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Abstract: The fusion of infrared and visible images is a well-researched task in computer vision.
These fusion methods create fused images replacing the manual observation of single sensor image,
often deployed on edge devices for real-time processing. However, there is an issue of information
imbalance between infrared and visible images. Existing methods often fail to emphasize temperature
and edge texture information, potentially leading to misinterpretations. Moreover, these methods are
computationally complex, and challenging for edge device adaptation. This paper proposes a method
that calculates the distribution proportion of infrared pixel values, allocating fusion weights to
adaptively highlight key information. It introduces a weight allocation mechanism and MobileBlock
with a multispectral information complementary module, innovations which strengthened the
model’s fusion capabilities, made it more lightweight, and ensured information compensation.
Training involves a temperature-color-perception loss function, enabling adaptive weight allocation
based on image pair information. Experimental results show superiority over mainstream fusion
methods, particularly in the electric power equipment scene and publicly available datasets.

Keywords: deep learning; image fusion; infrared and visible sensor images; lightweight model;
electric power equipment

1. Introduction

The fusion of infrared and visible images is crucial in computer vision. Real-world
applications are often influenced by factors such as lighting and weather conditions. Using
visible or infrared images alone may struggle to meet the diverse requirements of different
environments. Combining these two spectral images provides a more comprehensive
scene understanding, aiding in improving the accuracy of various computer vision tasks
such as object detection, recognition [1], and tracking [2]. In practical applications, image
fusion is also employed in fields like medical diagnostics, surveillance systems, military
reconnaissance, and providing essential support for a variety of computer vision tasks in
different scenarios [3].

In recent decades, researchers have developed traditional image fusion methods [4],
utilizing mathematical transformations to convert source images into the transform domain
for measuring activity levels.

In recent years, the rapid development of deep learning has stimulated exploration
in data-driven approaches for image fusion within the field [5]. Based on the utilized
benchmarks, mainstream data-driven methods can be roughly categorized into four types:
auto-encoder (AE)-based methods, convolutional neural network (CNN)-based methods,
generative adversarial network (GAN)-based methods, and transformer-based methods.

There are notable differences between power equipment scenes and daily life scene
characteristics. Power equipment scenes typically include substations, power transmis-
sion lines, and power towers, which generate significant amounts of heat, resulting in
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prominent thermal features in infrared images. Visible images, on the other hand, can
reveal the appearance and structure of the power equipment. In contrast, daily life scenes
encompass common objects, such as people, buildings, and natural landscapes, where the
thermal features are relatively less prominent. The scene information is primarily captured
through visible images with existing research mainly focusing on everyday scenes such as
transportation and roads [6], with limited and relatively weak studies dedicated to power
equipment scenes. In this study, the proposed fusion method can effectively address power
equipment scenes with prominent thermal features.

In summary, the primary contributions of this study can be summarized as follows:

• Based on a comparative study focusing on power equipment and other heat-emitting
scenarios, the pivotal role of temperature information in the fusion process of these
scenes was confirmed. With this understanding, TGLFusion introduced a temperature-
aware optimization weight allocation module tailored specifically for infrared images.
This module calculates multispectral weights using a temperature distribution mech-
anism based on high-temperature ratios, aiming to represent the contributions of
source images during the fusion process. Multispectral weights are adaptively as-
signed to more effectively fused image information. Guided by the temperature loss
function, this model optimizes and integrates fusion images based on the thermal
information from infrared images, significantly increasing the information content in
the fused images.

• The backbone network of this model is composed of the MobileBlock framework and
the MICM (Multispectral Information Complementary Module). During the feature
extraction process, a feature-enhancement attention mechanism extracts and enhances
unique features in various spectra. This approach effectively reduces redundant
information while preserving complementary information.

• Through objective and subjective experiments, TGLFusion was compared with six
mainstream fusion models, demonstrating significant advantages in the evaluation
metrics for power equipment image fusion. This validates the importance of our
model in the field of power equipment image fusion.

These contributions collectively enhance the understanding and effectiveness of image
fusion in the context of power equipment, offering valuable insights and a practical model
for improving the image quality and information extraction in this domain.

2. Related Work

In recent years, significant progress has been made in methods that utilize deep
learning to construct fusion network models for infrared and visible image fusion [7]. These
methods can be broadly classified into four categories: CNN-based methods, autoencoder-
based methods, GAN-based methods, and transformer-based methods.

2.1. CNN-Based Methods

Based on our understanding, Liu et al. [8] were among the pioneers of CNN-based
methods for visible and infrared fusion. In their research, they employed a Siamese CNN to
generate a set of weight maps and conducted Laplacian pyramid decomposition on source
images, along with Gaussian pyramid decomposition on the weight maps, subsequently
conducting fusion using a multi-level approach. The training of this model utilized high-
quality images alongside their blurred counterparts, which were created using multiscale
Gaussian filtering and random sampling.

Many unsupervised CNN methods involve the selective utilization of CNN in par-
ticular stages of the process. For instance, Liu et al. [9] segregated source images into
fundamental and intricate elements. They subsequently merged the fundamental elements
employing a weighted summation technique, while the intricate components were fused
using a CNN alongside a multi-layer feature fusion approach. Hou et al. [10] proposed
the VIF-Net, utilizing CNN for feature extraction and image reconstruction. There are
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also unsupervised CNN methods where CNN is applied throughout the entire process.
For example, Xu et al. [11] and Mustafa et al. [12] used CNN in all three stages.

