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Abstract: The modern healthcare landscape is overwhelmed by data derived from heterogeneous IoT
data sources and Electronic Health Record (EHR) systems. Based on the advancements in data science
and Machine Learning (ML), an improved ability to integrate and process the so-called primary
and secondary data fosters the provision of real-time and personalized decisions. In that direction,
an innovative mechanism for processing and integrating health-related data is introduced in this
article. It describes the details of the mechanism and its internal subcomponents and workflows,
together with the results from its utilization, validation, and evaluation in a real-world scenario.
It also highlights the potential derived from the integration of primary and secondary data into
Holistic Health Records (HHRs) and from the utilization of advanced ML-based and Semantic Web
techniques to improve the quality, reliability, and interoperability of the examined data. The viability
of this approach is evaluated through heterogeneous healthcare datasets pertaining to personalized
risk identification and monitoring related to pancreatic cancer. The key outcomes and innovations
of this mechanism are the introduction of the HHRs, which facilitate the capturing of all health
determinants in a harmonized way, and a holistic data ingestion mechanism for advanced data
processing and analysis.

Keywords: machine learning; ontologies; semantic web; holistic health records; data science; primary
and secondary data; pancreatic cancer; wearables

1. Introduction

During the last decade, the development and utilization of cutting-edge technologies,
such as IoT, ML, and Artificial Intelligence (AI), have experienced exponential growth in
different domains [1–3]. The insights of a recent survey indicate that most of the emerging
technologies and trends are three to eight years away from reaching widespread adoption
but are the ones that will have significant impact during the next years [4]. Although
many of these technologies are still in their infancy, organizations and businesses that
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adopt and embrace them early will be able to gain significant advantages against their
competitors. Some of these technologies, such as ML, Deep Learning, Edge AI, Human-
Centered AI, Synthetic Data, and Intelligent Applications, can significantly impact the
healthcare sector, among other domains. In that direction, remarkable outcomes and results
have been recently achieved through the implementation and utilization of advanced
and sophisticated ML and AI algorithms and applications in various tasks within the
healthcare domain. Noteworthy achievements in the tasks of personalized diagnostics [5],
disease early risk identification [6], and personalized medicine [7] have been realized by
employing ML models aiming to introduce enhanced and personalized prevention and
intervention measures. However, the processing and analysis of vast numbers of datasets,
ranging from medical images to secondary data collected from wearables and sensors, and
from genetics to genomics, have revealed the need for the utilization of more complex
algorithms when aiming to identify hidden patterns and integrate heterogeneous data in
an optimum way. Hence, applications that are based on the concepts of Deep Learning
and Artificial Neural Networks (ANNs) have gained wide adoption [8]. Leveraging the
power of Deep Learning for automatic and unsupervised discovery of representations,
these applications introduced more efficient and accurate solutions targeting the extraction
of actionable insights, especially from large-scale datasets that have not been extensively
curated [9]. This success spans across diverse tasks within the healthcare domain, including
medical image classification [10], segmentation of Magnetic Resonance Imaging (MRI)
data [11], semantic interoperability through applications of Natural Language Processing
(NLP) [12], and hospital readmission predictions [13], where different types of ANNs,
such as Convolutional Neural Networks (CNNs) [14] and Recurrent Neural Networks
(RNNs) [15], have realized exceptional results contrary to ML-based alternatives.

The integration and utilization of these technologies can enhance the provisioning of
remote diagnostics, as well as of early diagnosis and pre-diagnosis of critical diseases [16].
The high demand for remote patient monitoring and personalized healthcare has vastly
improved the health analytics techniques and their implementation in healthcare systems.
Emphasis on health analytics is also supported by the increasing utilization of wearables
and the Internet of Medical Things (IoMT), which provide easy access to a large pool of
health-related data. It should be noted that wearable devices are projected to grow at a
9.1% CAGR and IoMT at 23.70% between 2023 and 2032 [17]. The latter highlights the
emerging need for the adoption of integrated Deep Learning and Edge AI techniques and
approaches as, in the modern healthcare domain, the collection, processing, and analysis of
the data will be performed more frequently on local devices rather than relying entirely on
centralized cloud servers. In that context, Deep Learning techniques contribute significantly
to the processing and interpretation of divergent and integrated data at the edge. However,
their complexity and increasing need for sustainable cost- and time-effective solutions have
led to the introduction of a range of techniques aimed at reducing network complexity
and improving the efficient integration of Deep Learning models in edge devices [18].
Different techniques such as the majority voting [19] and the non-local adaptive hysteresis
despeckling (NLAHD) techniques [20] have been recently introduced. Coupled with the
utilization of Deep Learning models in healthcare-related tasks such as the early detection of
acute lymphoblastic leukemia (ALL) [19] and the analysis and noise reduction of ultrasound
images [20], they managed to introduce faster, efficient, and comprehensive applications.
Sensors, wearables, and IoMT devices can be empowered by the integration between
Deep Learning and Edge AI techniques, fostering the identification of intricate patterns,
hidden anomalies, and complex representations. The latter leads to more efficient and
autonomous decisions in real time without the need for constant connectivity to the cloud
and centralized centers [21].

However, the healthcare domain faces various challenges related to the diversity and
variety of data, the huge volume of data, and the distribution of data; thus, there is an ever-
increasing demand from healthcare organizations for the implementation and utilization
of new solutions and data-centric applications that can help them gain actionable insights
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from their data [22]. Data have long been a critical asset for medical organizations, hospitals,
governments, and other stakeholders in the healthcare domain. The massive investments
by the healthcare industry into new technologies and the rapid growth in the usage of
cloud computing, mobile computing, medical devices, IoMT, and AI are some of the key
factors that promote the need for enhanced and state-of-the-art health data-processing
solutions [23]. In this respect, health-related data-processing solutions increasingly focus
on exploiting value from primary data (coming from established data sources such as
lab results, genomics, and family history) or secondary data (coming from IoMT devices
that automatically measure and monitor in real time various medical parameters in the
human body). The integration of primary and secondary data has revealed the potential
for greater insights for healthcare and health-related decision making [24]. Even if, for
collecting prospective and retrospective clinical data, there already exists a plethora of
methods and techniques for automatically capturing such data in batches [25], this is not
the case for the ingestion of streaming data, which has come to the attention of research
and development during the last five (5) years [26,27]. As a result, current healthcare and
assisted living solutions need to be enhanced to support the processing of primary and
secondary data since citizens have increasing access to personal IoMT devices that can
monitor individual parameters (e.g., heart rate, sleeping condition) and track their daily
activities (e.g., distance walked, calories burned).

