
Citation: Qiao, L.; Chen, L.; Li, Y.;

Hua, W.; Wang, P.; Cui, Y. Predictions

of Aeroengines’ Infrared Radiation

Characteristics Based on HKELM

Optimized by the Improved Dung

Beetle Optimizer. Sensors 2024, 24,

1734. https://doi.org/10.3390/

s24061734

Academic Editor: Sylvain Girard

Received: 10 February 2024

Revised: 1 March 2024

Accepted: 3 March 2024

Published: 7 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Predictions of Aeroengines’ Infrared Radiation Characteristics
Based on HKELM Optimized by the Improved Dung
Beetle Optimizer
Lei Qiao 1, Lihai Chen 2,*, Yiwen Li 3, Weizhuo Hua 3, Ping Wang 1 and You Cui 1

1 Hebei Instrument & Meter Engineering Technology Research Center, Hebei Petroleum University of
Technology, Chengde 067000, China; qiaolei19841001@126.com (L.Q.)

2 Beijing Stealth Technology Co., Ltd., Beijing 100083, China
3 Key Laboratory for National Defense Science and Technology on Plasma Dynamics, Air Force Engineering

University, Xi’an 710038, China
* Correspondence: chenlihai_3000@163.com

Abstract: To solve the problems of high computational cost and the long time required by the
simulation and calculation of aeroengines’ exhaust systems, a method of predicting the characteristics
of infrared radiation based on the hybrid kernel extreme learning machine (HKELM) optimized by the
improved dung beetle optimizer (IDBO) was proposed. Firstly, the Levy flight strategy and variable
spiral strategy were introduced to improve the optimization performance of the dung beetle optimizer
(DBO) algorithm. Secondly, the superiority of IDBO algorithm was verified by using 23 benchmark
functions. In addition, the Wilcoxon signed-rank test was applied to evaluate the experimental results,
which proved the superiority of the IDBO algorithm over other current prominent metaheuristic
algorithms. Finally, the hyperparameters of HKELM were optimized by the IDBO algorithm, and the
IDBO-HKELM model was applied to the prediction of characteristics of infrared radiation of a typical
axisymmetric nozzle. The results showed that the RMSE and MAE of the IDBO-HKELM model were
20.64 and 8.83, respectively, which verified the high accuracy and feasibility of the proposed method
for predictions of aeroengines’ infrared radiation characteristics.

Keywords: aeroengine; infrared radiation characteristics; hybrid kernel extreme learning machine;
dung beetle optimizer; Levy flight strategy; variable spiral strategy

1. Introduction

In the primary stage of aircraft design, it is of great value to explore a fast and accurate
prediction method for the infrared radiation features for the design of infrared stealth
aircraft. The emissions contributed by the engine’s exhaust system in the infrared band of 3
to 5 µm account for more than 90% of the entire aircraft. It is one of the important problems
that must be solved to carry out research on infrared stealth technology for engine exhaust
systems and realize the reduction of the characteristics of infrared radiation of exhaust
systems [1].

With the rapid development of computer technology and computational mathematics,
a series of numerical methods have been developed to calculate the transmission of infrared
radiation energy in space, such as the region method [2], the discrete coordinate method [3],
the finite volume method [4], the discrete transfer method [5], the Monte Carlo method [6]
and the reverse Monte Carlo method (RMCM) [7]. The intensity of infrared radiation
can be obtained with high precision by numerical simulation, but it has the defects of
large calculation costs and a long calculation time, which greatly reduce the efficiency of
infrared stealth designs. In recent years, big data and artificial intelligence technologies
have developed rapidly, and data-driven modeling methods have been widely used in the
aerospace field [8]. The surrogate-based model was applied to the aerodynamic design of
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supercritical wings [9]. The Gaussian process model was used to improve the lift–drag ratio
of airfoils [10]. A support vector machine model was built to achieve accurate and rapid
predictions of rockets’ aerodynamic performance [11]. Research with machine learning
models in the field of aerodynamic optimization designs and predictions of performance
has been more in-depth. However, there are no reports on predictions of the characteristics
of infrared radiation of aeroengines using machine learning methods.

The extreme learning machine (ELM) is a single hidden layer feedforward neural
network with the traits of simplicity and quick learning [12]. However, the hidden layer of
the ELM’s input weights and threshold are determined at random, making it challenging
to establish the right number of hidden layers [13]. The kernel extreme learning machine
(KELM) uses kernel mapping rather than random mapping, which significantly decreases
the network’s complexity and improves the model’s capacity for prediction and generaliza-
tion [14]. However, the KELM typically uses a single kernel function during the application
process, making it challenging to adjust to samples with various data properties.

