Ohkura, N.; Sakaguchi, S. Transcriptional and epigenetic basis of Treg cell development and function: Its genetic anomalies or
variations in autoimmune diseases. Cell Res. 2020, 30, 465–474. [CrossRef]

45. Bedei, I.; Wolter, A.; Weber, A.; Signore, F.; Axt-Fliedner, R. Chances and challenges of new genetic screening technologies (NIPT)
in prenatal medicine from a clinical perspective: A narrative review. Genes 2021, 12, 501. [CrossRef]

46. Nachman, B.; Shih, D. Anomaly detection with density estimation. Phys. Rev. D 2020, 101, 075042. [CrossRef]
47. Andreassen, A.; Nachman, B.; Shih, D. Simulation assisted likelihood-free anomaly detection. Phys. Rev. D 2020, 101, 095004.

[CrossRef]
48. Finke, T.; Krämer, M.; Morandini, A.; Mück, A.; Oleksiyuk, I. Autoencoders for unsupervised anomaly detection in high energy

physics. J. High Energy Phys. 2021, 2021, 161. [CrossRef]
49. Atkinson, O.; Bhardwaj, A.; Englert, C.; Ngairangbam, V.S.; Spannowsky, M. Anomaly detection with convolutional graph neural

networks. J. High Energy Phys. 2021, 2021, 80. [CrossRef]
50. Mikuni, V.; Nachman, B.; Shih, D. Online-compatible unsupervised nonresonant anomaly detection. Phys. Rev. D 2022,

105, 055006. [CrossRef]
51. Reyes, E.; Estévez, P.A. Transformation based deep anomaly detection in astronomical images. In Proceedings of the 2020

International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.
52. Lochner, M.; Bassett, B.A. ASTRONOMALY: Personalised active anomaly detection in astronomical data. Astron. Comput. 2021,

36, 100481. [CrossRef]

http://dx.doi.org/10.1016/j.dss.2020.113303
http://dx.doi.org/10.1016/j.eswa.2021.116429
http://dx.doi.org/10.1109/TIM.2020.3038288
http://dx.doi.org/10.1016/j.aei.2020.101105
http://dx.doi.org/10.1109/ACCESS.2021.3104189
http://dx.doi.org/10.3390/machines9090197
http://dx.doi.org/10.1016/j.ymssp.2021.107770
http://dx.doi.org/10.1016/j.eswa.2022.117634
http://dx.doi.org/10.1038/s41598-018-38034-z
http://dx.doi.org/10.1109/TMI.2020.3042773
http://dx.doi.org/10.1145/3464423
http://dx.doi.org/10.1186/s12859-020-03936-1
http://www.ncbi.nlm.nih.gov/pubmed/33902457
http://dx.doi.org/10.1134/S1028334X20050049
http://dx.doi.org/10.1080/15481603.2020.1738061
http://dx.doi.org/10.1130/G47745.1
http://dx.doi.org/10.59717/j.xinn-med.2023.100012
http://dx.doi.org/10.1038/s41422-020-0324-7
http://dx.doi.org/10.3390/genes12040501
http://dx.doi.org/10.1103/PhysRevD.101.075042
http://dx.doi.org/10.1103/PhysRevD.101.095004
http://dx.doi.org/10.1007/JHEP06(2021)161
http://dx.doi.org/10.1007/JHEP08(2021)080
http://dx.doi.org/10.1103/PhysRevD.105.055006
http://dx.doi.org/10.1016/j.ascom.2021.100481


Sensors 2024, 24, 1835 20 of 22

53. Dere, S.; Fatima, M.; Jagtap, R.; Inamdar, U.; Shardoor, N.B. Anomaly Detection in Astronomical Objects of Galaxies Using
Deep Learning. In Proceedings of the 2021 7th International Conference on Advanced Computing and Communication Systems
(ICACCS), Coimbatore, India, 19–20 March 2021; Volume 1, pp. 702–706.