However, the existing hospital systems, EHRs, and IoMT devices most of the time are
surrounded by high levels of heterogeneity since they have diverse formats, capabilities,
functionalities, and characteristics. Hence, to effectively work with both the primary and
secondary data, there are still challenges with regard to the standardization, qualification,
and interoperability of the different types of data that are used by the existing health-
care systems. In that direction, there is even a growing demand for the development of
methodologies and procedures for the standardized integration, processing, and analysis of
heterogeneous data derived from divergent data sources and devices in modern Healthcare
Information Systems (HISs). Such improvements can lead to enhanced diagnostics and care
strategies, as well as to the extraction and utilization of actionable value and knowledge
from available data in the healthcare domain.

What is more, timely diagnosis is very important when it comes to critical diseases,
such as cancer, and especially to pancreatic cancer, which is uncurable and usually lacks
clear symptoms at its early stages [28]. Understanding the underlying causes or risk
factors can help to identify individuals at high risk of developing pancreatic cancer. From
there, specific measures (preventions and interventions) can be introduced to reduce the
risks, e.g., those that work on modifiable risk factors that relate to lifestyle, behaviors, and
social interactions (e.g., reduction in smoking, alcohol, obesity, red meat consumption and
increasing intake of vegetables, fruit, and regular physical exercise) [29]. Early identification
of the modifiable risk factors of pancreatic cancer relies on healthcare professionals (HCPs)
possessing sufficient knowledge, age-appropriate care programs, and community-based
approaches aiming to provide specialized, multidisciplinary services both in terms of
prevention of and interventions for diverse cancer-related factors. However, a significant
gap still remains in the delivery of stratified healthcare because current approaches often
take a one-size-fits-all approach [30]. Personalization implies a level of precision that
seeks to treat the patient as opposed to the disease, taking into account, as an example,
comorbidities, genetic predisposition, and environmental factors. The lack of integrated
data (e.g., lifestyle data, Patient-Reported Outcome Measures (PROMs), Patient-Reported
Experience Measures (PREMs), and genomic data) from patients that would allow clinicians
to make personalized decisions as part of their clinical decisions limits the effectiveness
of prevention strategies. Lack of integrated health data also hampers the potential of
patient-centric interactions between HCPs, healthcare authorities, patients, and caregivers,
as well as the potentials of advanced technologies, such as AI, for accurate risk prediction,
prevention, and intervention [31].
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Considering all these challenges, by effectively gathering, standardizing, and analyz-
ing both primary and secondary data, collective community knowledge and personalized
health insights could be extracted. The latter is facilitated by the collection, integration, and
analysis of information from different sources concerning individuals for the provision of
actionable insights at the point of care. To address gaps and requirements in individualized
or personalized healthcare, this article introduces a data-processing mechanism that aims
to integrate heterogeneous data sources to realize Holistic Health Records (HHRs) that can
provide complete, integrated data views. To effectively construct the HHRs, the platform
develops various data management techniques by integrating Semantic Web and ML tech-
niques covering the complete data lifecycle, from the collection of the heterogeneous data
to their aggregation, processing, and harmonization.

The mechanism introduced in this article has been evaluated based on a real-world
scenario that provides different datasets, ranging from hospital-retrieved data to data
from wearables, questionnaires, and mobile applications, proving its wider applicability
and overall efficiency. The mechanism is developed in the context of the EU-funded
project iHelp, which seeks to deliver a novel, personalized healthcare framework and
digital platform that can enable the collection, integration, and management of primary
and secondary health-related data [32]. Leveraging the knowledge and insights derived
from these integrated data, the platform further provides advanced AI-based models,
decision support, and monitoring systems to help with early identification and mitigation
of pancreatic-cancer-related risks.

Thus, the goal of this paper is to evaluate the implementation of an advanced data-
processing and harmonization mechanism with a specific focus on the real world that
leverages data related to pancreatic cancer. Hence, this paper includes contributions
such as:

• The introduction of an end-to-end and holistic reference architecture and data ingestion
mechanism for advanced data processing and analysis in a modern HIS;

• A set of practical recommendations and implementations for the integration of tech-
niques from the domains of data science, ML, and the Semantic Web;

• The realization of the HHR data model through the integration, standardization, and
harmonization of primary and secondary data;

• Analysis and discussion of the industry-centric challenges and problems that re-
searchers in the healthcare domain face with regard to data processing and analysis,
such as data being available in divergent formats and semantic non-interoperable data.

The remainder of the paper is structured as follows. Section 2 describes the overall
architecture of the proposed mechanism, depicting all of its incorporated components and
the integration approach applied among them to achieve improved healthcare data inte-
gration and analysis. Section 3 evaluates the reference implementation of the mechanism
against a real-world healthcare scenario, whereas Section 4 discusses the effectiveness of
the current research work and its overall contribution as well as outlines any future work.
Finally, Section 5 concludes this article.

2. Materials and Methods

The flowchart and reference architecture of the overall iHelp platform are depicted
in Figure 1. More specifically, the platform consists of five (5) different building blocks or
sub-mechanisms: (i) Data Collection and Ingestion, (ii) Data Standardization and Qualifica-
tion, (iii) Data Analysis, (iv) Monitoring and Alerting, and (v) Decision Support System.
The integration of these different building blocks results in end-to-end integration and
exploitation of the raw data through this novel and holistic platform [32]. In the context of
this research work, we examine and evaluate the application of the first two (2) building
blocks, i.e., Data Collection and Ingestion and Data Standardization and Qualification. It
should be noted that the secondary or streaming data referred to in this article correspond
to the data collected from Garmin wearable devices, whereas the primary or batch data
correspond to the historical personal data of the individuals as provided by the Hospital
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de Dénia—Marina Salud (HDM), in line with the respective approval and decision of the
Ethical Committee.