By weighting various kernel functions, the hybrid kernel extreme learning machine
(HKELM) was created, which may address the issue that a single kernel function in a
KELM makes it challenging to retrieve the properties of a multidimensional sample [15,16].
Additionally, the improved dung beetle optimizer (IDBO) can be applied to optimize the
hybrid kernel function’s parameters. Then the IDBO-HKELM can be applied to predict
the intensity of the infrared radiation of a typical axisymmetric nozzle, and the radiation
intensity curve can be constructed. It was found that the IDBO-HKELM model had higher
predictive performance than the other currently prominent machine learning methods
for predicting the characteristics of infrared radiation. The remainder of this article is
organized as follows. Section 2 presents the principles and modeling of IDBO. Section 3
presents the superiority of IDBO by using the benchmark functions. Section 4 presents the
practical application and results of the analysis by using the infrared simulation dataset of
a typical axisymmetric nozzle. Finally, the article is concluded in Section 5.

2. Principles and Modeling
2.1. Principle of the Hybrid Kernel Extreme Learning Machine

The extreme learning machine (ELM) is a fast single hidden layer feedforward neural
network proposed in 2004. The output of the ELM can be expressed as

fELM(xk) =
m

∑
j=1

βj · g
(
wj · xk + bj

)
= yk (1)

where xk =
[

xk1 xk2 · · · xkn
]T is the input vector, yk =

[
yk1 yk2 · · · ykl

]T
is the output vector, wj =

[
w1j w2j · · · wnj

]
is the input weight of the node j in

the hidden layer, βj =
[

β j1 β j2 · · · β jl
]T is the output weight of the node j in the

same hidden layer, b =
[

b1 b2 · · · bm
]T is the threshold of the hidden layer and

g(x) = 1
1+e−x is the excitation function of the hidden layer.

The output matrix fELM(xk) can be written as fELM(X) = Hβ = Y, where H is the
output matrix of the hidden layer, which can be expressed as:

H =



g(w1 · x1 + b1) · · · g(wm · x1 + bm)

g(w1 · x2 + b1) · · · g(wm · x2 + bm)

...
...

...

g(w1 · xN + b1) · · · g(wm · xN + bm)


N×m

(2)
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The input weight matrix W and the threshold b can be randomly given. The output
weight matrix β is calculated by the formula β = H+·Y, where H+ is the pseudo-inverse
matrix of H.

The ELM overcomes the defect of the traditional neural networks, including the slow
training speed, easy overfitting and local extreme values, but it still has some shortcomings,
such as the difficulty of determining the number of nodes in the hidden layer, and the
possibility that the output matrix of the hidden layer is not satisfied with the rank, which
leads to the existence of ill-conditioned solutions. β is obtained via the pseudo-inverse
without regularization, which leads to easy overfitting. In view of the shortcomings of
ELM, inspired by the introduction of the kernel function in the support vector machine, the
kernel extreme learning machine (KELM) was proposed. The kernel matrix is defined as

ΩKELM(X) = h(X) · HT (3)

where h(X) is the mapping from the input to the output of the hidden layer.
The elements at row i and column j of the matrix are

ΩKELMij

(
xi, xj

)
= h(xi) · h

(
xj
)
≜ K

(
xi · xj

)
(4)

where K
(
xi · xj

)
is the kernel function. In addition fKELM(X) can be estimated by Formula (5),

which is described below:

fKELM(X) = [K(X · x1) · · ·K(X · xN)]× (ΩKELM(X))−1 · Y (5)

After introducing the regularized item:

fKELM(X) = [K(X · x1) · · · K(X · xN)]×
(

I
C
+ ΩKELM(X)

)−1
· Y (6)

The network output fKELM(Xk) of the KELM can be written as

fKELM(Xk) =
n

∑
k=1

ΩKELM(X · xk)·((
I
C
)k + ΩKELM(X · xk))

−1
· Yk (7)

where C is the regular term coefficient. The accuracy of the model increases as C increases,
but overfitting is more likely to happen. Conversely, as C decreases, the generalization
ability increases and the error-tolerant rate increases, but underfitting is more likely to
happen. Therefore, an appropriate C value is crucial for the model.

The KELM significantly reduces the network’s complexity by using a kernel function
to translate a low-dimensional space to a high-dimensional space, improving the prediction
and generalization ability. The typical KELM algorithm’s single kernel function, however,
struggles to handle a variety of sample data. This led to the suggestion of a hybrid kernel
extreme learning machine (HKELM). The flaw of the single-core ELM can be fixed, and the
issues of poor generalization and low prediction accuracy can be resolved by incorporating
a hybrid kernel.

There are many types of kernel functions, among which, the radial basis function is a
typical local kernel function with strong learning ability but weak generalization ability,
and the polynomial function is a typical global kernel function with weak learning ability
but strong generalization ability. To further improve the learning and generalization perfor-
mance of the kernel extreme learning machine, the radial basis function and polynomial
function were chosen to carry out a weighted combination, and the equivalent kernel
function combining the two kinds of kernels was constructed.

