
Citation: Wang, J.; Liu, Y.; Zhu, Y.;

Wang, D.; Zhang, Y. 3D Point Cloud

Object Detection Method Based on

Multi-Scale Dynamic Sparse

Voxelization. Sensors 2024, 24, 1804.

https://doi.org/10.3390/s24061804

Academic Editors: Stephane Guinard

and Thierry Badard

Received: 28 January 2024

Revised: 8 March 2024

Accepted: 9 March 2024

Published: 11 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

3D Point Cloud Object Detection Method Based on Multi-Scale
Dynamic Sparse Voxelization
Jiayu Wang 1,†, Ye Liu 1,†, Yongjian Zhu 2,*, Dong Wang 1,* and Yu Zhang 1

1 School of Computer Science and Information Technology, Shanghai Institute of Technology,
Shanghai 200235, China; 216142137@mail.sit.edu.cn (J.W.); ly@sit.edu.cn (Y.L.); yuzhang@sit.edu.cn (Y.Z.)

2 The College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
* Correspondence: zhuyongjian_hn@126.com (Y.Z.); dongwang@sit.edu.cn (D.W.)
† These authors contributed equally to this work.

Abstract: Perception plays a crucial role in ensuring the safety and reliability of autonomous driving
systems. However, the recognition and localization of small objects in complex scenarios still pose
challenges. In this paper, we propose a point cloud object detection method based on dynamic sparse
voxelization to enhance the detection performance of small objects. This method employs a specialized
point cloud encoding network to learn and generate pseudo-images from point cloud features. The
feature extraction part uses sliding windows and transformer-based methods. Furthermore, multi-
scale feature fusion is performed to enhance the granularity of small object information. In this
experiment, the term “small object” refers to objects such as cyclists and pedestrians, which have
fewer pixels compared to vehicles with more pixels, as well as objects of poorer quality in terms of
detection. The experimental results demonstrate that, compared to the PointPillars algorithm and
other related algorithms on the KITTI public dataset, the proposed algorithm exhibits improved
detection accuracy for cyclist and pedestrian target objects. In particular, there is notable improvement
in the detection accuracy of objects in the moderate and hard quality categories, with an overall
average increase in accuracy of about 5%.

Keywords: point cloud; 3D object detection; autonomous driving; convolutional neural networks

1. Introduction

In the context of autonomous driving, the detection, recognition, and localization
of key targets have always been one of the most critical tasks. With the development of
sensor devices, computing facilities, and deep learning techniques, various algorithms
for target detection have been continuously updated and iterated, leading to significant
improvements in real-time performance and accuracy. This has also resulted in break-
throughs in the application of target detection technology. In practical autonomous driving
scenarios, perception is an important module within the autonomous driving system, and
the information obtained from perception guides downstream control systems to generate
corresponding control signals [1]. The data sources for perception can be roughly divided
into two parts: image information and point cloud information. Unlike image informa-
tion, point cloud information contains rich 3D data and possesses certain resistance to
interference, thus having greater advantages in specific situations. Therefore, point cloud
perception has been receiving increasing attention. Point cloud-based detection methods
perform well in detecting larger objects [2]. However, due to the uncertainty of the shape
of small objects during data collection and the sparsity and disorderliness of point cloud
data, there are still significant challenges in detecting small objects.

Point cloud-based object detection emerged after the widespread application of deep
learning. Traditional methods struggle to effectively describe and extract features from
point cloud data due to their discrete and sparse nature, resulting in traditional point
cloud processing methods being limited to data preprocessing stages such as denoising

Sensors 2024, 24, 1804. https://doi.org/10.3390/s24061804 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24061804
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24061804
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24061804?type=check_update&version=1

Sensors 2024, 24, 1804 2 of 13

and filtering. The powerful learning capability of neural networks allows the potential of
3D point clouds to be fully utilized.

The PointNet network proposed by Qi et al. [3]. was the first algorithm capable of
directly processing irregular point cloud data. This method treats point clouds as unordered
sets of points, avoiding complex preprocessing procedures and enabling the learning of local
information from point clouds at different scales. However, due to computational resource
requirements and limitations on local information about point clouds, this method can only
handle small-scale point cloud data. Nevertheless, it provides a solid foundation for subsequent
tasks such as classification and segmentation based on point cloud data. To process point cloud
data, the problem of disorder needs to be addressed. Voxel-based methods [4] are currently
popular point cloud detection methods. These methods primarily transform point cloud data
into a collection of three-dimensional voxels, dividing them into equidistant 3D voxels to
solve the problem of disorder. Subsequently, object detection is performed through steps such
as feature extraction on each voxel. However, due to the use of 3D convolutions in feature
extraction and the random sparsity of points within voxels, substantial computational and
storage resources are consumed. Sparse convolutional networks are neural networks used to
process sparse data. Compared to 3D convolutions, sparse convolutional networks can better
handle irregular data by dynamically allocating the number and size of convolutional kernels
based on the sparsity, density, and spatial distribution of the input data. They significantly
improve computational efficiency and are generally used in combination with voxel-based
methods. PointPillars processes point clouds into pseudo-images using a network [5], allowing
mature 2D detection methods to be employed in subsequent detection processes. By utilizing
2D convolutions, the overall detection speed and accuracy are improved. This method performs
well in detecting large objects such as vehicles but still has room for improvement in detecting
small objects like bicycles and pedestrians.

1.1. Challenges

Based on the preceding introduction, it is evident that point cloud target detection
encounters several challenges.