Figure 1. Overall architecture.

2.1. Reference Architecture

In this section, a blueprint of the proposed iHelp platform, developed in the context of
the iHelp project [32], is presented, along with the internal process that takes place for its
seamless interaction and integration with either secondary data sources (i.e., wearable de-
vices) or primary data sources (i.e., hospital systems and databases), as depicted in Figure 1.
As described previously, five (5) different building blocks and phases are incorporated in
the iHelp platform [32]. It is characterized as a reference architecture since it is presented in
a high-level, abstract, logical form, which provides a blueprint for the implementation of
different functionalities such as AI-based healthcare analytics. In more detail, the platform
initially consists of the sub-mechanisms of Data Collection and Ingestion, through which
it may connect to heterogeneous data sources and gather their data, and Data Standard-
ization and Qualification, which can process and harmonize the external healthcare data
it receives and store them in its internal datastore. These two building blocks represent
the end-to-end Data Ingestion Pipeline of the iHelp platform, as depicted in Figure 2. The
software components incorporated in this pipeline are the Data Capture Gateway, Data
Cleaner, Data Qualifier, Data Harmonizer, and HHR Importer, which consume data from
one and produce them for the other by utilizing the capabilities of the Kafka message bus,
which is further described in the next sub-section.
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Figure 2. iHelp Data Ingestion Pipeline.

2.2. Integration Approach

In the integration of all these different components, the open-source Kafka and Ku-
bernetes tools are utilized, providing a containerized approach for integrating the iHelp
platform. The latter enables the deployment of this platform in different environments
and infrastructures, showcasing its interoperability and improved adaptability in any de-
ployment environment, e.g., in stakeholders’ servers and premises. The manifests that
are developed as part of the deployment scripts contain all the needed components and
respective installation prerequisites to establish and deploy the platform as a whole. On
top of this, it should be noted that the iHelp has already been deployed and evaluated for
its functionality and performance in the premises of two different hospitals (in the EU) in
the context of the iHelp project [32].

To facilitate seamless and reliable data exchange between different components such
as the two first sub-mechanisms (i.e., Data Collection and Integration and Data Standard-
ization and Qualification), the iHelp platform uses Apache Kafka [33]. Kafka is a message
broker and stream processor that allows the publication, subscription, archiving, and pro-
cessing of streams of data/records in real time. It is specially designed to manage data
streams from multiple sources by distributing them to multiple consumers. In this way,
Kafka facilitates the collection and processing of both primary and secondary data that are
ingested into the introduced mechanism.

Apart from the use of Kafka as the platform’s message broker mechanism, the Ku-
bernetes platform is utilized [34] to provide DevOps services. Kubernetes (K8s) is an
open-source platform that automates Linux container operations. The integration between
K8s and Kafka results in the simplification of the deployment of Kafka brokers as container-
ized pods as each Kafka broker can run as a separate pod, ensuring the scalability, fault
tolerance, and availability of the overall approach. On top of this, microservices can be
deployed to easily consume and produce data for Kafka topics, allowing for real-time data
processing and analysis of the processed data in the context of the project. Finally, K8s
eliminates many of the manual processes involved in deploying and scaling containerized
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applications and allows management of host clusters, which run containers easily and
efficiently, and, for enhanced management of the K8s cluster, the Rancher tool is utilized.

2.3. Data Collection and Ingestion Pipeline

Health data can result from clinical tests performed invasively on samples taken from
the patients’ bodies, or non-invasively using modern depicting techniques. Such data,
obtained in a clinical setting, are of paramount importance and are termed as primary but
certainly do not form the complete spectrum of health data [35]. Today, the importance of
environmental factors, diet, and living habits is well established. The patients’ living habits
can be enumerated using data attributes about their lifestyle, obtained in their natural
environment, outside the clinical setting. These types of data are termed secondary since
they correspond to health but are not determinists of typical health systems.

The Data Collection and Ingestion building block in the iHelp platform is responsible
for the integration, anonymization, and verification of the primary and secondary data. De-
pending on the data source type that is connected and the corresponding method that must
be used for ingesting its data (i.e., streaming collection for unknown sources and batch col-
lection for known sources), this (i.e., Data Collection and Ingestion) sub-mechanism utilizes
different connectors of the Data Capture Gateway as its main interfacing component.

The Data Capture Gateway is the component that can be considered as the interface
between the iHelp integrated platform and the external data sources, both primary and
secondary, from which it captures the data to be pushed into the established Data Ingestion
Pipeline. The Gateway implements a standalone Java process, or a microservice, that
takes care of connecting to the various external data sources and sends the data to an
intermediate Kafka topic so that the data can be retrievable from the other functions in the
Data Ingestion Pipeline. As such, it also provides REST APIs, which are used to initiate
data capture activities or schedule them for a later or a periodic execution. The REST APIs
of the Gateway are deployed into a servlet container; however, they make use of the core
functionalities of the Data Ingestion Gateway, and, therefore, both the REST APIs and
the code implementation are inside the single Java process. Regarding the schema of the
datasets, this is translated into an Avro Schema compatible format by the Data Converter
sub-function in order to boost the interoperability and has a well-known standard to
be further used by other functions involved in the data ingestion process. A high-level
overview of the different software elements of this initial design is depicted in Figure 3.

Figure 3. Data Capture Gateway overview.

As the Data Capture Gateway captures data from the supported primary data sources,
it forwards them into a common Kafka topic, from which it can be used by different
components in the data pipeline. As has been described in the previous sub-sections, all
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software components that are involved in the Data Ingestion Pipeline are interchanging
data through Kafka broker.

With regard to the secondary data, they comprise attributes that enumerate different
important aspects of the way the patients live their lives. The attributes are grouped in the
physiological, psychological, social, and environmental categories [36].