Multiple strategies have been applied to enhance the performance of CNN-based
methods. In 2019, Li et al. introduced residual connections [13], marking a significant
breakthrough in the field. This technique was subsequently adopted by some famous meth-
ods [14], demonstrating a remarkable performance. Another widely adopted technique
for performance enhancement is the integration of attention mechanisms. Various types of
attention mechanisms have been employed, such as channel attention [15] and spatial atten-
tion [16]. Additionally, dense connections, an important innovation introduced by Li et al.
in 2018 [17], were used to enhance representational capabilities within the encoder. Since
then, dense connections have been extensively employed in various methods, significantly
impacting performance improvements.

2.2. Autoencoder-Based Methods

DenseFuse [17] stands out as a groundbreaking autoencoder (AE)-based fusion method.
This technique involves pretraining the AE and employing diverse fusion strategies for
feature integration. Similarly, Raza et al. [18] proposed an AE-based fusion method uti-
lizing a weight map-driven fusion strategy derived through softmax operations based on
extracted features. Additionally, Fu et al. [19] introduced an AE-based approach featuring
dual branches within the encoder.

AE-based methods often train the autoencoder exclusively using RGB images and then
directly apply the trained autoencoder to infrared images [20]. However, this approach
might encounter performance limitations due to the inherent disparities between RGB and
infrared images. To address this challenge, a certain method [21] adopts an alternating
training approach that utilizes both RGB and infrared images to train the autoencoder.

2.3. GAN-Based Methods

In 2019, Ma et al. [22] pioneered the integration of generative adversarial networks
(GANs) into the field of image fusion. This led to a series of GAN-based fusion meth-
ods emerging, establishing this category of methods as crucial and influential within
the domain.

Several strategies have been employed in these GAN-based methods to enhance fusion
performance. For instance, Xu et al. [23] introduced the local binary pattern loss during
training; Xu et al. [24] incorporated residual blocks and skip connections into the generator
architecture, while Fu et al. [25] proposed using dense blocks to enhance the generator’s
information capture capability.

However, these GAN-based methods commonly share a limitation: typically solely
utilizing a single discriminator, which tends to bias the generated fused image toward re-
sembling either visible images [26] or infrared images. In such cases, as adversarial training
progresses, the fused image may lose certain details from the source images. To address this
issue, Ma et al. [27] suggested the utilization of a multi-classification-based discriminator
to establish equilibrium between the distribution of visible and infrared components.

2.4. Transformer-Based Methods

In 2021, transformers made their debut in the realm of image fusion, heralding a series
of transformer-based approaches tailored for visible and infrared fusion (VIF) [28] as well
as general image fusion.

These approaches selectively employed transformers for feature fusion. For instance,
Zhao et al. [28] introduced the DNDT method, employing dual transformers as the fusion
strategy. VS et al. [29] promoted a multi-scale fusion approach employing transformers
to merge local and global information simultaneously. The method was devised with an
encoder for feature extraction from source images and a decoder to produce the fused
image. Liu et al. [30] developed a transformer fusion block that employs focal self-attention
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to combine features derived from a multi-scale encoder. The ultimate fused image is
produced via a decoder that incorporates nested connections.

More recently, Rao et al. [31] proposed a visible and infrared fusion (VIF) method
combining transformers with generative adversarial networks (GANs). In this method,
the generator integrates both spatial and channel transformers to form a transformer
fusion module. Additionally, Ma et al. introduced SwinFusion [32], a general image
fusion method based on the Swin transformer. They elucidated the critical role of global
information in image fusion and provided visualizations of its impact. To our knowledge,
SwinFusion represents the first explicit study within the image fusion field that emphasizes
the significance of global information.

3. Proposed Method

3.1. Temperature-Guided Mechanism Module

Given the infrared image Iir and visible image Ivi, the fused image I f can be generated
through feature extraction, fusion, and reconstruction. To improve the fusion performance,
TGLFusion introduced a newly designed loss function that considers the temperature
information of the infrared image to constrain these three steps.

The areas with higher temperatures indicate more severe heating conditions, which
should be preserved and highlighted in the fused image. For infrared images, there is a
direct proportional relationship between pixel values and temperature [33], and regions
with high pixel values indicate areas with high temperatures.

Considering that temperature imbalance affects the distribution of information, a temperature-
guided mechanism module has been developed to estimate the high-temperature proportion of
the infrared image. Given an infrared image Iir, the high-temperature proportion is defined in (1).

r =
count(Pi ≥ T)

N
, 1 ≤ i ≤ N (1)

where count(·) is used to count the number of elements that satisfy the specified condition.
Pi represents the i-th pixel in the entire infrared image. T is the high-temperature threshold,
and N represents the total number of pixels in the image. The high-temperature ratio refers
to the ratio between the number of pixels in an infrared image with grayscale values greater
than or equal to T and the total number of pixels in the entire image.

The temperature information reflects the richness of details in the infrared image,
as the high-temperature areas contain more meaningful information. Hence, through a
temperature-aware weight distribution mechanism, the high-temperature proportion is
utilized to calculate the multispectral weights representing the source contributions. To
simplify the computation, our weight allocation mechanism adopts the following straight-
forward function definitions in (2) and (3).