The polynomial kernel function is

Kpoly(X, xk) =
[(

xT
k X
)
+ C0

]d
, C0 > 0 (8)
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where C0 and d are the parameters of the polynomial kernel function.
The polynomial kernel function is a typical global kernel function. The curve of the

polynomial kernel function is shown in Figure 1, where the test points x = 0.5, C0 = 1 and
d are set to 1, 2, 3 and 4, respectively. As shown in Figure 1, sample points that are far away
from the test point x = 0.5 can still have a great impact on the value of the kernel function,
so it is easy to extract the overall characteristics of the sample’s information, and the model
has excellent generalization ability.
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The radial basis kernel function is

KRBF(X, xk) = exp

(
−∥ X − xk ∥2

2σ2

)
(9)

where σ is the kernel’s width.
The radial basis kernel function is a typical local kernel function with excellent local

interpolation ability. The curve of the radial basis kernel function is shown in Figure 2, with
the test point x = 0.5, and σ is set to 0.1, 0.2, 0.3 and 0.4. The value of the kernel function in
the area near the test point x = 0.5 is not 0, and the value of the kernel function rapidly
approaches 0 with an increase in the distance. Therefore, it is convenient to extract the local
characteristics of the samples, and the model has excellent learning ability.
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The equivalent kernel function of HKELM can be expressed as

ΩHKELM(X, xk) = C1Kpoly(X, xk) + C2KRBF(X, xk) (10)
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where C1 and C2 are the weighted coefficients of the kernel function, ranging across [0, 1],
and C1 + C2 = 1. After cancelling out C2, we have

ΩHKELM(X, xk) = C1 · Kpoly(X, xk) + (1 − C1) · KRBF(X, xk) (11)

where σ is the kernel’s width.
The hybrid kernel function curve is shown in Figure 3, with the test point x = 0.5, and

C1 is set to 0.1, 0.2, 0.3 and 0.4. In Kpoly(X, xk), σ is set to 0.1. In KRBF(X, xk), m is set to 1,
n is set to 1 and d is set to 2. It can be seen from Figure 3 that the hybrid kernel function
not only affects the sample points around the test point, but also the sample points with
a certain distance from the test point. Therefore, the hybrid kernel function effectively
combines the advantages of the radial basis kernel function and the polynomial kernel
function, making up for the shortcomings of the single-kernel function.
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The output of HKELM can be expressed as:

fHKELM(xk) =
N

∑
k=1

ΩHKELM(X · xk)

{
C1

[(
xT

k X
)
+ C0

]d
+(1 − C1) exp

(
∥ X − xk ∥2

2σ2

)
+

(
I
C

)
k

}−1

· Yk (12)

The hybrid kernel function of HKELM combines the advantages of the global kernel
and the local kernel. As a result, the HKELM not only enhances the global search capabilities
but also has good local search capabilities. The hyperparameters (C0, C1, d, σ, C) of the
hybrid kernel function should be optimized, since the hybrid kernel function has many
parameters which are inefficiently to determine manually.

2.2. Principle of the Dung Beetle Optimizer

The dung beetle optimizer (DBO) is a swarm intelligence optimization algorithm
proposed by Jiankai Xue in 2022 [17]. It was inspired by the ball-rolling, dancing, forag-
ing, stealing and reproduction behaviors of beetles and has the characteristics of strong
optimization ability and a fast convergence speed.

The position of the ball-rolling dung beetle can be described as{
xi (t + 1) = xi (t) + α × k × xi (t − 1) + b × ∆x

∆x = |xi (t)− Xw| (13)

where t is the current iteration number, xi (t) is the information about the ith dung beetle’s
position at the tth iteration, k is a constant value that represents the deflection coefficient, b
is a constant value in the range of (0, 1), α is a natural coefficient that is given a value of
either −1 or 1, Xw is the global worst position and ∆x is used to simulate changes in light
intensity. Choosing the right values for the two parameters (k and b) is quite important.
Take note that α indicates that dung beetles can be diverted from their intended path by a
variety of environmental elements, including wind and uneven terrain. To be more precise,
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α = 1 denotes no deviation and α = −1 denotes a departure from the initial direction. To
mimic a complicated environment, the probability technique is used to fix α to either 1 or
−1. Likewise, a larger value of ∆x indicates a weaker light source. Furthermore, k and b are
set to 0.1 and 0.3, respectively. The ∆x can encourage the ball-rolling dung beetle to pursue
the following two benefits: (1) during the optimization process, extensively investigate the
entire issue space; (2) pursue stronger searching performance and lower the likelihood of
slipping into the local optima.

When the dung beetle encounters an obstacle and is unable to move forward, it needs
to dance to reposition itself, and once the beetle has successfully determined a new direction,
it continues to push the ball. The position of the beetle is updated and defined as follows

xi (t + 1) = xi (t) + tan(θ)|xi (t)− xi (t − 1)| (14)

where θ is the deflection angle in the range of (0, π). Using the tangent function of θ, we
obtain the new rolling direction and can imitate the dancing behavior.

In the wild, dung beetles roll dung balls to safety and conceal them. The boundary
selection strategy used to simulate the spawning region where female beetles lay the eggs
is described by {

Lb∗ = max (X∗ × (1 − R), Lb)
Ub∗ = min (X∗ × (1 + R), Ub)

(15)

where X∗ is the current local best location; Lb∗ and Ub∗ are the lower and upper bounds
of the spawning area, respectively; R = 1 − t/Tmax and Tmax is the maximum number of
iterations. Lb and Ub are the lower and upper limits of the optimization issue, respectively.
It can be clearly seen that the boundary range of the spawning area changes dynamically,
which is mainly determined by R. As t gradually increases, R decreases linearly, and the
spawning area gradually shrinks. This can reduce the chance of oscillating back and forth
when convergence is near the optimal point.