The physiological attributes are concerned with the human body, its activities, and
adverse events, e.g., steps walked, distance walked, elevation (or floors climbed), energy
dissipation, and time spent in different activity intensity zones and performing exercise
activities (walking, running, cycling, etc.), as well as their distribution in the day. They are
mostly measured using activity trackers. Attributes related to the functioning of the heart
include the continuous measurements of the heart rate variability and the time spent in
different heart rate zones, as well as the daily resting heart rate measurement. Sleep-related
attributes include continuous measurements of the time spent in the different sleep stages
(awake in bed, light, REM, deep sleep). Other physiological attributes like symptoms of
interest, weight, and nutrition can be self-reported by the participant using widgets on a
mobile app or questionnaires.

The psychological attributes refer to the emotions of the patients. They are mostly
reported (although audiovisual or text-based emotion detection is possible) and include
emotional state self-assessment using questionnaires or standardized reports from profes-
sional therapists.

The social attributes can be measured indirectly based on the usage of the mobile phone
(diversity, duration, frequency of calls) and social media (diversity, number, frequency of
interactions). More direct information can be reported using questionnaires on activities
with others or can be obtained in conversation with a digital virtual coach or mobile app.

The environmental attributes include reported environmental indicators for the
assessment of the quality of life. Measurements of living environment quality can be
obtained by integrating relevant commercial devices (e.g., for air quality analysis), or by
integrating with data services that report the Air Quality Index or weather details at the
patients’ locations.

Secondary data collection can be performed by the patients in their own everyday
setting using a mobile application. The Healthentia mobile application, developed by
Innovation Sprint, Brussels, Belgium, was selected to be utilized in the context of this
research work. This mobile application offers interoperability between different mobile
and wearable devices and allows the capture of data concerning all the abovementioned
health determinants and categories [37]. Regarding the use of this application, at first,
the corresponding portal is used to define the mobile app functionalities and the settings
applied for a particular clinical study. This step results in the setup of the main application
dashboard, as depicted in Figure 4. The data that are captured for each specific individual of
the study are then transported in the iHelp platform through the secondary data connector
of the Data Capture Gateway. From the Gateway, the data are forwarded to the internal
Data Ingestion Pipeline for their further processing, cleaning, and transformation to the
corresponding HHR data model.

2.4. Data Modeling and Specification of Holistic Health Records

For addressing interoperability challenges, it is of paramount importance to develop
adaptable and standardized data structures, which are termed as Holistic Health Records
(HHRs). The HHR model is developed using existing models as a guide, with specific focus
on the HL7 FHIR standard [38]. Although the HL7 FHIR standard is still in development
and primarily designed to represent clinical data, it incorporates the capability to represent
a broader range of data going beyond clinical information, e.g., streaming data originating
from sensors. In this respect, the HHR model is engineered to be versatile and adaptable to
various contexts thanks to the flexibility offered in the HL7 FHIR standard.
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Figure 4. Setting up an iHelp study in Healthentia. Widgets are selected (left), and the nutrition
widget is customized to include the food categories of interest (middle), resulting in the main
dashboard of the mobile app (right).

Regarding the construction of the HHR model, the data gathered from the hospitals
were initially grouped into medical categories for easier analysis of the concepts such
as Pathology, Medication, etc. Then, every concept was mapped to the most relevant
FHIR entity resources. The FHIR entity resources mostly used were Person, Observation,
Condition, Procedure, Encounter, MedicationAdministration, etc. Any concept not directly
mapped to an FHIR element resource was modeled by exploiting the standard mechanism
provided by the FHIR standard, the Extensions, as an FHIR Extension inside the most
relevant FHIR element mentioned, thus creating a separate Profile for these elements.
Similarly, the non-standardized values of the hospital’s data attributes were translated,
following the HCP’s knowledge, into standard SNOMED concepts [39]. If an attribute
did not have a direct representation in SNOMED, it was included in the iHelp FHIR
CodeSystem as a custom element. The representation of the iHelp conceptual model was
achieved by using the TTL ontology syntax format, utilizing the FHIR ontology and the
official guidelines in relation to creating FHIR CodeSystems, Extensions, etc. An instance
of this ontology is depicted in Figure 5; as it is exported from the Protege tool, it showcases
the relationships of the Clinical and Resource OWL classes. For example, the Clinical class
is used to group clinical resources and has several subclasses like Medication, Diagnostics,
General, Careprovision. In addition, the Resource class represents the base resource type
and has one main subclass (DomainResource), through which the main health classes like
Specimen, Observation, etc., are defined.
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Figure 5. FHIR-based ontology sample.

Additionally, an instance of the iHelp CodeSystem, represented in TTL, is depicted in
Figure 6, showcasing some of the custom iHelp codes, e.g., Morbidity History, Malignant
Diseases, etc., used in the context of the HDM use case. The CodeSystem is defined based on the
FHIR guidelines, so it is comprised of all the necessary definitions like version, title, description,
etc., and, most importantly, the concepts that constitute the actual codes of the system.

Figure 6. iHelp coding system sample.
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2.5. Data Standardization and Qualification Methodology

The deployment of advanced healthcare analytical tools and frameworks not only
results in the increased productivity of the healthcare professionals but also overall im-
proved patient management and care. However, the analysis of data is mostly reliant
on standardization and qualification of underlying data [40]. To this end, the proposed
pipeline in the iHelp platform addresses these aspects by exploiting three (3) processing
phases: the cleaning, the qualification, and the harmonization of the data. These phases are
realized through the design and implementation of three (3) integrated subcomponents, i.e.,
the Data Cleaner, the Data Qualifier, and the Data Harmonizer, respectively, as depicted in
Figure 2 and initially introduced in [41].

In deeper detail, as soon as all the needed data are ingested into this pipeline by
the Data Collection and Ingestion building block, the first two phases of this pipeline are
responsible for the cleaning and quality assurance of the collected data. Thus, from the
very beginning of the overall processing pipeline, it aims to clean all the collected data and
to measure and evaluate the quality of both the connected data sources and their produced
data through the exploitation of ML-based data-processing techniques. To successfully
achieve that, the optimized pipeline exploits two (2) separate modules, the Data Cleaner
subcomponent and the Data Qualifier subcomponent. Sequentially, in the harmonization
phase, the interpretation and transformation of the collected, cleaned, and reliable data take
place through the implementation and utilization of the Data Harmonizer. This component
incorporates two (2) subcomponents, the Ontology-Based Terminology Mapping service
and the Data Mappers, to further transform the cleaned and reliable data and to provide
interoperable, harmonized, and transformed HL7 FHIR standard data, as depicted in
Figure 7.