Wir =
1

1 + e−α(r−β)
(2)

Wvi = 1 − Wir (3)

where Wir and Wvi represent the contributions of the infrared image and visible image to the
fused image, respectively. α is an amplification factor to enlarge the infrared contribution,
and β is a threshold to calibrate whether the high-temperature proportion is high or low.

In this paper, the testing conducted on the infrared images of the MSRS dataset [6]
revealed that images with richer infrared information have calculated r greater than 30,
while images with less infrared information have calculated an r less than 30. Therefore,
β was set to 30 as a criterion to measure the richness of infrared information, indicating
that, if the high-temperature regions occupy 30% of the total infrared image, the infrared is
considered to contain more meaningful information. Thus, the contribution of the infrared
is increased based on (2). Conversely, if the high temperature areas constitute less than
30%, the visible spectrum will make a larger contribution.
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3.2. Model Structure

The forward propagation pathway of the model consists of a feature extraction block
and a feature reconstruction block in Figure 1 and Table 1.
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Figure 1. Model structure.

Table 1. Feature extractor and image reconstructor blocks.

Feature Extractor Block Image Reconstructor Block

Layer Input
Channels

Output
Channels Layer Input

Channels
Output

Channels

Layer1 Conv 1 × 1 1 16 MobileBlock 128 64
Layer2 MobileBlock 16 32 MobileBlock 64 32
Layer3 MobileBlock 32 64 Conv 1 × 1 32 1

In the feature extraction block, encoders are set up to extract high-level representations
from the visible image and infrared image, respectively. Each encoder consists of two
MobileBlock convolutional structure blocks and MICM. Given the infrared image Iir and
visible image Ivi, the encoders extracted high-level infrared feature Fir and visible feature
Fvi, and then passes through two 1 × 1 convolution layers and two fully connected layers to
obtain global features Gir and Gvi. Finally, the channel concatenation is utilized to integrate
Fir · Gir and Fvi · Gvi.

In the feature reconstruction block, a decoder is set up to fuse and reconstruct the image
from the concatenated high-level visible and infrared features. The decoder consists of two
MobileBlock convolutional blocks linked by a 1 × 1 convolutional block. After convolution
through these three structures, the concatenated features extracted by the encoder are
transformed into an image with the same channels and dimensions as the input images.
This is the final fused image obtained through the forward propagation pathway.

Along with the input visible and infrared images, the edge contour texture information
Eir and Evi are extracted from them using Canny edge detection and threshold filtering,
respectively. These data are utilized to fit the edge texture loss function during backpropa-
gation. Furthermore, the high-temperature pixel information is obtained from the infrared
image via threshold segmentation. This is leveraged to calculate the pixel weight values
Wir and Wvi for the infrared and visible images. These weights are applied when fitting the
temperature color loss function during backpropagation.
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MobileBlock and MICM are both implemented using PyTorch and integrated into
TGLFusion. In terms of model lightweighting, MobileBlock significantly reduces the
model’s footprint and computational load by adopting a lightweight convolutional struc-
ture. Regarding information compensation, MICM obtains spectral difference features
by subtracting one spectral feature from another, amplifies and highlights the difference
features, and adds them back to the original spectral features. At this point, both spectral
features include information compensation for each other, ensuring the mutual comple-
mentarity of information in the subsequent fusion process.

3.3. MobileBlock

In this section, a convolutional block structure named MobileBlock for the image
fusion model is designed, as shown in Figure 2 and Table 2.

1×1 Expansion Conv
BatchNorm

H-swish
SE

1×1 Projection Conv
BatchNorm

H-swish

3×3 Depthwise Conv
BatchNorm

H-swish

Element-wise Addition

Figure 2. MobileBlock.

Table 2. Layer Operations.

Input Layer Operator Output

c × h × w Expansion Conv 1 × 1 conv2d, BN, H-swish (tc)× h × w
(tc)× h × w Depthwise Conv 3 × 3 conv2d, BN, H-swish (tc)× h × w
(tc)× h × w Projection Conv 1 × 1 conv2d, BN, H-swish c × h × w

The MobileBlock structure consists of five modules: dilated convolution layer, depth-
wise separable convolution layer, mapping convolution layer, residual connection, and SE
layer [34]. The first module is the dilated convolution layer. It expands the number of
channels of the input feature map by a dilation factor t through a 1 × 1 convolution ker-
nel. This introduces more channel information with a relatively low computational cost.
In the depthwise separable convolution layer, each input channel is convolved with an
independent 3 × 3 kernel, generating an intermediate feature map with the same number of
channels. This allows feature extraction from each channel without additional computation.
Next, the mapping convolution layer performs a 1 × 1 convolution on the intermediate
feature map to map the channels to the desired output channels. This is equivalent to
linearly combining each pixel across channels to fuse information. The residual connection
adds the input and the output of the three convolution layers through a 1 × 1 convolution.
This facilitates feature reuse and strengthens representational capacity.

3.4. MICM

Additionally, as shown in Figure 3, a multispectral information complementary mod-
ule (MICM) was designed to amplify the differences between infrared and visible images.
The difference information is then, respectively, added to their own features to achieve the
complementary module. The multispectral information complementary module can be
defined in (4) and (5).