The female beetles select the brood balls in this region to lay eggs once the spawning
location has been determined. In the iteration phase, the brood ball’s position is dynamic
and can be described as

Bi (t + 1) = X∗ + b1 × (Bi(t)− Lb∗) + b2 × (Bi(t)− Ub∗) (16)

where Bi(t) is the position of the ith brood ball at the tth iteration, and b1 and b2 are the
two independent random vectors. The random vectors b1 and b2 can effectively reduce the
risk of falling into the local optimal solution by adding random elements to the motion.

The boundary of the optimal foraging region for small dung beetles is defined as follows Lbb = max
(

Xb × (1 − R), Lb
)

Ubb = min
(

Xb × (1 + R), Ub
) (17)

where Xb is the global best position, and Lbb and Ubb are the lower and upper limits of the
optimal foraging region, respectively.

The position of the small dung beetle can be revised as follows

xi (t + 1) = xi (t) + C1 ×
(

xi(t)− Lbb
)
+ C2 ×

(
xi(t)− Ubb

)
(18)

where xi (t) is the position of the ith small dung beetle at the tth iteration, C1 is a random
number with normally distributed and C2 is a random vector between 0 and 1.

Some dung beetles are referred to be thieves because they take other dung beetles’
dung balls. The position of the thief can be described as follows:

xi (t + 1) = Xb + S × g ×
(
|xi (t)− X∗|+

∣∣∣xi (t)− Xb
∣∣∣) (19)
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where xi (t) is the position of the ith thief at the tth iteration, g is a random vector with a
normally distribution and S is a constant value. The introduction of g increases the random
disturbance and can avoid falling into the local optimal solution to a certain extent. S can
be used to update the stride size of the iteration. For more information on dung beetle
optimization, please refer to the related article [12].

2.3. Improvement of the DBO

The DBO algorithm has the characteristics of few adjustment parameters, strong
optimization ability and a fast convergence speed. But it easily falls into the local optimal,
and the global exploration ability is weak. The DBO algorithm should be optimized to
improve the global optimization capability.

2.3.1. Levy Flight Strategy

The Levy flight strategy was proposed to improve the DBO algorithm. Levy flight
is a random search based on Levy distribution, which has been cited many times in the
optimization field and is often used to improve swarm intelligence optimization algo-
rithms such as the sparrow search algorithm (SSA) [18], the whale optimization algorithm
(WOA) [19] and particle swarm optimization (PSO) [20]. The Levy flight strategy enables
the algorithm to change randomly between short and long distances, uses a few long
hops to avoid the algorithm falling into local optima, and enhances the global optimal
search ability.

The location of the thief can be updated according to Equation (20)

xi (t + 1) = Levy(λ)× Xb + S × g ×
(
|xi(t)− X∗|+

∣∣∣xi(t)− Xb
∣∣∣) (20)

where Levy(λ) indicates that it follows the Levy distribution with the parameter λ. It can
be expressed as:

Levy(λ) ∼ µ = tµ (21)

The Mantegna algorithm can be used to simulate Levy flight, and its mathematical
expression is as follows

s =
µ

|ν|
1
β

(22)

where s is the Levy flight path, µ and ν are the random numbers with a normal distribution,
and µ ∼ N

(
0, σ2

µ

)
, ν ∼ N

(
0, σ2

ν

)
. σµ and σν are obtained by Equation (23):

σµ =

 Γ(1+β)sin (πβ/2)

Γ
[
(1+β)

2

]
β2

(β−1)
2


1/β

σν = 1

(23)

The value of parameter β ranges from 0 to 2, and, in general, β = 1.5.

2.3.2. Variable Spiral Strategy

Inspired by the whale optimization algorithm, the variable spiral strategy was intro-
duced to improve the position of the brood ball and the small dung beetle. The whale spiral
search model is shown below {

Xt+1 = X̂t + D·eblcos(2πl)
D =

∣∣2r·X̂t − Xt
∣∣ (24)

where Xt+1 is the position of the whale when iteratively searching t + 1 times, X̂t is the
global optimal position, b is a constant that determines the shape of the spiral, and l and r
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are uniformly distributed random numbers on the interval [0, 1]. The spiral search can be
applied to update the position of the brood ball and the small dung beetle.

In each spiral search, whales approach their prey with a fixed spiral path, which
easily makes them fall into local optima. Therefore, the spiral constant b is modified as a
parameter varying with the number of iterations, and the spiral’s shape is dynamically
adjusted to broaden the global search area of the swarm, thus improving the global search
ability. The model of the variable spiral parameter m is as follows:

m = e5cos (π(1− t
tmax )) (25)

As can be seen from Equation (24), the spiral’s shape decreases as the number of
iterations increases. At the beginning, the brood ball and the small dung beetle conduct a
global search in the largest possible area and gradually approach the optimal solution in
the later iterations, which improves the global search ability and optimization accuracy of
the algorithm.