Figure 7. Data Harmonizer internal subcomponents.

More specifically, the overall workflow of the Data Harmonizer can be encapsulated
through the below steps:

• Cleaned and qualified data are semantically analyzed and mapped to concepts and
instances of a domain-specific ontology that has been provided in the context of the
iHelp project [32];

• Data are standardized into the project’s common data model and domain standard;
• The PyMedTermino [42] and UMLS metathesaurus [43] are utilized, offering a wide

collection of terminology services. The different terminologies, coding standards, and
vocabularies that are offered through these systems are utilized to further transform
the medical terms between terminologies in a controlled and supervised manner;
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• Finally, standardized and harmonized data are fed into the Primary and Secondary
Data Mappers to be transformed into the HHR FHIR-compliant format. The actual
realization of the conceptual HHR model is performed with the assistance of the FHIR
mappers. The implementation of them is based on the Java library of HAPI FHIR and
exposes APIs that the Data Harmonizer component can consume [44].

To this end, the proposed pipeline facilitates the standardization and qualification of
the heterogeneous primary and secondary data coming from multiple health-related sources
and provides data in a unique and globally recognized standard and format such as the HL7
FHIR. At this point, it should be noted that the HL7 FHIR standard employs a structured
approach for representing healthcare information, particularly in the context of numerical
and categorical data in the primary data. In that context, for quantitative data, such as
clinical measurements or laboratory values, the valueQuantity field within the Observation
resource encapsulates both the numeric parameter and its corresponding units, adhering to
a standardized system. On the contrary, categorical information, including diagnoses and
patient conditions, is encoded using the valueCodeableConcept field, ensuring semantic
interoperability by referencing standardized coding systems like SNOMED, which is used
in the scope of this research work. This standardization approach can be also applied to
the secondary data that are collected and processed and particularly to the questionnaire
responses. For capturing this type of patient-reported information, HL7 FHIR includes
the Questionnaire and QuestionnaireResponse resources, which can be used to handle
both numerical and categorical responses by using the answer field. This systematic
and standardized representation allows for a robust and consistent exchange of both
quantitative and qualitative healthcare data, promoting interoperability across diverse
healthcare systems.

3. Results

In this section, the performance of the core components of the proposed mechanism
is analyzed together with its potential for introducing integrated and standardized data
in HHR format. In deep detail, this article focuses on evaluating the effectiveness of the
operation of the different subcomponents integrated in the Data Ingestion Pipeline of the
iHelp platform. It should be noted that the evaluated components have been developed in
Java SE and Python programming languages, showcasing the generalization and improved
integration of the introduced mechanism with widely used frameworks.

3.1. Use Case Description

To evaluate the proposed mechanism, both primary and secondary data from the
HDM pilot have been utilized. The HDM use case is focused on predicting the risk of pan-
creatic cancer, while secondary data are gathered through the utilization of the Healthentia
platform to analyze the impact of changes in lifestyle and habits on the identified risk
factors. At its initial stage, this pilot obtained patients’ medical records from the hospital’s
local Electronical Health Records (EHRs). The data extraction was performed in CSV files
and following the Observational Medical Outcomes Partnership (OMOP) Common Data
Model (CDM) [45]. It should be noted that these data represent patients that are separated
into two main groups:

• Individuals that are directly involved in the iHelp project for further monitoring and
follow-up by the HCPs of the HDM. Out of these individuals:

◦ Six are patients already diagnosed with pancreatic cancer. In the context of this
pilot study, they provided their medical records and one single blood sample
for the performance of epigenomic analytics;

◦ Thirteen are patients without pancreatic cancer. In addition to their medical
records, a blood sample was provided every 3 months, and lifestyle data were
collected through a 9-month monitoring phase based on the wearable devices
and periodic questionnaires through the Healthentia platform.
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• Individuals not directly inside the program:

◦ An extraction of medical records from around 90 thousand patients is anonymized
and provided to the iHelp platform.

It should be noted that, in the HDM pilot, no bias has been identified in the examined
data, and the 90 thousand patients represent the full population of the geographic area
that is assigned to the hospital. The data that are ingested in the iHelp platform are fully
anonymized, and the study is performed under the approval of the hospital’s Ethical
Committee. Following the OMOP standard, a collection of seven (7) different primary
datasets is produced, provided, and examined in the context of this pilot study based on the
respective information, as presented in Table 1. A sample from one these primary datasets
related to the different measurements is also depicted in Figure 8.

Table 1. HDM dataset descriptions.

Dataset Name No. of Records No. of
Attributes

Dataset Size (in
MB) Dataset Type

Measurements 3,252,920 17 564.1 CSV

Observations 339,925 14 55.4 CSV

Person 99,019 8 2.8 CSV

Drug Exposure 5,411,914 13 779.9 CSV

Condition 1,833,512 14 248.5 CSV

Visit Occurrence 5,205,819 13 727.5 CSV

Procedure 602,351 12 147.5 CSV

Figure 8. A sample of the Measurements dataset.

3.2. Data Collection and Ingestion

The Data Collection and Ingestion mechanism in the iHelp platform encompasses all
tasks associated with collecting, validating, and ingesting both primary and secondary
data into the iHelp platform. The primary data are directly captured and ingested by
the Data Capture Gateway through the implementation and utilization of different data
connectors. Afterwards, the initial validation of the integrity of the data is achieved
through the utilization of the Avro Schema, which also requires the use of an Avro Schema
Registry, which allows only the transmission of the number of bytes that concerns the
data themselves, thus minimizing the overall size of the data elements, as well as the time
needed for their ingestion and overall processing [46]. For instance, the time that is needed
for the whole Measurements dataset from its initial capture to its final transformation as
HHR standardized data and storage in the platform’s data storage is 5 min and 26 s. The
schema of the dataset is transformed by the Data Capture Gateway in an Avro Schema
compatible format, which boosts the interoperability and has a well-known standard to be
further used by other functions involved in the data ingestion and processing process.