Primarily, the challenge stems from the nature of point cloud data. The accurate de-
tection of small objects remains challenging in scenarios such as automatic driving, where
high precision is essential. This challenge arises from the uncertain shape of small objects
as well as the sparse and disorderly nature of point cloud data during data acquisition. Ad-
ditionally, the discrete and sparse nature of point cloud data poses difficulties in adequately
describing and extracting features using a singular approach. Consequently, challenges
persist in the extraction and comprehension of complex features.

Secondly, a challenge arises from the limitations of current methodologies. Certain
advanced methods for point cloud target detection may demand substantial computing
resources, thereby potentially impeding practical implementation. Moreover, early methods
often fail to account for both local and global features, resulting in diminished performance
when confronted with intricate scenes or small objects.

Furthermore, striking a balance between speed and accuracy poses a challenge
as some methods prioritize detection speed over accuracy, potentially compromising
detection precision.

1.2. Purpose of the Study

To address these issues, this paper proposes a three-dimensional point cloud object
detection method based on dynamic sparse voxels and presents the design of a multi-
scale feature [6] fusion module to enhance the detection accuracy of small objects in
terms of feature extraction, learning, and fusion. The small objects in this paper refer to
relatively difficult-to-detect targets, including those with poor quality and fewer pixels,
especially targets such as bicycles and pedestrians with less information compared to
vehicles. Firstly, by employing dynamic sparse window attention, sparse 3D voxels are
processed in parallel to obtain spatial information and 3D features of point cloud data. This

Sensors 2024, 24, 1804 3 of 13

step effectively extracts global information and long-distance features from point clouds.
In the subsequent feature fusion module, multi-scale features are aggregated and linked to
obtain more detailed feature information from point clouds, thereby improving the overall
detection accuracy of the model.

2. Related Work
2.1. Raw Point-Based Method

Point-based methods refer to methods directly operating on point clouds, allowing for the
most comprehensive and rich information to be obtained from the data. Due to the discrete
nature of point clouds, other methods tend to suffer from varying degrees of information loss.
PointNet [3] was the first method to achieve object detection by directly processing point clouds.
It has shown good performance in tasks such as object detection and semantic segmentation.
However, this network has high computational requirements during data processing, making it
unable to meet the demands of large-scale point cloud feature extraction.

Subsequently improved versions, such as PointNet++ [7] and PointRCNN [8], have
further enhanced the detection performance based on PointNet. The former reduces the
scale of point clouds through sampling and then utilizes PointNet for feature extraction.
The latter is a two-stage network model that generates a small number of bounding box
proposals in the first stage to facilitate better learning of local point cloud information in
the subsequent stages. The original point-based methods generally face problems such as
a large amount of data computation, insufficient feature extraction, and loss of implicit
feature information.

Point-based methods generally suffer from issues such as high computational com-
plexity and insufficient global feature information, which limit their ability to meet the
requirements of complex scenes and practical applications.

2.2. Voxel-Based Method

Voxel-based object detection methods refer to the conversion of point cloud data into
voxel grid representations and using 3D convolutional neural networks (CNNs) to process
the voxel grids for the recognition and localization of 3D objects. VoxelNet [4] converts point
clouds into voxel grid representations and employs 3D CNNs to process the voxel grids,
modeling point clouds in a dense voxel representation. It extracts object features through
convolutional operations. However, the inclusion of empty voxels resulting from the
neglect of point cloud sparsity leads to storage space and computational resource wastage,
limiting the network’s performance. TANet [9] attempts to use attention mechanisms to
enhance discriminative points and suppress unstable points to solve the problem, achieving
certain results. However, the effect is still average for large-scale sparse point clouds.

Yan et al. [10]. proposed a method called SECOND, which effectively learns sparse
voxel level features from point clouds using sparse convolution. PointPillars [5] transforms
point clouds into pseudo-images and utilizes 2D CNNs to extract features, significantly
enhancing detection speed. Recently, the introduction of attention mechanisms [11] and
the utilization of sparse convolution have greatly facilitated the development and usage of
voxel-based methods.

The performance and computational speed of voxel-based methods are impressive,
but due to the sparse nature of point clouds, some network performance is limited, and
new methods need to be introduced to solve this problem.

2.3. Sparse Convolution Methods

As mentioned earlier, the sparsity of point clouds hinders the performance of tradi-
tional convolutional neural networks. Unlike 2D images, most 3D point clouds have empty
voxels, which waste storage space and computational resources. To effectively calculate the
convolution of sparse data in the raw point cloud, rather than scanning all spatial voxels,
the sparse convolution method is proposed. The submanifold sparse convolutional net-
work [12,13] commonly used in point cloud processing reduces computational complexity

Sensors 2024, 24, 1804 4 of 13

by establishing a position hash table and RuleBook on non-empty data and only computing
convolution on valid data.

2.4. Contribution

We propose a solution to address issues with the existing methods mentioned above.
We made modifications based on PointPillars. We improved the original network by
incorporating a novel 3D feature extraction module, DSV [14], which can better extract
global information and long-range features from point clouds. Through a window-based
attention strategy, this method can effectively parallel process sparse 3D voxels while
improving the efficiency of obtaining features for small objects. This module serves as the
backbone network to enhance the network’s feature extraction capability.

We introduced a multi-scale feature fusion module to fuse information from small
object detection and features at different scales, resulting in a feature map that contains
more information.

We evaluated the performance of the network using the KITTI benchmark and im-
proved the detection accuracy of cars, bicycles, and pedestrians without sacrificing speed,
especially for bicycles and pedestrians.

In Table 1, we have summarized the methods mentioned earlier to provide a complete
perspective on previous research.

Table 1. Overview of Related Research.