The position of the brood ball can be updated according to Equation (26):

Bi (t + 1) = X∗ + emlcos (2πl)× (Bi(t)− Lb∗) + emlcos (2πl)× (Bi(t)− Ub∗) (26)

The position of the small dung beetle can be updated according to Equation (27):

xi (t + 1) = emlcos (2πl)× xi (t) + C1 ×
(

xi(t)− Lbb
)
+ C2 ×

(
xi(t)− Ubb

)
(27)

The calculation process of the IDBO is as follows:

(1) Initialize the IDBO algorithm’s settings and the dung beetle swarm.
(2) Calculate the fitness values of all agents according to the objective function.
(3) Update the position of the ball-rolling dung beetle by using Equations (13) and (14),

the position of the thief by using Equation (20), the position of brood ball by using
Equation (26), and the position of small dung beetle by using Equation (27).

(4) Determine whether each agent is outside the limit.
(5) Reevaluate the fitness value of the current optimal solution.
(6) Keep repeating the previous stages until it satisfies the termination requirement.

3. IDBO Algorithm Performance Test
3.1. Test Functions and Parameter Settings

In this section, 23 classical test functions were used to analyze and verify the improve-
ment effect of the IDBO algorithm. The 23 reference functions can be roughly divided into
three categories: the unimodal (F1–F7), the multimodal (F8–F13) and the fixed-dimension
multimodal functions (F14–F23). To further verify the specific effect after the improvement,
the IDBO algorithm was compared with other heuristic algorithms (the DBO, SSA, WOA
and PSO). The population size of all algorithms was set to 50, and the number of popula-
tion iterations was 500. It is important to note that each simulation experiment was run
independently 30 times in an effort to eliminate random effects. The mean and standard
deviation (Std Dev) of each algorithm were calculated.

3.2. Optimization Capability of IDBO (Functions F1–F23)

The specific information about the simulation results is shown in Table 1. The Std
Dev and the mean fitness value are displayed to gauge how well the algorithms con-
ducted searches.
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Table 1. Results of IDBO, DBO, SSA, WOA, and PSO on CEC–2022 benchmark functions. The Std
Dev is given in parentheses and the best results are shown in bold.

F IDBO DBO SSA WOA PSO

F1 0.00 1.67 × 10−112 2.24 × 10−87 1.35 × 10−73 1.96 × 10−27

(0.00) (8.79 × 10−112) (4.80 × 10−87) (5.02 × 10−73) (5.48 × 10−27)

F2 0.00 3.41 × 10−52 1.35 × 10−45 1.35 × 10−52 8.03 × 10−17

(0.00) (1.86 × 10−51) (1.30 × 10−45) (3.38 × 10−52) (5.28 × 10−17)

F3 1.20 × 10−99 8.82 × 10−57 4.57 × 10−27 2.08 × 10−22 1.03 × 10−5

(6.60 × 10−99) (4.83 × 10−56) (2.08 × 10−26) (8.61 × 10−22) (2.22 × 10−5)

F4 2.19 × 10−66 1.00 × 10−53 1.22 × 10−26 2.73 × 10−37 5.26 × 10−7

(1.19 × 10−65) (5.50 × 10−53) (6.68 × 10−26) (3.32 × 10−37) (4.51 × 10−7)

F5 2.86 × 101 2.57 × 101 2.59 × 101 2.78 × 101 2.71 × 101

(3.20 × 10−1) (2.60 × 10−1) (3.70 × 10−1) (5.40 × 10−1) (7.85 × 10−1)

F6 1.40 × 10−2 1.05 × 10−2 7.32 × 10−1 4.44 × 10−1 1.89 × 103

(5.27 × 10−2) (5.47 × 10−2) (3.90 × 10−1) (2.52 × 10−1) (8.87 × 101)

F7 1.01 × 10−3 8.77 × 10−4 6.64 × 10−4 3.36 × 10−3 1.68 × 10−3

(7.61 × 10−4) (7.94 × 10−4) (3.41 × 10−4) (3.03 × 10−3) (1.01 × 10−3)

F8 −1.26 × 104 −1.25 × 104 −8.57 × 103 −1.05 × 103 −7.53 × 103

(1.14) (6.37 × 102) (6.76 × 102) (1.81 × 102) (9.28 × 102)

F9 0.00 0.00 0.00 3.78 × 10−15 1.20
(0.00 (0.00) (0.00) (1.44 × 10−14) (2.37)

F10 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16 3.16 × 10−15 7.31
(0.00) (0.00) (0.00) (2.58 × 10−15) (5.43)

F11 0.00 0.00 0.00 3.36 × 10−3 4.63 × 10−3

(0.00) (0.00) (0.00) (7.25 × 10−3) (2.53 × 10−2)

F12 1.33 × 10−4 6.86 × 10−4 5.03 × 10−2 2.84 × 10−2 4.01
(6.77 × 10−4) (2.41 × 10−3) (2.45 × 10−2) (4.33 × 10−2) (1.93)