Moreover, the intermediate software components that formulate the Data Ingestion
Pipeline are domain and schema agnostic. This means that a flexible ingestion pipeline
is established as each function can consume and produce data from corresponding Kafka
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topics in a dynamic manner and without any prior knowledge of the data. The respective
information is passed to each subcomponent through these messages, enabling all subcom-
ponents to communicate using this common data format. This format is designed to be
highly interpretable and in such a way in order to be irrespective of the dataset, schema, and
type of data that are contained in these messages. An example of such messages is depicted
in Figure 9, which shows a message with primary data derived from the Measurements
dataset with a batch of two elements, as well as a message containing secondary data
relating to physiological measurements as derived from the Healthentia platform.

Figure 9. Messages interexchanged between the components of the Data Ingestion Pipeline:
(a) message including primary data; (b) message including secondary data.

The most important attributes of these JSON objects and messages are presented
below:

• datasourceID: the name of the data provider;
• datasetID: the name of the dataset;
• schema: the schema of the value of the tuples, defined in Avro Schema;
• schemaKey: the schema of the key of the tuples, defined in Avro Schema;
• batchSize: the batch size;
• currentBatchStart: the index of the first element of the batch in the overall dataset;
• currentBatchEnd: the index of the last element of the batch in the overall dataset;
• confParameters: the configuration parameters required by each of the intermediate

functions. It includes an array of data parameters packed in JSON format, where each
JSON can be interpreted by the corresponding function. These parameters are being
passed to each of the intermediate functions, and each one of those can retrieve the
ones of their interest. For instance, specific cleaning rules have been set by the data
provider concerning specific data attributes, as depicted in Figure 9a. These rules
are consumed by the Data Cleaner to perform the necessary cleaning and validation
actions on the data;

• values: a list of the exploitable data and their different values per each record.

These messages are exchanged between different subcomponents of the Data Ingestion
Pipeline by utilizing the Kafka message broker, as analyzed before.

However, a slightly different procedure is followed for the collection phase of the sec-
ondary data. These data are initially collected using the Healthentia mobile application [37]
rather than directly fetched by the Data Capture Gateway. It is important to mention that
the Healthentia mobile application gives access to answers to different questionnaires that
are used for self-assessment, while activity trackers collect individuals’ physiological and
exercise data. The data collected and processed in the context of this paper are related to
a six (6)-month period, i.e., from 1 June 2022 to 31 December 2022, monitoring the daily
activities of the individuals participating in the study. The questionnaires are selected by
HCPs and are defined in the Healthentia portal, together with the timing used for pushing
them to patients automatically. More specifically, Figure 10 depicts the questionnaires
defined for the HDM study, as well as how such a questionnaire is answered by a patient
in the Healthentia mobile app.



Sensors 2024, 24, 1739 15 of 24

Figure 10. Using questionnaires in the HDM study. (a) List of defined questionnaires on the
Healthentia portal; and (b) a patient answering the Fagerstrom questionnaire in the mobile app.

The different widgets accessible from the main dashboard of the mobile app (see
Figure 11) give access to data entry functionalities and visualizations of data collected from
activity trackers (physical activity, sleep, and heart info), other devices (like scales), and the
nutrition widget, as shown in Figure 11.

Regarding the information related to the answers, exercises, and physiological data, a
specific connector has been implemented in the Data Capture Gateway. Depending on the
type of dataset, it connects to the corresponding REST API provided by Healthentia and
receives the respective list of information.

3.3. Data Standardization and Qualification towards Holistic Health Records

This sub-mechanism is evaluated on real-world primary and secondary data which
have been provided in the context of the iHelp project [32], where clinical data of pancreatic
cancer patients are analyzed to provide personalized recommendations.

At first, the Data Cleaner component is utilized as an integrated component of the
Data Standardization and Qualification mechanism, and its main objective is to deliver the
software implementation that provides the assurance that the provided data coming from
several heterogeneous data sources are clean and complete, to the extent possible. This
component is designed to minimize and filter the non-important data, thus improving the
data quality and importance by implementing ML techniques, such as data imputation
and outlier detection and deletion. Hence, different data manipulation and cleaning
techniques were performed to handle missing values and any other inconsistencies in the
examined datasets. In deeper detail, the imputation step was implemented by using the
K-Nearest Neighbor (KNN) algorithm to fill in the missing values in the respective columns,
taking into consideration the different groups of patients based on their age and sex type
for improved performance and appropriate imputation of missing values considering
demographic-specific patterns [47]. Handling the mixed data types was another essential
step in the data-processing pipeline for identifying and rectifying columns with mixed data
types (e.g., numerical and string values), ensuring data uniformity. In addition, the outlier
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detection and removal phases were implemented through the utilization of two different
techniques to effectively handle all different values. More specifically, univariate outlier
detection using the z-score threshold [48] and the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [49] algorithm were utilized and evaluated in relation
to the secondary and primary data, respectively, to identify and handle anomalous values
that could skew analysis results. The reason behind this approach is that DBSCAN is more
applicable to cluster analysis data applications than to anomaly detection. The latter is
preferred for the secondary data that were collected through the wearables to identify
anomalies in the measurements provided by these sensors, while the DBSCAN algorithm
is applied to the primary data to leverage the information that can be derived from the
analysis of patient-specific groups based on their demographic characteristics. To address a
portion of these challenges, referring mainly to reducing the complexity and facilitating
the analysis of large datasets, the applied ML-based data-cleaning procedures attempt to
improve the data quality and to enhance the analytical outcomes since wrong data can drive
an organization to wrong decisions and poor conclusions. To this end, this component seeks
to assure the incoming data’s accuracy, integrity, and quality. The results of its application
are presented in the below table, i.e., Table 2.

Figure 11. Entering and visualizing data in the Healthentia mobile app.
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Table 2. Overall cleaning results.