54. Villar, V.A.; Cranmer, M.; Berger, E.; Contardo, G.; Ho, S.; Hosseinzadeh, G.; Lin, J.Y.Y. A deep-learning approach for live anomaly
detection of extragalactic transients. Astrophys. J. Suppl. Ser. 2021, 255, 24. [CrossRef]

55. Mandrikova, O.; Mandrikova, B. Hybrid Method for Detecting Anomalies in Cosmic ray Variations Using Neural Networks
Autoencoder. Symmetry 2022, 14, 744. [CrossRef]

56. Mesarcik, M.; Boonstra, A.J.; Iacobelli, M.; Ranguelova, E.; de Laat, C.; van Nieuwpoort, R. The ROAD to discovery: Machine-
learning-driven anomaly detection in radio astronomy spectrograms. Astron. Astrophys. 2023, 680, A74. [CrossRef]

57. Fraser, K.; Homiller, S.; Mishra, R.K.; Ostdiek, B.; Schwartz, M.D. Challenges for unsupervised anomaly detection in particle
physics. J. High Energy Phys. 2022, 2022, 66. [CrossRef]

58. Kuusela, M.; Vatanen, T.; Malmi, E.; Raiko, T.; Aaltonen, T.; Nagai, Y. Semi-supervised anomaly detection–towards model-
independent searches of new physics. J. Phys. Conf. Ser. 2012, 368, 012032. [CrossRef]

59. Stein, G.; Seljak, U.; Dai, B. Unsupervised in-distribution anomaly detection of new physics through conditional density
estimation. arXiv 2020, arXiv:2012.11638.

60. Crispim Romão, M.; Castro, N.F.; Pedro, R. Finding new physics without learning about it: Anomaly detection as a tool for
searches at colliders. Eur. Phys. J. C 2021, 81, 27. [CrossRef]

61. Poy, A.B.; Boterenbrood, H.; Burckhart, H.; Cook, J.; Filimonov, V.; Franz, S.; Gutzwiller, O.; Hallgren, B.; Khomutnikov, V.;
Schlenker, S.; et al. The detector control system of the ATLAS experiment. J. Instrum. 2008, 3, P05006. [CrossRef]

62. Adolphi, R. The CMS experiment at the CERN LHC. Jinst 2008, 803, S08004.
63. Kalweit, A.; The ALICE Collaboration. Particle identification in the ALICE experiment. J. Phys. G Nucl. Part. Phys. 2011,

38, 124073. [CrossRef]
64. Brust, C.; Katz, A.; Lawrence, S.; Sundrum, R. SUSY, the Third Generation and the LHC. J. High Energy Phys. 2012, 2012, 103.

[CrossRef]
65. Hemsing, E.; Marcus, G.; Fawley, W.; Schoenlein, R.; Coffee, R.; Dakovski, G.; Hastings, J.; Huang, Z.; Ratner, D.; Raubenheimer,

T.; et al. Soft X-ray seeding studies for the SLAC Linac Coherent Light Source II. Phys. Rev. Accel. Beams 2019, 22, 110701.
[CrossRef]

66. Grames, J.; Higinbotham, D.W.; Montgomery, H.E. Thomas Jefferson National Accelerator Facility. Nucl. Phys. News 2010,
20, 6–13. [CrossRef]

67. Li, W. Heavy Gas Cherenkov Construction for Hall C at Thomas Jefferson National Accelerator Facility. arXiv 2023,
arXiv:2304.10016.

68. Hasegawa, K.; Hayashi, N.; Oguri, H.; Yamamoto, K.; Kinsho, M.; Yamazaki, Y.; Naito, F.; Koseki, T.; Yamamoto, N.; Yoshii, M.
Performance and Status of the J-PARC Accelerators. In Proceedings of the 8th International Particle Accelerator Conference,
Copenhagen, Denmark, 14–19 May 2017.

69. Hachiya, T. J-PARC heavy ion experiment. Int. J. Mod. Phys. E 2020, 29, 2040005. [CrossRef]
70. Kampert, K.H.; Alejandro Mostafa, M.; Zas, E.; Pierre Auger Collaboration. Multi-messenger physics with the Pierre Auger

Observatory. Front. Astron. Space Sci. 2019, 6, 24. [CrossRef]
71. Verzi, V.; Pierre Auger Collaboration. Measurement of the energy spectrum of ultra-high energy cosmic rays using the Pierre

Auger Observatory. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019;
SISSA Medialab: Trieste TS, Italy, 2021; Volume 358, p. 450.

72. Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.;
et al. The IceCube Neutrino Observatory: Instrumentation and online systems. J. Instrum. 2017, 12, P03012. [CrossRef]

73. Tokuno, H.; Tameda, Y.; Takeda, M.; Kadota, K.; Ikeda, D.; Chikawa, M.; Fujii, T.; Fukushima, M.; Honda, K.; Inoue, N.; et al.
New air fluorescence detectors employed in the Telescope Array experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel.
Spectrom. Detect. Assoc. Equip. 2012, 676, 54–65. [CrossRef]

74. Bibrzycki, L.; Burakowski, D.; Homola, P.; Piekarczyk, M.; Niedźwiecki, M.; Rzecki, K.; Stuglik, S.; Tursunov, A.; Hnatyk, B.;
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