F13 2.63 × 10−1 7.50 × 10−1 6.43 × 10−1 5.30 × 10−1 1.23 × 101

(1.63 × 10−1) (5.16 × 10−1) (2.42 × 10−1) (2.89 × 10−1) (8.60)

F14 9.98 × 10−1 1.88 7.16 3.41 4.36
(0.00) (2.14) (5.64) (3.58) (3.84)

F15 3.07 × 10−4 8.07 × 10−4 3.48 × 10−4 7.02 × 10−3 1.09 × 10−3

(4.57 × 10−7) (4.40 × 10−4) (1.74 × 10−4) (8.61 × 10−3) (2.22 × 10−3)

F16 −1.03 −1.03 −1.03 −1.03 −1.03
(1.43 × 10−5) (6.11 × 10−16) (5.13 × 10−16) (4.81 × 10−9) (2.79 × 10−5)

F17 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

(6.48 × 10−16) (1.80 × 10−5) (1.23 × 10−5) (1.71 × 10−6) (1.45 × 10−5)

F18 3.00 3.00 3.00 3.00 3.00
(1.18 × 10−15) (2.44 × 10−15) (1.01 × 10−7) (1.35 × 10−6) (1.13 × 10−5)

F19 −3.85 −3.81 −3.81 −3.81 −3.81
(2.68 × 10−15) (3.39 × 10−3) (2.26 × 10−15) (1.84 × 10−2) (2.72 × 10−3)

F20 −3.29 −3.24 −3.27 −3.26 −3.18
(1.49 × 10−7) (7.53 × 10−2) (5.99 × 10−2) (9.17 × 10−2) (1.53 × 10−1)

F21 −8.89 −8.46 −1.01 × 101 −7.69 −9.61
(2.36) (2.42) (4.89 × 10−3) (2.92) (1.54)

F22 −8.11 −1.03 × 101 −1.02 × 101 −8.08 −1.02 × 101

(6.60 × 10−3) (2.65 × 10−1) (9.62 × 10−1) (2.88) (5.06 × 10−1)

F23 −8.67 −1.05 × 101 −1.01 × 101 −7.75 −1.02 × 101

(7.73 × 10−3) (2.55) (1.74) (3.10) (1.57)
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The unimodal test functions (F1–F7) have only one global best solution, which can be
used to test the exploitation performance. It can be observed from Table 1 that the IDBO
algorithm outperformed the other algorithms for the test functions F1–F5, as measured by
the evaluation indicators, including the mean and Std Dev. For functions F6–F7, the fitness
value of IDBO algorithm was not the best, but it was also ranked in the front.

The multimodal functions F8–F23 can be used to verify the exploration ability. The
functions F8–F13 have many local minimum values which grow exponentially as the
dimensions increase. For the functions F8 and F12–F13, the IDBO algorithm achieved
greater search ability than the other algorithms proposed. For the functions F9–F11, the
IDBO algorithm was the same as DBO and SSA, and performed better than the WOA and
PSO. The functions F14–F23 are the multimodal functions with fixed dimensions. The
IDBO algorithm achieved a superior search performance than the other algorithms for
the functions F14–F15, and F19–F23. For the functions F16–F18, the search capabilities of
all algorithms were similar, and the optimization results obtained by the IDBO algorithm
were competitive.

3.3. Comparative Analysis of the Algorithms’ Convergence Curves

To show the convergence effect of each algorithm in test functions, the corresponding
algorithm convergence curves were drawn according to the generated data. Figure 4 shows
the fitness curves of IDBO and other algorithms in the optimization process of the partial
benchmark functions. It can be clearly seen that the IDBO was superior to other algorithms
in terms of the optimization speed and convergence accuracy.
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3.4. Statistical Analysis: Rank Sum Test

To further compare the differences between the IDBO and other optimization algo-
rithms, a statistical test called the Wilcoxon signed-rank test was conducted [21]. The
significance of the statistical results were determined by calculating the p-value. If the
p-value was <0.05, it was concluded that there was a significant difference between the
two algorithms. The results of the calculation are shown in Table 2. It can be seen from
Table 2 that the IDBO’s search results were less similar to those of its competitors. Therefore,
the optimization performance of the proposed IDBO on the 23 benchmark functions was
significantly different from that of other metaheuristic algorithms. Combined with the
analysis in this section, it can be seen that the IDBO’s comprehensive performance was the
most outstanding among many metaheuristic algorithms.

Table 2. Comparison of the performance of IDBO and the rival algorithms (F1–F23). NaN indicates
that the results of the two algorithms were too similar to be significant. Values with p-values greater
than 0.05 are represented by bolding.