Dataset Name Initial Records Erroneous
Records Corrected Records Deleted Records Faulty Data (%)

Measurements 3,252,920 1049 1011 38 0.0011%

Observations 339,925 139 122 17 0.005%

Person 99,019 144 119 25 0.025%

Drug Exposure 5,411,914 635 598 37 0.00068%

Condition 1,833,512 336 325 11 0.0006%

Visit Occurrence 5,205,819 208 169 39 0.0007%

Procedure 602,351 180 162 18 0.0029%

Exercises
Secondary Data 5344 3 3 0 0.00%

Physiological
Secondary Data 22,136 9 6 3 0.0135%

Questionnaire
Secondary Data 2721 0 0 0 0.00%

According to the Data Cleaner results, only a few dataset records were eventually
dropped since the initial datasets provided by the EHR system of the hospital had good
consistency overall and a low number of empty or erroneous values, especially in features
with high importance in the final result and analysis. The same applies in the collection
of physiological and questionnaire secondary data from the wearables and the mobile
application. Small disparities were observed in the physiological and exercise data that
were collected through the wearables. These erroneous observations relating to the data
were related to false measurements received with regard to steps, sleep, and other lifestyle
habits. It is also worth mentioning that the questionnaires are based on multiple answers
and Likert scale answers; thus, no errors were observed. As depicted in the above table,
our ML-based data-cleaning techniques successfully achieved the correction of erroneous
records, resulting in more reliable and qualified data that further enhanced the capabilities
and accuracies of the analytical models. Generally speaking, the purpose of a health policy
is to provide standardization in daily operational activities. Given that a health policy is
intended to establish the basis for the delivery of safe and cost-effective quality care, only
the most understandable and clearly set data instances should be provided.

Afterwards, the Data Qualifier component classifies data sources as reliable or non-
reliable both during the primary and secondary data injection. A data source is classified
as reliable when the datasets received from this source are considered correct; otherwise, it
is considered as non-reliable. To test this feature, this component acquires both the cleaned
and faulty data produced by the Data Cleaner component. The results from the utilization
of this subcomponent in the HDM use case are presented in Table 3.

The Data Qualifier subcomponent is divided into the two different sub-functions
shown. The Dataset Qualifier sub-function processes the cleaned dataset and the faulty
data to evaluate the dataset reliability. For that purpose, it calculates the size of the dataset
and takes into account the number of cleaned data in that dataset. The reliability is provided
for the whole dataset. These values range from 0 to 1, where 1 is the highest reliability and
0 the lowest. First, it calculates the reliability of each column; per column, the reliability is
one minus the total number of faulty values divided by the total number of occurrences of
the column in the dataset. Afterwards, the Datasource Qualifier sub-function calculates
the reliability of the specific data source that produces the data. For instance, a wearable
device monitors the heartbeats, sleeping time, number of steps, and blood pressure, among
other metrics. If the heartbeat values are considered faulty for a batch of data or period
of time, the heartbeat sensor is considered not reliable. As depicted in the above table, all
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the processed datasets are of high quality, thus highlighting the overall acceptance and
reliability of the data sources and ensuring improved decision making and performance of
the analytical results.

Table 3. Data Qualifier outcomes.

Dataset Name Data Source Dataset Reliability Score Datasource Reliability Score

Measurements HDM Hospital 98% Reliable

Observations HDM Hospital 97% Reliable

Person HDM Hospital 95% Reliable

Drug Exposure HDM Hospital 98% Reliable

Condition HDM Hospital 98% Reliable

Visit Occurrence HDM Hospital 97% Reliable

Procedure HDM Hospital 96% Reliable

Secondary Data (derived from
Healthentia) Healthentia Platform 99% Reliable

With regard to the Data Harmonizer component, initially, it translates the hospital
data coming in into SNOMED concepts, and these concepts are fed to the mappers for
further analysis. Coupled with the utilization of the FHIR ontology, the Data Harmonizer
component provides a set of intelligent services to manage terminology resources and make
the data semantically interoperable. In addition, it provides a set of operations for widely
used and known medical terminologies used for the coding of medical knowledge, such as
LOINC [50], ICD-10 [51], and SNOMED, which further enhance the information structures
that are provided as outputs from the Data Harmonizer component. In addition, it provides
the flexibility to the whole iHelp platform to utilize new releases of terminologies and
to provide mappings or translations between different terminologies and standards. The
latter is addressed through the extensible searching and querying functionality for specific
elements of the well-established terminologies and standards. The mappers receive as
input the harmonized and semantic interoperable data and then transform these concepts
into the appropriate FHIR elements, grouping the elements as needed. Finally, an FHIR
Bundle containing the mapped data is sent back to the Data Harmonizer for fusion of the
HHR-based modeled data to the platform’s data storage. A sample harmonization of raw
primary data to HHR data is depicted in Figure 12.

Figure 12. Sample transformation of raw primary data to the HHR format via the iHelp mappers,
where (a) represents the raw primary data as they are collected by the hospital; (b,c) depict the data
transformed to HHR format.
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The same approach and transformation are followed in the case of the ingestion of
secondary data. These data represent lifestyle and behavioral aspects of the patients’ life.
These data are gathered through wearable devices, as well as answers to questionnaires and
nutrition-related information. In Figure 13, a sample harmonization of raw secondary data
to the standardized HHR model is depicted. More specifically, in this figure (Figure 13), a
sample transformation of raw secondary data to the HHR format via the iHelp mappers is
represented, where (a) represents the raw secondary data related to the daily activity and
as they are collected by the individual wearable device; and (b,c) depict the daily activity
data of the individual transformed to HHR format mapped to an Observation resource
type. In that context, the Data Harmonizer subcomponent implements all the processes
that utilize widely used and known coding standards and terminologies coupled with
domain-specific ontologies. It also further facilitates the aggregation of the distributed
heterogeneous, cleaned, and qualified data and provides the final harmonized data mapped
into the globally recognized FHIR standard and the common HHR format.

Figure 13. Sample transformation of secondary data to HHR format, via the HHR secondary data
mapper, where: (a) represents the raw secondary data as they are collected by the wearable device;
(b,c) depict the data transformed to HHR format.