F̂vi = Fvi ⊕ ((Fir − Fvi)⊗ AP(FC(Fir − Fvi))) (4)

F̂ir = Fir ⊕ ((Fvi − Fir)⊗ AP(FC(Fvi − Fir))) (5)

where AP(·) denotes the average pooling operation, compressing the difference map into a
channel descriptor vector by calculating the mean of each channel. FC(·) represents two
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fully connected layers with ReLU activations, which generate channel weights after the two
FC layers. ⊗ refers to matrix multiplication, multiplying the original difference map with
the channel weights to obtain an amplified difference map. ⊕ indicates a matrix addition,
finally adding the enhanced difference map back to the feature maps.

Figure 3. Multispectral information complementary module.

3.5. Loss Function

To facilitate our progressive fusion framework to adaptively integrate meaningful
information based on temperature conditions, an innovative temperature color perception
loss is designed. Temperature color perception loss LTC is precisely defined as Equation (6).

Where Lir
int and Lvi

int represent the intensity losses for the infrared and visible images,
respectively. Wir and Wvi are the temperature-aware chromatic weights. The intensity
losses are specifically defined as shown in Equations (7) and (8).

LTC = Wir · Lir
int + Wvi · Lvi

int (6)

Lir
int =

1
HW

∥∥∥I f − Iir

∥∥∥
1

(7)

Lvi
int =

1
HW

∥∥∥I f − Ivi

∥∥∥
1

(8)

where H and W are the height and width of the input images, and ∥·∥1 denotes the L1 norm.
Indeed, the intensity distribution of the fused image ought to retain consistency across
various source images corresponding to different temperature heat patterns. Therefore,
the multispectral weights Wir and Wvi are used to modulate the intensity constraints for
the fused image.

Additionally, the aim for the fused image is to simultaneously maintain optimal
temperature color distribution and abundant texture details. Therefore, both maximum
pixel loss and texture loss are introduced, defined as shown in Equations (9) and (10).

Lmax P =
1

HW

∥∥∥I f − max(Iir, Ivi)
∥∥∥

1
(9)

Ledge =
1

HW

∥∥∥E f − Eir − Evi

∥∥∥
1

(10)

where max(·) denotes element-wise maximum selection, and E denotes a binarized edge
map extracted by the Canny operator, which is used to measure the textural information of
an image.

4. Experiment

4.1. Dataset Construction and Experimental Settings

In this section, experiments were conducted to validate the proposed fusion method
in two different scenarios: using a publicly available dataset and a self-constructed dataset
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focused on electric power equipment. After providing detailed descriptions of the exper-
imental settings for both the training and testing phases, multiple ablation studies were
performed to investigate how various components of the proposed fusion network influ-
ence performance. Subsequently, qualitative comparisons with other existing algorithms
were conducted, and multiple performance metrics were utilized to objectively evaluate
the effectiveness of the fusion framework. TGLFusion was implemented in a programming
environment using PyTorch (created by Facebook AI Research and sourced from Menlo
Park, CA, USA) and executed on an NVIDIA 3090Ti GPU (manufactured by NVIDIA
Corporation and sourced from Santa Clara, CA, USA).

4.2. Settings in Training and Testing Phase

In the first training experiment scenario, TGLFusion was trained using the Infrared and
Visible publicly available dataset (MSRS). Ref. [6], which consists of 221 images. The dataset
was augmented to 4320 pairs of 128 × 128 images using data augmentation techniques such
as random flipping, rotation, scaling, cropping, and brightness adjustment. In the second
experimental scenario, the dataset used is a self-constructed dataset consisting of 752 pairs
of infrared–visible images of power equipment. TGLFusion was trained for 100 epochs
using the Adam optimizer, with each epoch randomly sampling 400 pairs of images from
the dataset and a batch size of 4. The learning rate was initialized at 0.001 and gradually
reduced to 0.0001 after 80 epochs. In the testing scenario, the test images consisted of
20 image pairs sourced from the Infrared and Visible Light publicly available dataset
(TNO) [35] and 50 selected image pairs from our self-constructed electric power equipment
dataset. The fusion algorithm was objectively evaluated using six image evaluation metrics.
Finally, TGLFusion was compared against other algorithms, including DenseFuse [17],
FusionGAN [22], PMGI [5], DDcGAN [36], SeAFusion [37], Deepfuse [38], MDLatLRR [39],
GTF [40], and the GANMCC [27] in a comparative experiment.

4.3. Tuning of Hyperparameters

In this section, the effectiveness of the threshold segmentation method is first ana-
lyzed by adjusting the size of T to determine the optimal value, as illustrated in Figure 4.
Following that, the impact of adjusting the value of α on the relative weight of infrared and
visible features in fusion performance is investigated, as depicted in Figure 5.

Using a threshold-based approach for segmenting the infrared image aims to extract
significant regions. Considering the linear relationship between the grayscale values in
thermal infrared images and the temperature they represent [41], the value of T is initially
set within the range of 100–240. The evolution of significant region extraction is studied as
the threshold value T is progressively varied.

Figure 4. The effect of threshold segmentation in the infrared image under different values of T, and
the red box indicates the best visual performance.