F IDBO vs. DBO IDBO vs. SSA IDBO vs. WOA IDBO vs. PSO

F1 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F2 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12

F3 1.65 × 10−9 1.36 × 10−11 6.47 × 10−12 6.47 × 10−12

F4 3.54 × 10−10 1.96 × 10−10 6.47 × 10−12 6.47 × 10−12

F5 3.01 × 10−11 3.01 × 10−11 1.38 × 10−6 4.18 × 10−9

F6 3.01 × 10−11 3.01 × 10−11 3.01 × 10−11 3.01 × 10−11

F7 5.60 × 10−2 8.70 × 10−1 3.36 × 10−6 7.73 × 10−6

F8 1.85 × 10−2 3.01 × 10−11 3.01 × 10−11 3.01 × 10−11

F9 NaN NaN 1.61 × 10−2 1.09 × 10−12

F10 NaN NaN 7.20 × 10−7 1.20 × 10−12

F11 NaN NaN 1.10 × 10−2 1.21 × 10−12

F12 1.95 × 10−3 3.01 × 10−11 3.01 × 10−11 3.01 × 10−11

F13 1.68 × 10−4 6.52 × 10−8 6.76 × 10−5 3.01 × 10−11

F14 1.24 × 10−5 5.69 × 10−9 1.21 × 10−12 1.21 × 10−12

F15 4.19 × 10−10 1.86 × 10−6 3.01 × 10−11 2.37 × 10−10

F16 1.13 × 10−11 7.57 × 10−12 3.01 × 10−11 2.28 × 10−1

F17 NaN NaN 1.21 × 10−12 1.21 × 10−12

F18 5.50 × 10−4 3.60 × 10−10 1.77 × 10−11 1.77 × 10−11

F19 6.41 × 10−5 4.10 × 10−12 6.70 × 10−3 3.80 × 10−7

F20 2.00 × 10−3 5.10 × 10−3 1.09 × 10−11 1.09 × 10−11

F21 4.13 × 10−3 1.17 × 10−2 6.73 × 10−6 5.10 × 10−3

F22 4.13 × 10−3 1.02 × 10−6 8.29 × 10−6 8.12 × 10−4

F23 3.90 × 10−2 5.18 × 10−7 5.26 × 10−4 8.00 × 10−3

4. Practical Application and Analysis of the Results
4.1. Data Preparation

A simplified geometric model of the nozzle is shown in Figure 5. The model consisted
of an inner passage, an outer culvert, a center cone, a lobe mixer, a flame stabilizer, an
afterspray pipe, a heat shield, an afterburner, a contraction section, an expansion section
and an adjusting plate.
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4.1.1. Flow Field Calculation

The calculation domain of the flow field included two parts: inside the nozzle and
outside the nozzle. The outflow field was a long straight cylinder starting from the inlet of
the regulator and extending backward along the nozzle. The front of the engine nozzle was
placed inside the aircraft, shielded by the fuselage, and the exposed part was behind the
regulator. The flow field’s calculation domain is shown in Figure 6. The nozzle’s diameter
was set as D, and the specific size of the outflow field was set with an axial length of 42D
and a radial size of 12D.
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Figure 6. Diagram of the flow field calculation domain.

The flow characteristics of the nozzle can be captured more accurately by the structured
mesh division of the nozzle mode. The distribution of grids on the symmetric plane after
verification of the independence is shown in Figure 7, and the total number of grids was
about 5 million.
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The grid divisions of each component of the exhaust are shown in Figure 8, and the
total number of grids was about 3 million.
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The turbulence model (sst k − ε) was used to calculate the flow field, and the discrete
coordinate radiation model (DO model) was added to consider the influence of radiation
heat transfer. The standard of residual convergence was set to be less than 1 × 10−4.

4.1.2. Calculation of the Characteristics of Infrared Radiation

The infrared spectral radiation intensity (ISRI) of the nozzle in the waveband of 3 to
5 µm was simulated by using the RMCM. The infrared integrated radiation intensity (IIRI)
can be obtained by integrating the ISRI in the band of 3 to 5 µm. The schematic diagram of
the detection of the bearings’ definition is shown in Figure 9.

The nozzle outlet’s center was taken as the origin of the coordinates, and the unit vector
of the nozzle’s axis direction was taken as the Z axis. The detection points were arranged on
the sphere with the radius of the detection distance, so any azimuth of detection could be
expressed in the form of spherical coordinates (θd, φd, rd). Considering the axial symmetry
of the model, only one symmetrical plane was used to arrange the detection points. The
range of the elevation angle θd was 0 to 90◦ and the interval ∆θd was 10◦. Because the
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nozzle was axisymmetric, the azimuth φd could be ignored. The detection distance rd was
5 to 90 km, and the distance interval ∆rd was 5 km. The calculated spectral range was 3 to
5 µm. The spectral resolution ∆λ was 0.05 µm. When the detection distance was 10 km, the
distribution of dimensionless ISRI of the nozzle in the direction of the elevation angle from
0 to 90◦ is shown in Figure 7.
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It can be seen from Figure 10 that the ISRI of the prototype nozzle in the waveband
of 3 to 5 µm can be roughly divided into two parts: the first part is the infrared radiation
in the waveband of 3.2 to 4.2 µm, which is mainly the solid wall’s radiation. The second
part is the infrared radiation in the waveband of 4.4 to 4.8 µm, which is mainly caused
by the absorption and emission of carbon dioxide. As the elevation angle increases, the
detectable area of the solid wall and the solid wall’s temperature increased accordingly,
and the proportion of gas radiation decreased gradually.
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4.2. IDBO-HKELM Prediction Flow

The IDBO was used to optimize five parameters of the HKELM including the poly-
nomial kernel function parameters C0 and d, the radial basis kernel function width σ, the
kernel weighting coefficient C1 and the the regular term coefficient C. These five tuning
parameters control the prediction, learning and generalization of the HKELM. The goal
of the optimization process is to compare different parameter combinations and select the
optimal parameter combination with the lowest error.