4. Discussion

The overall iHelp platform contributes to the shift from acute-based to evidence-based
care by providing improved access to patient-related information. Through the integra-
tion of innovative data management, ML, and Semantic Web techniques, HCPs can have
access to advanced knowledge related to each patient they are treating. In particular, the
utilization of patients’ integrated data, in the form of HHRs, is facilitated through the pro-
posed mechanism and acts as a crucial preliminary step towards the provision of improved
clinical knowledge, integrated information about the patient’s status, and non-fragmented
and interoperable healthcare data. The latter can result in an improved understanding
of underlying causal risk factors for pancreatic cancer as these integrated, qualified, and
standardized data can be leveraged in later stages from advanced AI models to provide
decision support in the form of early risk predictions as well as personalized prevention
and intervention measures. Consequently, this can lead to improved identification and
understanding of the key risk factors contributing to the development of pancreatic cancer,
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which are typically difficult to study only through primary data. Among their main advan-
tages, the integrated subcomponents of the iHelp Data Ingestion mechanism allow HCPs
to synchronously monitor the progress of their patients and achieve better coordination of
their care responsibilities through the provision of integrated and HHR-transformed data.
To this end, this mechanism gives the HCPs a more effective approach, allowing them to
administer care through better planning, to better manage decisions and mitigation plans
through the continuous and substantive flow of integrated health-related data, to better
prepare for providing treatment and recommendations, and to better manage the integrated
and harmonized health data in the HHR format. Based on the availability of HHRs, the
analysis and identification of the causal risk factors become easier and more effective,
contributing to increased understanding of pancreatic-cancer-related risks, improved early
diagnosis, and the provision of enhanced personalized prevention and mitigation plans.

Among its indirect impacts, by effectively gathering data both from individuals’ EHRs
and personal IoMT devices, collective community knowledge could be extracted, achieving
a significant dual goal: (i) fusing, collecting, and analyzing information from multiple
sources to generate valuable knowledge and actionable insights for the HCPs, and (ii) facil-
itating the development of personalized and efficient prevention plans and decisions [52].
The impact of such solutions using community knowledge, which is collective, in the do-
main of healthcare is apparent since information sharing has changed its overall approach
towards better diagnostics and improved QoL [53].

It is worth mentioning that the overall iHelp platform has been designed and imple-
mented in such a way that it allows several cases of extensibility. The platform’s validation
and evaluation are performed in five (5) different use cases and scenarios in the context
of the iHelp project. At first, it allows for extensibility in terms of new datasets since the
functionalities of the Data Collection and Integration and Standardization and Qualification
building blocks, presented in this research work, enable new datasets to be directly ingested
into the internal datastore by following a standard path, finally being represented in the
platform as HHRs. Apart from this, the platform allows for extensibility in terms of new
data sources, as demonstrated through the integration of the Healthentia mobile application
and wearable devices as new data sources, from which data can be gathered and utilized
for decision making. As soon as these new data sources are identified, the overall data
ingestion flow can be followed, as described in the abovementioned extensibility case.

In this paper, only a specific use case and data from one hospital were examined, veri-
fying the functionalities of the platform, which could be considered a potential limitation.
Targeting this, and concerning future research and further updates on the introduced mech-
anism, it is among future plans to evaluate the platform with more use case scenarios and
different types of data, e.g., from other cancer types. Furthermore, we aim to disseminate
the outcomes of the iHelp project to receive valuable feedback on the platform and its usage
scenarios and to adapt the implemented components to the different needs of the healthcare
stakeholders. The latter will facilitate the development of a holistic and multidisciplinary
Health Technology Assessment (HTA) approach considering multiple parameters and stan-
dardized metrics and KPIs. It will combine outcomes of Clinical Studies and Randomized
Control Trials (RCTs) with Real-World Evidence (RWE) from the different use cases and
scenarios, on which the platform will be utilized and evaluated in the context of the iHelp
project [32].

5. Conclusions

In the realm of healthcare, today’s HCPs are presented with remarkable opportunities
to gather and manage comprehensive digital health records, drawing from various sources,
including records of individuals’ lifestyle behaviors and habits, EHRs, and medical data
repositories. This variety of data has the potential to facilitate a shift towards data-driven
healthcare practices and AI-driven healthcare analytics and decisions. The integration of
AI in the healthcare decision-making (e.g., monitoring, real-time decision support) phase is
still evolving, with persistent challenges related to the interoperability of the data and the
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trustworthiness and explainability of the models when aiming to develop improved and
more interpretable prevention and intervention strategies.

This paper has discussed these challenges and presented solutions that can advance
the state of data-driven personalized decision support systems. The main contribution of
the paper is the introduction of an advanced mechanism for health-related data processing
integrating Semantic Web and ML techniques, also leveraging the potential derived from
the utilization of integrated primary and secondary data in the HHR format. The viability
of this approach has been evaluated through heterogeneous healthcare datasets pertaining
to risk identification and individual monitoring and care planning.

In this paper, the applicability of the introduced mechanism was validated on a specific
use case and with data derived from a single hospital’s EHR system (primary) and one type
of wearable (Garmin devices), which could be considered a potential limitation. Hence, its
further evaluation with data collected from different data providers is among our future
research plans and further updates on the mechanism. The latter will be also performed
in the context of the iHelp project, where the overall platform’s validation and evaluation
are performed in five (5) different use cases and scenarios related to pancreatic cancer.
It should be noted that this is a work in progress, and more results and improvements
will be published in the future after testing it with more healthcare systems and wearable
devices to verify its global applicability. In addition, taking into consideration the ethical
aspects that can be raised within the whole data lifecycle, we focus on the integration
of this mechanism with an advanced data-logging mechanism and explainable AI (XAI)
techniques, such as the LIME framework [54] and decision trees [55], to provide clear and
interpretable insights into the data-cleaning, qualification, and standardization processes
that are applied in our proposed end-to-end data-processing pipeline. Finally, with regard
to the introduced ontology, it is among our future plans to refine, expand, and dynamically
update it. Our intention is to finalize and publish the ontology, making it available for
further exploitation by the research and healthcare communities and aiming to foster
cross-disciplinary collaboration between experts. In that direction, we also are pursuing
the adoption of the HHR format and its corresponding suggested coding system as an
official FHIR Extension. Through these steps, our approach and mechanism will offer a
powerful tool for the development of patient-centric, effective, and sustainable solutions in
the healthcare domain.
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