Method Type Reference Dataset Key Aspects Limitations

PointNet Point-based CVPR 2017 ModelNet40 Provides an efficient method for
directly processing point clouds

As a basic method, it usually needs a lot of
calculation and can only extract local features

PointRCNN Point-based CVPR 2019 KITTI 3D detection method based on the
original point cloud High precision and low speed

VoxelNet Voxel-based CVPR 2018 KITTI Voxel-based 3D detection model Empty voxels waste computing resources
TANet Voxel-based AAAI 2020 AVA/TAD66K Multiple attention mechanisms Poor performance of large-scale point clouds

SECOND Voxel-based Sensors 2018 KITTI Sparse convolution Detection accuracy needs to be improved
PointPillars Voxel-based CVPR 2019 KITTI Pseudo-image Detection accuracy needs to be improved

Proposed method Voxel-based - KITTI DSV module, multi-scale FPN module Generalization, robustness, etc.

3. Model Structure

The structure of the proposed dynamic sparse voxelated 3D point cloud object detec-
tion method is illustrated in Figure 1. It consists of a feature encoding module utilizing DSV
blocks, a feature fusion FPN module, and a detection classification regression module. In
addressing the need to improve the detection of small objects, the DSV module is capable of
better extracting global features and long-distance feature information from the point cloud,
thereby enabling improved aggregation of shallow small object information. Experimental
validation confirmed the favorable detection performance of the proposed method on the
public KITTI dataset.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 14

point cloud, thereby enabling improved aggregation of shallow small object information.
Experimental validation confirmed the favorable detection performance of the proposed
method on the public KITTI dataset.

Figure 1. Structure of the 3D point cloud object detection method based on dynamic sparse voxeli-
zation.

3.1. Dynamic Sparse Voxel Transformer Block
The transformer is a type of deep learning model that heavily relies on the self-atten-

tion mechanism to model long-range dependencies within sequences. Existing point
cloud processing methods often focus only on local features, while the introduction of the
transformer enables the management of arbitrarily sized sparse voxels over a large range,
leading to improved learning effectiveness for voxels with similar features across the
global scope. Due to the sparsity of 3D point clouds, many voxels do not contain points,
and the number of points in non-empty voxels varies widely. Directly applying standard
transformers is challenging, as padding empty regions involves computationally inten-
sive operations. Therefore, the introduction of this method allows for parallel processing
of sparse 3D voxels.

After converting the point cloud into voxels, the voxels are further divided into a
series of non-overlapping windows, each containing N non-empty voxels (with different
N values for each window). Within the current window, each voxel can be represented by
Equation (1), including the spatial coordinates (x , y , and z) of the voxel within the win-
dow, the corresponding feature map f , and an inner window voxel ID d . Here, d is a
sequential number assigned to the voxel within the window, independent of spatial coor-
dinates, that depends on the subsequent subset division approach. For instance, subse-
quent division may be carried out along the x and y directions, resulting in different voxel
IDs d assigned to voxels at the same position.

(){ }N

i i i i i i i i=1
v= v v = x ,y ,z ;f ;d (1)

For each window, it is further partitioned into equitably sized subsets, ensuring that
each subset comprises a maximum of τ non-empty voxels (where τ is a hyperparameter).
The calculation formula, demonstrated by Equation (2), is then used to determine the
value of S for each window based on its individual sparsity. Subsequently, the window is
divided into S (N/τ) rounded-down subsets, enabling the allocation of computational re-
sources in proportion to their sizes and achieving dynamic resource allocation.

Figure 1. Structure of the 3D point cloud object detection method based on dynamic sparse voxelization.

Sensors 2024, 24, 1804 5 of 13

3.1. Dynamic Sparse Voxel Transformer Block

The transformer is a type of deep learning model that heavily relies on the self-
attention mechanism to model long-range dependencies within sequences. Existing point
cloud processing methods often focus only on local features, while the introduction of
the transformer enables the management of arbitrarily sized sparse voxels over a large
range, leading to improved learning effectiveness for voxels with similar features across
the global scope. Due to the sparsity of 3D point clouds, many voxels do not contain points,
and the number of points in non-empty voxels varies widely. Directly applying standard
transformers is challenging, as padding empty regions involves computationally intensive
operations. Therefore, the introduction of this method allows for parallel processing of
sparse 3D voxels.

After converting the point cloud into voxels, the voxels are further divided into a
series of non-overlapping windows, each containing N non-empty voxels (with different
N values for each window). Within the current window, each voxel can be represented
by Equation (1), including the spatial coordinates (xi, yi, and zi) of the voxel within the
window, the corresponding feature map fi, and an inner window voxel ID di. Here, di
is a sequential number assigned to the voxel within the window, independent of spatial
coordinates, that depends on the subsequent subset division approach. For instance,
subsequent division may be carried out along the x and y directions, resulting in different
voxel IDs di assigned to voxels at the same position.

v ={vi|vi = [(xi, yi, zi); fi; di]}N
i=1 (1)

For each window, it is further partitioned into equitably sized subsets, ensuring that
each subset comprises a maximum of τ non-empty voxels (where τ is a hyperparameter).
The calculation formula, demonstrated by Equation (2), is then used to determine the value
of S for each window based on its individual sparsity. Subsequently, the window is divided
into S (N/τ) rounded-down subsets, enabling the allocation of computational resources in
proportion to their sizes and achieving dynamic resource allocation.

S =

[
N
τ

]
+ [(N%τ)> 0] (2)

So far, in the process of obtaining the feature for each voxel, given all voxels V within
a window, along with the i-th subset Q and the voxel di D within this window, the feature
map F and their spatial coordinates O can be retrieved for all voxels within this subset
through index operations, as demonstrated by Equation (3).