Figure 11 shows the IDBO-HKELM prediction flow.
The specific steps of IDBO-HKELM are as follows.
Step 1: Divide the input dataset into a training set and test set, and normalize the

data to [0, 1] using the max–min normalization method. The expression of the max–min
normalization method is

x′ =
x − xmin

xmax − xmin
(28)

where x is the actual vector; xmax and xmin are the maximum and minimum values of the
vector x, respectively; and x′ is the normalized vector.



Sensors 2024, 24, 1734 14 of 18

Step 2: Establish an objective function model. The objective function is the root mean
square error (RMSE), which is expressed as

RMSE =

√
1
N ∑N

i=1(yk − ŷk)
2 (29)

where yk is the true value and ŷk is the predicted value of the HKELM.
Step 3: Use the IDBO is to optimize the parameters in the HKELM. The optimal

individual (the optimal parameters in HKELM) is selected by judging the value of the
fitness function or the maximum number of iterations.

Step 4: Apply the optimal combinations of the parameters to the estimation of the
HKELM.
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4.3. Comparative Analysis of the Models’ Prediction Effect

The two parameters (θd and rd) of the detection point were selected as inputs, and the
IIRI of the detection point was used as the object of prediction. According to the IIRI data
obtained by the simulation calculation, 80% of the data were taken as the training set, 20%
of the data were taken as the test set, and the machine learning models (back propagation
neural network (BPNN), ELM, KELM and IDBO-HKELM) were established.

The fitness reduction rate in the training phase of the HKELM is shown in Figure 12.
As can be observed, the IDBO converged more quickly than the rival algorithms, and the
final error resulting from the IDBO was lower than that obtained by the rival algorithms.
This further verified the superiority of the IDBO.
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The specific parameters optimized by the IDBO are displayed in Table 3.
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Table 3. The parameters optimized by the IDBO.

Parameters C0 C1 d σ C

Optimal value 21.37 0.23 2 68.92 85.09

The IIRI prediction results of the IDBO-HKELM and the rival models are shown in
Table 4. The predictive performance of ELM was better than that of BPNN, which showed
the superiority of the ELM algorithm. The prediction accuracy of KELM was better than
that of ELM, indicating that the addition of a kernel function can improve the predictive
performance. KELM mapped the input samples to the high-dimensional hidden feature
space via the kernel function, replaced random mapping with kernel mapping, enhanced
the learning ability and generalization ability, and its fitting ability was better than that of
the non-kernel extreme learning machine. The IDBO-HKELM had the lowest RMSE and
MAE. Because the IDBO-HKELM model adopted a hybrid kernel function, this effectively
combined the advantages of the radial basis kernel function and the polynomial kernel
function. The learning and generalization ability was further improved by obtaining the
optimal weights with the IDBO algorithm.

Table 4. Comparison of the predictive performance between IDBO-HKELM and the rival models.

Models MAE RMSE

BPNN 27.74 69.09
ELM 15.44 41.05

KELM 14.72 36. 93
IDBO-HKELM 8.33 20.64

The cross-plots of IIRI calculated by RMCM versus the predicted IIRI with the BPNN,
ELM, KELM and IDBO-HKELM models are shown in Figure 13. It can be concluded that
the IDBO-HKELM model had the best predictive performance.
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According to the method of building the IIRI model, the ISRI models (BPNN, ELM,
KELM, and IDBO-HKELM) corresponding to each specific band (spectral range: 3–5 µm;
spectral resolution: 0.05 µm) can be established. The infrared spectral curves can be
obtained by interpolating the predicted values of each specific band. For when the distance
was 10 km, the predicted infrared spectral curves are shown in Figure 14. It can be clearly
observed that the shape of the infrared spectral curve predicted by the IDBO-HKELM
model was closer to the curve calculated by RMCM. The IDBO-HKELM model had a good
overall predictive performance on the infrared spectral curves.
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5. Conclusions

The prediction of aeroengines’ characteristics of infrared radiation is an important part
of aircraft stealth designs. To solve the problems of high computational complexity and the
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long calculation time of the numerical simulation method, a data-driven model based on the
IDBO-HKELM was proposed. The infrared simulation dataset of an axisymmetric nozzle
was used as the training and testing samples. It was found that the IDBO-HKELM model
had high accuracy for the infrared spectral characteristics of different bands. Therefore, it
can be confidently stated that the IDBO-HKELM model is much better suited for predicting
the characteristics of infrared radiation compared with the rival models proposed in this
research. The potential areas for future research include the influence of the structural
and aerodynamic parameters on the characteristics of infrared radiation, using machine
learning methods.
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