Several sets of infrared images from the MSRS dataset were selected to validate the
effect of threshold segmentation under different values of T, as depicted in Figure 4. Ac-
cording to the subjective results, a low T results in the excessive inclusion of irrelevant
background pixel information, while a high T leads to a loss of critical temperature infor-
mation related to the primary thermal targets. Ultimately, the value of T was set at 200,
as it best reflects the real thermal conditions of the target compared to the original image.
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With the T value fixed, the optimal high-temperature ratio in the infrared image can
then be calculated using the above formula. In the next step, the optimal value of α is
determined, weights for the infrared and visible features are calculated, and model training
proceeds. The value of α is gradually adjusted, and 4320 pairs of images from the MSRS
dataset are used for training, with testing and analysis conducted on the TNO dataset.
Some of the subjective fusion results are shown in the figure below. It can be observed
that α, as the scaling factor in the formula, largely determines the weight of infrared and
visible features. When α is small, the weight of the infrared features is small, and the
fusion result tends to favor the visible image, losing the infrared features. Conversely,
when α is large, the fusion result incorporates too much infrared information, leading to
spectral contamination. Ultimately, the value of α is set to 5, as it best balances the weights
of the infrared and visible features and highlights significant targets in the fused image.
Additionally, objective results indicate that setting α to 5 yields optimal image quality
metrics, as shown in Table 3.

Figure 5. The fusion results under different values of α, and the red box indicates the best fusion result.

Table 3. The average metrics values of the TGLFusion with different α on 20 images from TNO.

α AG SF PSNR MI

1 5.956 11.397 15.495 1.760
2 6.194 13.210 16.833 1.925
3 6.151 12.185 18.821 2.054
4 6.118 12.173 18.743 2.091
5 6.205 12.324 19.357 2.137

Finally, with the determined hyperparameter values, the weights can be calculated,
and partial results are shown in Figure 6. It can be observed that, in infrared images 1, 2,
and 3, where there is a higher amount of thermal information, larger weights are calculated
after segmentation for the infrared image. In contrast, in infrared images 4, 5, and 6,
where there is less thermal information, smaller weights are calculated for the infrared
image. Therefore, in image pairs with more temperature information, the fused image
will highlight the infrared image more prominently. In image pairs with less temperature
information, the fused image will emphasize the visible image more prominently. This
aligns with the proposed temperature-guided mechanism module.

Figure 6. The calculated weight values, with more infrared information in images 1, 2, and 3, and less
in images 4, 5, and 6.
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4.4. Analysis of the Public Dataset

After fixing the values of T and α, the model obtained through training is the best-
performing fusion model. Subsequently, the fusion performance of the model was further
tested using the TNO dataset, employing both subjective observations and objective met-
ric evaluations. Additionally, several mainstream fusion algorithms were selected for
comparison. Sets of fusion results on the TNO dataset are shown in the figure below.

4.4.1. Qualitative Comparison

In the first and second scenarios, most methods were unable to effectively preserve
the background information from the visible image and the thermal information from the
infrared image. Algorithms belonging to GANs such as DDcGAN, FusionGAN, and GAN-
McC, as they generate images anew instead of employing static or dynamic strategies to fuse
multispectral image features, tend to produce fusion results with blurred pixel information.

While DeepFuse, DenseFuse, GTF, mdlatrr, and PMGI retained the edge texture
background information from the visible image relatively well, they simply fused the
infrared and visible images without considering how to highlight their respective features
and significant areas, resulting in the thermal information from the infrared being less
pronounced in the fusion results.

Only SeAFusion and our method managed to effectively retain both the edge texture
background information from the visible image and the significant thermal information
from the infrared image. In Figure 7, within the red box, many fusion methods failed
to effectively preserve the significant features of the ’branches’ from the visible image,
except for SeAFusion and our proposed method. This suggests that other fusion methods
integrated too much background information from the infrared image, or the fusion results
resulted in pixel loss compared to the source images.

Compared to all these fusion methods, within the green box, most methods were able
to preserve the significant ’face’ features to some extent from the infrared image. However,
our method emphasized a clearer face.

In Figure 8, within the red box, except for SeAFusion and our method, the results of
other fusion methods still displayed the very blurry features of the ’trunk.’ This suggests
that other fusion methods integrated too much background information from the infrared
image, or the fusion results resulted in pixel loss compared to the source images.

In the third and fourth scenarios, where the background information is relatively sim-
ple and the distribution of thermal information in the infrared is more concentrated, most
algorithms struggled to preserve the infrared information while retaining the background
information from the visible image.

In Figure 9, within the green box, DeepFuse, DenseFuse, GTF, and MDLatLRR almost
failed to preserve the infrared information of the ’person,’ while the results of GAN
algorithms still showed blurred distortions in the ’person.’ Only PMGI, SeAFusion, and our
algorithm managed to preserve the ’person.’

In Figure 10, the results similar to those in Figure 3 were observed. Only PMGI, SeAFu-
sion, and our algorithm could preserve the ’person.’ However, in the green and red boxes,
our algorithm was the most capable of retaining the background texture information of the
’chimney’ and the ’person.’ Compared to all these fusion methods, DeepFuse, DenseFuse,
GTF, and MDLatLRR struggled to effectively fuse the infrared thermal information and
could only retain some target edge information from the infrared image. As previously
mentioned, GAN-based algorithms like DDcGAN, FusionGAN, and GANMcC produced
distorted fusion results, making them appear more blurry and leaning toward or even
accentuating the infrared image. They lost a significant amount of visible information.
Only PMGI, SeAFusion, and our method effectively retained both the visible and infrared
information. However, our algorithm had overall higher brightness, maximally restoring
the lighting information from the visible image and emphasizing the significant areas in
the infrared image, enhancing the overall contrast.
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Figure 7. Qualitative comparison of the proposed method with SOTA methods on 2 men in front
of a house. For a more distinct comparison, a texture-rich area and a prominently targeted area
(i.e., green box and red box) are outlined in each image.