Fj,Oj= INDEX
(

V, Qj, D
)

(3)

To establish connections between different voxels within the same window, an at-
tention mechanism is introduced. This attention mechanism consists of two layers of
self-attention, employing different voxel ordering methods to generate different subsets.
The first layer sorts voxels along the x-axis direction, while the second layer sorts them
along the y-axis direction. Subsequently, a multi-head self-attention layer is utilized to
establish connections between different subsets in this manner.

To establish connections between voxels across different windows, a sliding window
approach, as employed in the swing transformer, is adopted here, enabling the reorgani-
zation of windows. Furthermore, the size of windows is subject to change, with adjacent
blocks in the network structure employing windows of different sizes, and an internal shift
can also be performed. Upon completion of this encoding process, the extracted feature
map is provided for subsequent module usage. The structure of the block is illustrated in
Figure 2. Through point-pillar scattering, it is transformed into a 2D pseudo-image of size
(C, H, W), and a 2D backbone is utilized to extract features once again.

Sensors 2024, 24, 1804 6 of 13

Sensors 2024, 24, x FOR PEER REVIEW 6 of 14

()NS= + N%τ >0
τ

 (2)

So far, in the process of obtaining the feature for each voxel, given all voxels V within
a window, along with the i-th subset Q and the voxel d D within this window, the feature
map F and their spatial coordinates O can be retrieved for all voxels within this subset
through index operations, as demonstrated by Equation (3).

()j, j jF O =INDEX V,Q ,D (3)

To establish connections between different voxels within the same window, an atten-
tion mechanism is introduced. This attention mechanism consists of two layers of self-
attention, employing different voxel ordering methods to generate different subsets. The
first layer sorts voxels along the x-axis direction, while the second layer sorts them along
the y-axis direction. Subsequently, a multi-head self-attention layer is utilized to establish
connections between different subsets in this manner.

To establish connections between voxels across different windows, a sliding window
approach, as employed in the swing transformer, is adopted here, enabling the reorgani-
zation of windows. Furthermore, the size of windows is subject to change, with adjacent
blocks in the network structure employing windows of different sizes, and an internal
shift can also be performed. Upon completion of this encoding process, the extracted fea-
ture map is provided for subsequent module usage. The structure of the block is illus-
trated in Figure 2. Through point-pillar scattering, it is transformed into a 2D pseudo-
image of size (C, H, W), and a 2D backbone is utilized to extract features once again.

Figure 2. The structure of the DSV block.

3.2. Multi-Scale FPN Module
Considering that shallow-level feature maps can retain the richest and most accurate

information for small targets, feature extraction and aggregation are performed on the
pseudo-images using a multi-scale FPN module. The pseudo-images are obtained by spa-
tial cluster convolution to yield feature maps consistent with the input dimensions. The
detailed structure is depicted in Figure 3. Each of these layers consists of a 3 × 3 convolu-
tional layer, a normalization layer, and an activation function. By ensuring a certain net-
work depth and employing non-linear activation functions, the unstructured nature of the
network is improved. Subsequently, a convolution operation is applied to the input

DSV Block DSV Block

Window #1 Window #2

X-Axis Partition

Self-Attention

Y-Axis Partition

Self-Attention

X-Axis Partition

Y-Axis Partition

Self-Attention

Self-Attention

Figure 2. The structure of the DSV block.

3.2. Multi-Scale FPN Module

Considering that shallow-level feature maps can retain the richest and most accurate
information for small targets, feature extraction and aggregation are performed on the
pseudo-images using a multi-scale FPN module. The pseudo-images are obtained by spatial
cluster convolution to yield feature maps consistent with the input dimensions. The detailed
structure is depicted in Figure 3. Each of these layers consists of a 3 × 3 convolutional layer,
a normalization layer, and an activation function. By ensuring a certain network depth
and employing non-linear activation functions, the unstructured nature of the network is
improved. Subsequently, a convolution operation is applied to the input feature map (C, H,
W) to yield a feature map of size (2C, H/2, W/2), followed by multi-scale aggregation of
the extracted feature maps in the subsequent process.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 14

feature map (C, H, W) to yield a feature map of size (2C, H/2, W/2), followed by multi-
scale aggregation of the extracted feature maps in the subsequent process.

Figure 3. Structure of the convolution group.

By sampling the feature maps through multi-scale convolutions, feature maps of di-
mensions (C, H/2, W/2), (C, H/4, W/4), and (C, H/8, W/8) are obtained. Subsequently, each
scale of feature map undergoes deconvolution to yield three feature maps of size (2C, H/2,
W/2). Finally, the three processed and sampled feature maps are concatenated to obtain a
fused feature of output size (6C, H/2, W/2). Specifically, the convolution operation for-
mula is given by Equation (4).

1
2

H -F+2PH = +1
S

 (4)

In the equation, H2 represents the size of the output feature map, and H1 represents
the size of the input feature map. F represents the size of the convolution kernel, P repre-
sents the size of the padding, and S represents the stride size.

Similarly, the operation formula for deconvolution is given by Equation (5).

()4 3H = H -1 ?S+F-2P (5)

where H4 denotes the size of the output feature map of deconvolution, and H3 denotes the
size of the input feature map of deconvolution.

The structure and partial parameters of the convolutional layer are illustrated in Fig-
ure 4. This fused feature is then fed into the SSD [15] for target classification and regression
detection.

Layer structure

3x3 Conv

BatchNorm

ReLU

Pseudo graph
(C,H,W)

Feature map
(C,H,W)

Conv group

Layer 1 Layer 2 Layer 3 Layer 4

Figure 3. Structure of the convolution group.

Sensors 2024, 24, 1804 7 of 13

By sampling the feature maps through multi-scale convolutions, feature maps of
dimensions (C, H/2, W/2), (C, H/4, W/4), and (C, H/8, W/8) are obtained. Subsequently,
each scale of feature map undergoes deconvolution to yield three feature maps of size (2C,
H/2, W/2). Finally, the three processed and sampled feature maps are concatenated to
obtain a fused feature of output size (6C, H/2, W/2). Specifically, the convolution operation
formula is given by Equation (4).

H2 =
H1−F + 2P

S
+1 (4)

In the equation, H2 represents the size of the output feature map, and H1 represents the
size of the input feature map. F represents the size of the convolution kernel, P represents
the size of the padding, and S represents the stride size.

Similarly, the operation formula for deconvolution is given by Equation (5).

H4 = (H3−1)·S + F − 2P (5)

where H4 denotes the size of the output feature map of deconvolution, and H3 denotes the
size of the input feature map of deconvolution.

The structure and partial parameters of the convolutional layer are illustrated in
Figure 4. This fused feature is then fed into the SSD [15] for target classification and
regression detection.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 14

Figure 4. The structure and parameters of the convolutional network.

3.3. Classification Regression module
This module employs a detection head similar to the single-stage detector (SSD) to

perform object classification and regression predictions on the fused features (6C, H/2,
W/2). To measure the matching degree between 3D bounding boxes and ground truth,
Union IoU [16] is introduced for qualitative assessment. The key to 3D object detection
lies in accurately classifying and localizing the target objects in 3D space. The loss function
used in this study is consistent with PointPillars, Firstly, ground truth and anchor points
are defined by (x, y, z, w, l, h). What needs to be focused on in the subsequent tasks is the
offsets of these seven variables, and the smoothL1 [17] loss function is employed for
bounding box regression. The total regression loss is given by Equation (6).

()()b? x,y,z,w,l,h,θ
SL= SmoothL1 Δb (6)

where x, y, and z are the center coordinates of the target; l, w, and h represent the length,
width, and height; and θ is the rotation angle around the z-axis.

Similarly, to avoid orientation ambiguity, the Softmax loss is introduced to learn the
direction of objects. This loss is denoted as Ldir. To address the imbalance issue between
foreground and background classes commonly found in point cloud space, the focal loss
function proposed in RetinaNet [18] is introduced for multi-object classification loss cal-
culation. This is represented by Equation (7).

()γa a
aFL=-α 1-p logp (7)

Figure 4. The structure and parameters of the convolutional network.

Sensors 2024, 24, 1804 8 of 13

3.3. Classification Regression Module

This module employs a detection head similar to the single-stage detector (SSD) to
perform object classification and regression predictions on the fused features (6C, H/2,
W/2). To measure the matching degree between 3D bounding boxes and ground truth,
Union IoU [16] is introduced for qualitative assessment. The key to 3D object detection lies
in accurately classifying and localizing the target objects in 3D space. The loss function
used in this study is consistent with PointPillars, Firstly, ground truth and anchor points
are defined by (x, y, z, w, l, h). What needs to be focused on in the subsequent tasks is
the offsets of these seven variables, and the smoothL1 [17] loss function is employed for
bounding box regression. The total regression loss is given by Equation (6).

SL =∑b∈(x,y,z,w,l,h,θ) SmoothL1(∆b) (6)

where x, y, and z are the center coordinates of the target; l, w, and h represent the length,
width, and height; and θ is the rotation angle around the z-axis.

Similarly, to avoid orientation ambiguity, the Softmax loss is introduced to learn
the direction of objects. This loss is denoted as Ldir. To address the imbalance issue
between foreground and background classes commonly found in point cloud space, the
focal loss function proposed in RetinaNet [18] is introduced for multi-object classification
loss calculation. This is represented by Equation (7).

FL = −αa(1 − pa)γlog pa (7)

Here, p represents the class probability of 3D bounding boxes with the hyperparame-
ters set as α = 0.25 and γ = 2. Finally, the total loss is computed as shown in Equation (8).

L =
1

Npos
(βslSL + βflFL + βdirLdir) (8)

where Npos is the positive sample aim point and the loss weights are set to (βsl = 1.0,
βfl = 2.0, βdir = 0.2).

4. Experiment and Result Analysis
4.1. Data Set

The KITTI dataset [19] is a widely used public dataset for autonomous driving research
and computer vision tasks. It provides various sensor data in real-world scenarios and
includes a rich variety of object categories. In this experiment, the main detection targets
were cars, cyclists, and pedestrians. The KITTI dataset evaluates detection results using the
average precision of both the bird’s-eye view (BEV) and 3D modalities.

The dataset was divided into 7481 training and validation samples as well as 7581 test
samples. For different objects, the dataset categorizes the difficulty of 3D object detection
based on factors such as size, point cloud density, and occlusion. The difficulty levels
are classified as easy, moderate, and hard. An evaluation was conducted based on the
detection results of different objects. Higher pixel values indicate lower occlusion and
truncation levels, making identification easier, while lower pixel values indicate higher
difficulty in recognition.

In this experiment, our focus was on improving the detection accuracy of small targets.
Specifically, small targets refer to objects in the utilized dataset that are relatively smaller
and have fewer pixels compared to easily recognizable cars. These small targets include
cyclist and pedestrian objects that are less easily identifiable due to their lower pixel count.
Additionally, they encompass moderate and hard samples in the dataset, which have a
limited number of effective pixels (less than 25) and varying degrees of occlusion. The
specific classification details and criteria are presented in Table 2 below.

Sensors 2024, 24, 1804 9 of 13

Table 2. Definition of KITTI dataset detection difficulty.