Figure 8. Qualitative comparison of the proposed method with nine SOTA methods on Kaptein 1654.
For a more distinct comparison, a texture-rich area and a prominently targeted area (i.e., green box
and red box) are outlined in each image.
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Figure 9. Qualitative comparison of the proposed method with nine SOTA methods on Nato camp
sequence. For a more distinct comparison, a texture-rich area and a prominently targeted area
(i.e., green box and red box) are outlined in each image.

Figure 10. Qualitative comparison of the proposed method with nine SOTA methods on Kaptein 1123.
For a more distinct comparison, a texture-rich area and a prominently targeted area (i.e., green box
and red box) are outlined in each image.
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4.4.2. Quantitative Comparison

To further validate the effectiveness of the proposed method, four evaluation metrics,
including AG, SF, PSNR, and MI, were utilized. All metric testing experiments were
conducted on the TNO dataset. The results of the four objective evaluation metrics on TNO
are shown in Table 4. It can be observed that, except for the AG metric, our method achieved
the highest average values across all metrics. In terms of the AG metric, our method was
slightly inferior to DDcGAN. Notably, our method attained the maximum value for the
SF metric, indicating superior performance in preserving spatial frequency information,
with the fused images retaining more texture and structural details. The highest PSNR
value signifies a high peak signal-to-noise ratio between the fused and original images,
implying minimal differences between them. The highest MI value indicates that our
method successfully conveyed more features from the source images to the fused images.
As depicted in Figure 11, our method exhibited the best average distribution across SF,
PSNR, and MI metrics.

Table 4. The quantitative results on 20 image pairs from TNO, the best results are highlighted in red,
and the second best results are highlighted in blue.

Method AG SF PSNR MI

GTF 4.604 8.822 15.395 1.547
FusionGAN 3.029 5.755 16.624 1.435
DeepFuse 4.726 8.784 14.977 1.457
DenseFuse 2.667 5.373 16.937 1.248
PMGI 4.546 8.654 15.234 1.425
MDLatLRR 3.530 6.947 16.947 1.325
GANMcC 3.149 6.001 13.913 1.437
DDcGAN 6.919 9.955 13.413 1.104
SeAFusion 5.228 11.834 19.039 1.853
Proposed model 6.205 12.324 19.357 2.137

Figure 11. Quantitative comparisons of the four metrics on 20 image pairs from the TNO dataset. A
point (x, y) on the curve denotes that x% of image pairs have metric values that are no more than y.
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4.5. Analysis on the Electric Power Equipment Image Dataset

The self-constructed dataset of electric power equipment images is shown in Figure 12.
This dataset comprises 752 pairs of infrared–visible images of electric power equipment,
registered using a contour angle directional method [41]. These images were captured using
FLIR thermal infrared sensors. Among these pairs, 441 images belong to high-temperature
equipment, indicating the presence of higher temperature information and significant areas
in the infrared images, while 311 images are associated with low-temperature equipment,
representing less temperature information and significant areas in the infrared images.
The image resolution is 640 × 480. During the fusion process, the infrared images were first
transformed into the YCbCr color space. Then, the fusion model combined the Y channel of
the infrared image with the visible image to create the fused image. Finally, the fused image
was transformed into the RGB color space by combining it with the Cb and Cr channels
from the infrared image [6].

Figure 12. Partial pairs of electric power equipment images.

4.5.1. Qualitative Comparison

To visually demonstrate the adaptability of our temperature-based color perception fu-
sion method to temperature variations, three sets of high-temperature and low-temperature
electric power equipment visible and infrared image pairs, along with their fusion results,
were selected for subjective visual analysis and comparison, as depicted in Figure 13.

1

2

3

4

5

6

Infrared Visible Ours SeAFusion DenseFuse FusionGAN DeepFuse PMGI DDcGAN GANMcC GTF MDLatLRR

Figure 13. In high-temperature and low-temperature electric power equipment scenarios, the pro-
posed method was subjectively compared with nine other methods.

In high-temperature scenarios, inspectors primarily focused on the heat generation
of electric power equipment. The thermal radiation information from the infrared image
should be highlighted as a significant element in the fusion result, while the realistic texture
details from the visible image serve as supplementary information. Therefore, an excellent
fusion algorithm should retain the texture details of the visible image while emphasizing
the significant targets without introducing spectral contamination. In the high-temperature
electric power equipment scenes numbered 1, 2, and 3 in the above figure, FusionGAN and
GTF effectively highlighted the temperature information while preserving the details of the
visible image. However, the fusion images became blurred with reduced clarity. Except for
SeAFusion and our algorithm, other algorithms fused non-essential color information
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from the visible image, leading to a reduction in the temperature information from the
infrared, causing spectral contamination. Dark spots appeared in the fusion images where
the corresponding areas in the infrared image were extremely bright (indicating high
temperatures), with DDcGAN, GANMcC, and MDLatLRR showing more severe issues.
Our model, on the other hand, maximally preserved and emphasized critical temperature
information in high-temperature scenarios, without losing the fine texture details from the
visible image.