Grade 2D Detection Box
High/Pixel Occlusion Degree Degree of

Truncation/%

Easy 40 Not covered <15
Moderate 25 Partial occlusion <30

Hard 25 Complete occlusion <50

4.2. Implementation Details

The experimental hyperparameters were as follows: the batch size was 6, the optimizer
used was AdamW, the learning rate was set to 0.001, and the weight decay was set to 0.9.
The IoU threshold for cars was set to 0.7, while it was set to 0.5 for pedestrians and cyclists.

Regarding the hardware conditions, the operating system used was Ubuntu 20.04,
and there were two NVIDIA RTX 4090 GPUs (ASUS Taiwan, China) in the configuration.
The software used for the experiment included Python 3.8, PyTorch 1.8.0, CUDA 11.6, and
cuDNN 8.0.3, which were employed to accelerate computations.

The experiment consisted of a total of 80 training epochs, and it took approximately
15 h to complete. During the entire training process, the validation results of the overall
samples varied with the change in training epochs, as depicted in Figure 5.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 14

Figure 5. Training process illustration.

4.3. Analysis of Test Results
To visually demonstrate the detection performance of the algorithm, we used

Open3D (0.17.0) to display the detection results. Visualization was achieved through
bird�s-eye view rendering and projecting 3D bounding boxes onto the images. The bird�s-
eye view was derived from the dataset, where the point cloud space was segmented into
voxels. Subsequently, down-sampling of the point cloud was performed using voxels, and
each voxel was projected as a point to obtain the projection of the point cloud on the plane
perpendicular to the vertical direction. The results are shown in Figure 6. The figure show-
cases the detection performance for vehicles and pedestrians as well as scenarios involv-
ing occlusion. The red boxs represents detected pedestrians, and the yellow boxs repre-
sents detected vehicles.

Figure 6. Visual detection results of a point cloud.

The KITTI dataset was used for training and testing the proposed network, and the
average precision (AP) of the bird�s-eye view (BEV) mode and three-dimensional (3D)
mode were used to evaluate the detection results on the KITTI benchmark. Tables 3 and 4
present a performance comparison of our experiment with other point cloud-based object
detection algorithms on the KITTI dataset. From the tables, it can be observed that our
proposed network architecture exhibited significant advantages in detecting smaller ob-
jects such as pedestrians and some bicycles across all difficulty levels.

Compared to the voxel-based PointPillars algorithm, our network structure achieved
a minimum of 5% improvement in detection accuracy in both bird�s-eye view and 3D mo-
dalities across the three difficulty levels. The evaluation of detection speed was conducted
using frames per second (fps) as the metric.

0

10

20

30

40

50

60

70

80

10 20 40 60 80

Pe
rf

or
m

an
ce

(a
cc

ur
ac

y)

Epoch

Overall-easy Overall-moderate Overall-hard

Figure 5. Training process illustration.

4.3. Analysis of Test Results

To visually demonstrate the detection performance of the algorithm, we used Open3D
(0.17.0) to display the detection results. Visualization was achieved through bird’s-eye
view rendering and projecting 3D bounding boxes onto the images. The bird’s-eye view
was derived from the dataset, where the point cloud space was segmented into voxels.
Subsequently, down-sampling of the point cloud was performed using voxels, and each
voxel was projected as a point to obtain the projection of the point cloud on the plane
perpendicular to the vertical direction. The results are shown in Figure 6. The figure
showcases the detection performance for vehicles and pedestrians as well as scenarios
involving occlusion. The red boxs represents detected pedestrians, and the yellow boxs
represents detected vehicles.

The KITTI dataset was used for training and testing the proposed network, and the
average precision (AP) of the bird’s-eye view (BEV) mode and three-dimensional (3D)
mode were used to evaluate the detection results on the KITTI benchmark. Tables 3 and 4
present a performance comparison of our experiment with other point cloud-based object
detection algorithms on the KITTI dataset. From the tables, it can be observed that our
proposed network architecture exhibited significant advantages in detecting smaller objects
such as pedestrians and some bicycles across all difficulty levels.

Sensors 2024, 24, 1804 10 of 13

Sensors 2024, 24, x FOR PEER REVIEW 10 of 14

Figure 5. Training process illustration.

4.3. Analysis of Test Results
To visually demonstrate the detection performance of the algorithm, we used

Open3D (0.17.0) to display the detection results. Visualization was achieved through
bird�s-eye view rendering and projecting 3D bounding boxes onto the images. The bird�s-
eye view was derived from the dataset, where the point cloud space was segmented into
voxels. Subsequently, down-sampling of the point cloud was performed using voxels, and
each voxel was projected as a point to obtain the projection of the point cloud on the plane
perpendicular to the vertical direction. The results are shown in Figure 6. The figure show-
cases the detection performance for vehicles and pedestrians as well as scenarios involv-
ing occlusion. The red boxs represents detected pedestrians, and the yellow boxs repre-
sents detected vehicles.

Figure 6. Visual detection results of a point cloud.

The KITTI dataset was used for training and testing the proposed network, and the
average precision (AP) of the bird�s-eye view (BEV) mode and three-dimensional (3D)
mode were used to evaluate the detection results on the KITTI benchmark. Tables 3 and 4
present a performance comparison of our experiment with other point cloud-based object
detection algorithms on the KITTI dataset. From the tables, it can be observed that our
proposed network architecture exhibited significant advantages in detecting smaller ob-
jects such as pedestrians and some bicycles across all difficulty levels.

Compared to the voxel-based PointPillars algorithm, our network structure achieved
a minimum of 5% improvement in detection accuracy in both bird�s-eye view and 3D mo-
dalities across the three difficulty levels. The evaluation of detection speed was conducted
using frames per second (fps) as the metric.

0

10

20

30

40

50

60

70

80

10 20 40 60 80

Pe
rf

or
m

an
ce

(a
cc

ur
ac

y)

Epoch

Overall-easy Overall-moderate Overall-hard

Figure 6. Visual detection results of a point cloud.

Table 3. Comparison of detection accuracy (BEV) of different algorithms on the KITTI dataset.

Method Car Cyclist Pedestrian Speed (fps)

SECOND
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard 20
88.07 79.37 77.95 73.67 56.04 48.78 55.10 46.27 44.76

VoxelNet 89.35 79.26 77.39 66.70 54.76 50.55 46.13 40.74 38.11 4.4

PointRCNN 92.13 87.93 82.72 82.56 67.24 60.28 54.77 46.13 42.84 10

PointPillars 88.35 86.10 79.83 79.14 62.25 56.00 58.66 50.23 47.19 62

Ours 89.00 86.54 79.61 80.10 64.31 59.81 66.21 56.10 53.73 45

Improvement +0.65 +0.44 -0.22 +0.96 +2.06 +3.81 +7.55 +5.87 +6.54 -

Specific improvement values are referenced with PointPillars as a benchmark.

Table 4. Comparison of detection accuracy (3D) of different algorithms on the KITTI dataset.

Method Car Cyclist Pedestrian Speed (fps)

SECOND
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard 20
83.13 73.66 66.20 70.51 53.85 46.90 51.07 42.56 37.29

VoxelNet 77.47 65.11 57.73 61.22 48.46 44.37 39.48 33.69 31.50 4.4

PointRCNN 86.96 75.64 70.70 74.69 58.82 52.53 47.98 39.37 36.01 10

PointPillars 79.05 74.99 68.30 75.78 59.07 52.92 52.08 43.57 41.49 62

Ours 83.91 76.20 71.58 76.91 61.22 56.79 59.10 51.46 47.53 45

Improvement +4.86 +1.21 +3.28 +1.13 +2.15 +3.87 +7.02 +7.89 +6.04 -

Specific improvement values are referenced with PointPillars as a benchmark.

Compared to the voxel-based PointPillars algorithm, our network structure achieved a
minimum of 5% improvement in detection accuracy in both bird’s-eye view and 3D modal-
ities across the three difficulty levels. The evaluation of detection speed was conducted
using frames per second (fps) as the metric.

The method we propose is based on improvements to PointPillars, which shows an
overall improvement compared to the original method, especially for samples with poor
quality such as cyclists and pedestrians, with an improvement of over 3.8% to 5%. We also
maintained our original advantages in terms of detection speed as much as possible.

Methods based on the original point cloud, such as PointRCNN, can preserve the
richest target information in the input data, thereby achieving better detection accuracy,
but the detection speed is often slower. The voxelization method has a fast detection speed
but low accuracy. Our proposed method not only improves accuracy but also considers
detection speed.

4.4. Ablation Experiments

Ablation experiments were conducted to assess the impact of each component of
the proposed model on detection accuracy. The roles of the DSV module and the multi-

Sensors 2024, 24, 1804 11 of 13

scale FPN module in feature extraction and fusion were examined. The evaluation was
performed using the KITTI dataset.

Unified indicators were employed to assess the effect of these two modules on en-
hancing model detection accuracy. A model excluding these two modules was used as the
baseline for testing purposes. Table 5 illustrates that employing solely the DSV module
resulted in a 2.68% mAP increase in pedestrian detection over the baseline model, whereas
utilizing solely the multi-scale FPN module led to a 1.52% mAP increase compared to the
baseline model. In contrast, the combined utilization of both modules resulted in our model
achieving superior detection performance, surpassing the baseline model by 4.99% in mAP.
Notably, both of our proposed modules exhibited performance enhancements, suggesting
that feature extraction by the DSV module and feature fusion facilitated by the multi-scale
FPN module are beneficial for small object detection.

Table 5. Ablation study of individual components in each module.

DSV M-FPN
3D Object Detection AP

mAP
Easy Mod. Hard

× × 60.66 52.23 48.19 53.69√
× 63.25 54.01 51.85 56.37

×
√

62.74 53.36 49.53 55.21√ √
66.21 56.10 53.73 58.68

The average accuracy of BEV for pedestrian detection on the KITTI test set.

5. Discussion

Among the existing detection methods, the original point cloud-based method ex-
hibits relatively high accuracy but poor real-time performance, limiting its applicability in
complex scenes or autonomous driving environments. On the other hand, the voxel-based
method offers fast detection speed but lacks accuracy, particularly for small objects with
high detection difficulty.

The method proposed in this paper relies on voxel-based networks, retaining the
characteristic of rapid detection speed. Furthermore, the DSV module exhibits a strong
feature extraction effect, enhancing the extraction of global features and refining feature
granularity. Additionally, the FPN module integrates features of varying scales to acquire
more comprehensive feature maps, thereby improving the detection performance of targets
of diverse sizes, particularly smaller ones. It achieved an FPS of 45, significantly surpassing
that of the point cloud-based method. Simultaneously, the detection accuracy of this method
surpassed that of the baseline method by a considerable margin, exhibiting varying degrees
of improvement across different object types, particularly in the context of pedestrians,
cyclists, and objects with high detection difficulty. Ablation experiments demonstrated the
optimization effects of our modules on baseline methods, with the combined effect proving
to be the most effective.

Overall, the proposed method presents distinct advantages.

6. Limitations and Future Work

The proposed method demonstrates promising results but also presents limitations
that we intend to address in our forthcoming research.