In low-temperature scenarios, the thermal radiation information in the infrared image
contains limited temperature information and is not as critical. In such situations, the rich
information in the visible image can complement the deficiencies in the infrared image.
Inspectors may focus on aspects such as equipment appearance, potential damage, and en-
vironmental stability in low-temperature working environments. Therefore, fusion images
in these scenarios are more inclined to retain the realistic texture details from the visible
image. In the low-temperature electric power equipment scenes numbered 4, 5, and 6 in
the figure above, it can be observed that, except for SeAFusion and our algorithm, other
algorithms overly fused the temperature colors from the infrared image, resulting in lower
brightness and contrast in the low-temperature infrared images. This caused the overall
fusion images to appear dark and led to the loss of the bright information from the visible
image. Such fusion images would be challenging to observe and analyze. FusionGAN,
while maintaining higher brightness and contrast, introduced other information, causing
significant and inappropriate changes in the temperature colors of the electric power equip-
ment in the fusion image compared to the source image, leading to a loss of accuracy and
objectivity. In contrast, our model excels in low-temperature thermal radiation scenarios
by maintaining higher brightness and contrast in the overall fusion image and preserving
the realistic texture details from the visible image. It compensates for the shortcomings of
weak information in low-temperature infrared images.

In practical application scenarios such as electric power equipment inspection, the im-
balance in information between infrared and visible images can make it challenging for the
most simple and direct fusion methods to highlight the characteristics of different spectra
according to actual requirements. The introduction of a loss function based on temperature
perception and the implementation of a multispectral information complement module
have effectively addressed this issue. Our model can adaptively adjust the spectral infor-
mation weights based on the temperature distribution, enabling infrared and visible light
to complement each other effectively in the fusion image. This capability is particularly
valuable in real-world scenarios where the fusion of these two types of images is essential
for various inspection and analysis tasks.

4.5.2. Quantitative Comparison

Table 5 presents the comparative results of four fusion image evaluation metrics, SF,
AG, MI, and PSNR, for 50 pairs of high-quality electric power equipment infrared–visible
image pairs. In the table, red indicates the best values, and blue indicates the second-best
values. It is noteworthy that our method exhibits a significant advantage in three of the
metrics. The highest SF and second-highest AG values suggest that the fused images
have the best preservation of edges and textures and appear sharper and clearer visually.
The highest MI and PSNR values indicate a high level of consistency between the fused
image and the source image, with lower distortion. This indicates that the fusion algorithm
can effectively transfer the most spectral information from the source image to the fused
image based on temperature conditions, reducing information loss and maintaining the
quality and details of the source image. Furthermore, as shown in Figure 14, our method
consistently demonstrates the best performance across all metrics, reflecting its superiority
in various aspects of fusion algorithm performance.
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Table 5. The average image metrics calculated using 50 pairs of electric power equipment infrared
and visible images, the best results are highlighted in red, and the second best results are highlighted
in blue.

Method AG SF PSNR MI

GTF 5.238 13.750 13.732 1.162
FusionGAN 3.315 7.753 13.111 1.257
DeepFuse 3.177 7.534 12.363 1.303
DenseFuse 3.490 9.129 12.693 1.262
PMGI 3.833 9.838 12.672 1.220
MDLatLRR 4.494 11.514 12.689 1.181
GANMcC 2.927 7.583 12.296 1.295
DDcGAN 4.852 13.349 12.477 1.655
SeAFusion 4.829 14.009 12.743 1.781
Proposed model 5.069 14.633 13.863 1.951

Table 6 presents the measurements of parameters, model size, and FLOPs obtained by
the implemented fusion model based on deep learning in the aforementioned image fusion
method with the given input size of (1, 1, 640, 480). These measurements serve to evaluate
the model’s volume and lightweight characteristics. In the table, values highlighted in red
indicate the optimal values, while those in red represent the next best values. It can be
observed that the fusion model implemented with MobileBlock demonstrates the optimal
parameter quantity and model size. This signifies that MobileBlock significantly achieves a
lightweight design compared to existing fusion models, enhancing the feasibility of running
on edge devices.

Table 6. Model lightweight metrics measured with an input size of (1, 1, 640, 480), the best results are
highlighted in red, and the second best results are highlighted in blue.

Model Parameters Model Size (MB) FLOPs (G)

FusionGAN 924,673 3.698 551.006
DeepFuse 114,497 0.457 70.257
DenseFuse 74,193 0.296 45.475
GANMcC 1,862,209 7.448 1109.800
DDcGAN 212,721 0.850 130.498
SeAFusion 166,657 0.667 101.931
Proposed model 57,313 0.229 34.573

4.6. Ablation Experiment

To demonstrate the effectiveness of the proposed temperature-color-perception loss
function, MICM, and MobileBlock, other model variants were constructed and evaluated,
including those where the temperature-color-perception loss function, MICM, or Mobile-
Block was individually removed. The removal was achieved by setting the corresponding
factors to 1, making the loss function ineffective. The method of removing MICM involved
directly transmitting between layers without additional computation. Removing Mobile-
Block replaced the convolutional structure block with a simple 3×3 standard convolution.