The primary concern revolves around generalization performance. While our method
significantly improved the detection of pedestrians, bicycles, and other specific targets,
additional validation is required for its generalization performance across diverse target
types and complex scenarios.

Moreover, in the domain of autonomous driving, the existence of various small object
obstacles highlights the necessity to enhance the algorithm’s generalization for diverse
target types and complex environments. Secondly, it is essential to evaluate the robustness
of our enhanced method under varying environmental conditions, especially in challenging
scenarios such as fluctuations in lighting and weather. Subsequent investigations will delve

Sensors 2024, 24, 1804 12 of 13

into methods to enhance the algorithm’s robustness to ensure stability and reliability in
practical applications.

Lastly, the allocation of computing resources across different hardware platforms
remains ambiguous. To improve practical applicability, future considerations will involve
exploring optimization algorithms aimed at reducing computing resource demands on
varied hardware platforms.

7. Conclusions

In response to the shortcomings of existing deep learning networks based on voxel-
based methods for point cloud object detection, we devised a method involving dynamic
sparse voxelization and fusion modules. This approach combines a point cloud encoding
module with a classification–regression–detection head to achieve multi-scale point cloud
object detection.

By extracting richer feature information at a finer granularity and incorporating
multi-scale features, we significantly improved the accuracy of small object detection
while minimizing the loss of fps and ensuring the accuracy of large object detection. The
algorithm’s performance was evaluated on the KITTI dataset and compared with other
methods, confirming its effectiveness. In the future, we will delve deeper into exploring
methods to enhance the accuracy of object detection speed in point clouds.

Author Contributions: J.W. carried out the study and experiments and drafted the manuscript.
Y.L., Y.Z. (Yongjian Zhu), Y.Z. (Yu Zhang), and D.W. edited the manuscript and guided experiments.
Ningbo Minjie Information Technology Co., Ltd. provided computational support. The other
co-authors contributed to analysis, discussion, manuscript editing, and help with performing the
experiments. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Shanghai Institute of Technology Research Initiation
Project (grant no. YJ2022-40), the Ministry of Education’s Industry School Cooperation Collaborative
Education Project (grant no. 220800006080308), and the Collaborative Innovation Fund of Shanghai
Institute of Technology (grant no. XTCX2022-20).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this paper were obtained from a third-party database
(https://www.cvlibs.net/datasets/kitti), accessed on 10 September 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations and mathematical variables were used in this paper:

CNN convolutional neural networks
FPN feature pyramid network
DSV dynamic sparse voxelization
BEV bird’s-eye view
(x, y, z) spatial coordinates of the voxels
f corresponding feature map
d inner window voxel ID
N total voxel window
O spatial coordinates of all voxels within a subset
V all voxels within a given window
Q, D specified subset and voxel
H size of the feature map
F size of the convolution kernels
P size of the padding

https://www.cvlibs.net/datasets/kitti

Sensors 2024, 24, 1804 13 of 13

S size of the step
(w, l, h, θ) length, width, height, and the rotation angle around the z-axis
Ldir object directional loss
FL multi-object classification loss
SL bounding box regression loss
L total loss

References
1. Wang, J. Research on Key Technologies of Multi-Sensor 3Denvironment Perception System for Autonomous Driving; University of Chinese

Academy of Sciences: Beijing, China, 2019.
2. Paigwar, A.; Sierra-Gonzalez, D.; Erkent, Ö.; Laugier, C. Frustum-pointpillars: A multi-stage approach for 3d object detection

using rgb camera and lidar. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC,
Canada, 11–17 October 2021; pp. 2926–2933.

3. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

4. Yin, Z.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection, Frustum Pointpillars. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

5. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast Encoders for Object Detection From Point Clouds.
In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019.

6. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

7. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

8. Li, J.; Hu, Y. A Density-Aware PointRCNN for 3D Objection Detection in Point Clouds. arXiv 2020, arXiv:2009.05307.
9. Liu, Z.; Zhao, X.; Huang, T.; Hu, R.; Zhou, Y.; Bai, X. TANet: Robust 3D Object Detection from Point Clouds with Triple Attention.

arXiv 2019, arXiv:1912.05163. [CrossRef]
10. Yan, Y.; Mao, Y.; Li, B. SECOND: Sparsely Embedded Convolutional Detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
11. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
12. Graham, B.; Engelcke, M.; Van Der Maaten, L. 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. In

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017), Salt Lake City, UT, USA,
18–23 June 2018; pp. 9224–9232.

13. Graham, B.; Van der Maaten, L. Submanifold Sparse Convolutional Networks. arXiv 2017, arXiv:1706.01307.
14. Wang, H.; Shi, C.; Shi, S.; Lei, M.; Wang, S.; He, D.; Schiele, B.; Wang, L. DSVT: Dynamic Sparse Voxel Transformer with Rotated

Sets. In Proceedings of the CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada,
17–24 June 2023.

15. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016.

16. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A Review on Deep Learning Techniques
Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857.

17. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]

18. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [CrossRef]

19. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1609/aaai.v34i07.6837
https://doi.org/10.3390/s18103337
https://www.ncbi.nlm.nih.gov/pubmed/30301196
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1177/0278364913491297

	Introduction
	Challenges
	Purpose of the Study

	Related Work
	Raw Point-Based Method
	Voxel-Based Method
	Sparse Convolution Methods
	Contribution

	Model Structure
	Dynamic Sparse Voxel Transformer Block
	Multi-Scale FPN Module
	Classification Regression Module

	Experiment and Result Analysis
	Data Set
	Implementation Details
	Analysis of Test Results
	Ablation Experiments

	Discussion
	Limitations and Future Work
	Conclusions
	References