Table 7 and Figure 15 shows that, after removing the temperature-color-perception
loss function, all metrics significantly decreased. The fused image lost more information,
pixel values were more concentrated, contrast was lower, differences between the fused
image and the original image increased, and image sharpness and fidelity decreased.
This indicates that our temperature-color-perception loss function effectively adapts the
contributions of infrared and visible light by preserving more information-rich parts.
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Figure 14. Quantitative comparisons of the four metrics on 50 image pairs from the electric power
equipment dataset. A point (x, y) on the curve denotes that x% of image pairs have metric values
that are no more than y.

After removing the multispectral information complement module, MI and PSNR
decreased more, indicating significant distortion and loss in the fused image compared to
the original image. This suggests that our multispectral information complement module
effectively supplements information differences in various spectral features, enabling
the model to integrate various spectral information during the feature extraction stage,
ensuring information transfer performance throughout the network.

When MobileBlock was removed, not only did the image quality metrics decline,
but the model parameters, size, and computational load all increased by more than twice.
This demonstrates that MobileBlock, as a transmission layer, provides reliable information
transfer and lightweight performance.

Table 7. The contributions of different modules to fusion performance.

AG SF PSNR MI Parameters Size (MB) FLOPs (G)

Proposed model 5.029 12.805 65.020 2.770 57,313 0.229 34.573
w/o LTC 4.863 12.644 64.841 2.507 — — —

w/o MICM 4.829 12.543 63.219 2.514 — — —
w/o MobileBlock 3.863 11.246 59.512 2.096 143,265 0.586 87.805

Figure 15. Ablation experiment. For a more distinct comparison, a texture-rich area and a prominently
targeted area (i.e., green box and red box) are outlined in each image.
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5. Discussion

Due to the distinct physical properties and imaging mechanisms of these two modali-
ties, infrared images convey temperature information on the targets, while visible images
provide higher spatial and textural information [3]. This information imbalance affects the
interpretation of fused images differently across various usage scenarios [42]. Previous
work has addressed the issue of unbalanced spectral weight allocation by considering
illumination conditions [6], but temperature conditions still need to be taken into account.
For instance, in scenarios such as high-temperature electric power equipment, prioritiz-
ing the display of the equipment’s thermal conditions in the fused image is preferred.
Conversely, in low-temperature environments, emphasizing the visual appearance of the
equipment in the fused image is more desirable. Therefore, appropriately allocating weights
to the imbalanced spectral information is necessary.

Existing fusion methods typically achieve fusion by appropriately combining infrared
and visible images. These methods include but are not limited to pixel-level, feature-level,
and model-level fusion approaches [43]. In pixel-level fusion [44], the pixel values of the
two images are usually combined through simple weighted averaging or by following
certain rules such as minimum–maximum rules or mean rules. In feature-level fusion [45],
local or global features of the images are typically utilized for fusion. In model-level fu-
sion [46], deep learning models are commonly employed to learn the mapping relationship
between the two images, enabling more sophisticated fusion. However, these methods
often do not consider how to handle spectral information and instead directly adopt simple
feature fusion rules, which may not effectively reflect the information of the two images in
different scenarios.

The primary focus of TGLFusion is to address the issue of information imbalance
between infrared and visible images, as well as the computational complexity of the image
fusion model. This is achieved by designing an temperature-guided mechanism module
that dynamically adjusts the weights of different spectral information during the fusion
process based on the temperature of the infrared image. This ensures a better representation
of the features from both types of images. Additionally, the proposed method introduces
MICM and MobileBlock, enhancing the model’s capability to handle information imbalance
while significantly reducing computational complexity.

In the experimental evaluation phase, TGLFusion was compared with nine other
fusion methods using both subjective and objective approaches. In terms of subjective
comparison, the results show that, in the four scenes of the TNO dataset, the fused images
generated by TGLFusion preserve more realistic temperature information and clearer tex-
ture information compared to most methods. In the electrical equipment scene, TGLFusion
flexibly highlights infrared temperature information in high-temperature scenes and em-
phasizes visible texture information in low-temperature scenes, outperforming the other
methods. Regarding objective comparison, on the TNO dataset, TGLFusion achieved opti-
mal values in three out of four image fusion evaluation metrics—AG, SF, PSNR, MI. In the
electrical equipment scene, TGLFusion attained optimal values in all metrics. TGLFusion
not only outperformed other models in image fusion effects but also, compared to other
deep learning methods, achieved optimal values in lightweighting metrics.

6. Conclusions

In this study, a lightweight fusion method called TGLFusion for infrared and visible
images is proposed, which utilizes temperature information from significant regions in
infrared images to compute multi-spectral weights. The aim of this method is to address
the issues of spectral information imbalance and high computational complexity in image
fusion models. A temperature-guided mechanism module is designed to estimate the
infrared temperature information and allocate spectral weights accordingly. Additionally,
a temperature color perception loss is constructed based on these spectral weights to guide
the model training. The fusion model is implemented using the designed MICM and
MobileBlock, ensuring both complementary information transfer and significant model
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lightweighting. Comprehensive comparative experiments were conducted on the TNO
and electric power equipment datasets, comparing TGLFusion with nine other advanced
algorithms. The results demonstrate that TGLFusion outperforms other methods in various
scenarios, effectively highlighting the important information from both infrared and visible
images, and achieves the best model lightweighting. The fused images generated can
be more effectively used for other advanced computer vision tasks. Furthermore, practi-
cal experiments on the electric power equipment datasets demonstrate the feasibility of
TGLFusion in a specific industry.
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