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Abstract: In the autonomous navigation of mobile robots, precise positioning is crucial. In forest
environments with weak satellite signals or in sites disturbed by complex environments, satellite
positioning accuracy has difficulty in meeting the requirements of autonomous navigation position-
ing accuracy for robots. This article proposes a vision SLAM/UWB tightly coupled localization
method and designs a UWB non-line-of-sight error identification method using the displacement
increment of the visual odometer. It utilizes the displacement increment of visual output and UWB
ranging information as measurement values and applies the extended Kalman filtering algorithm
for data fusion. This study utilized the constructed experimental platform to collect images and
ultra-wideband ranging data in outdoor environments and experimentally validated the combined
positioning method. The experimental results show that the algorithm outperforms individual UWB
or loosely coupled combination positioning methods in terms of positioning accuracy. It effectively
eliminates non-line-of-sight errors in UWB, improving the accuracy and stability of the combined
positioning system.

Keywords: extended Kalman filtering; multi-sensor fusion; visual SLAM; ultra-wideband positioning

1. Introduction

Location-based services (LBS) have gradually penetrated into all aspects of human
life as a way of life. Accurate location information is a prerequisite for conducting LBS.
At present, humans can rely on the Global Navigation Satellite System (GNSS) [1,2] to
achieve sub-meter-level outdoor positioning accuracy; however, due to the inability of
satellite signals to penetrate buildings and the high attenuation of GNSS signals, indoor
positioning cannot be achieved using GNSS. How to achieve continuous indoor and outdoor
positioning has become a research hotspot in the field of navigation and positioning, and
it is also the trend of future positioning development. Both industry and academia are
exploring high-precision and highly reliable positioning technologies in order to obtain
accurate location information in indoor environments with complex electromagnetic and
geographical environments. In 2011, Google relied on wireless fidelity (WiFi) and mobile
communication base stations to release indoor maps, covering buildings such as shopping
malls, supermarkets, airports, and stations; Apple relies on a large number of iBeacon
devices and users’ iPhones to draw indoor maps with higher accuracy than Google; the
University of Calgary in Canada combines sensors, public wireless signals (WiFi, Bluetooth),
and indoor environmental features (such as magnetic field environments) to provide users
with real-time and reliable indoor location. In addition, Samsung from South Korea, Spirit
from Russia, Zetesis from Italy, University of Stuttgart in Germany, University of Seoul in
South Korea, University of Antwerp in Belgium, and others have conducted research in the
field of indoor positioning. In recent years, multi-sensor fusion positioning technology has
achieved seamless continuous indoor and outdoor positioning, and has also become the
mainstream positioning method in the field of navigation positioning.
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Currently, there are several mainstream indoor positioning technologies, including
WIFI, Bluetooth, ultra-wideband communication, inertial navigation system (INS), LiDAR,
and vision [3,4]. Each of these technologies has its own advantages and disadvantages.
INS positioning technology offers high short-term incremental data accuracy and strong
autonomy. However, it suffers from severe error accumulation, drift, and high cost [5].
LiDAR can accurately measure the angle and distance of obstacles to generate an easily
navigable environment map. However, it is highly dependent on the environment and the
size of the scanned area, leading to poor stability [6]. Visual SLAM, which relies on cameras
as positioning sensors, is a passive sensor that does not require pre-arrangement of the
scene. It provides rich information in lightweight and inexpensive form and can be easily
combined with other sensors. However, visual SLAM may encounter error accumulation
issues during long-term or remote operation. Therefore, relying solely on one positioning
method in complex environmental conditions makes it difficult to achieve high robustness
and accuracy. Ultra-wideband (UWB) positioning is an active method with high bandwidth
and strong penetration ability. It can provide absolute positioning services in environments
where GNSS is unable to determine positioning [7]. UWB positioning technology adopts
the principle of trilateral measurement, utilizing multiple base stations to construct a map
for real-time positioning. It operates similarly to satellite positioning by observing the
position of the base station for positioning. This ensures real-time performance without
causing drift, enabling stable long-term operation [8]. By combining UWB positioning tech-
nology with visual SLAM, the map composed of base stations does not require correction
through looping. The integrated navigation system can work in a global coordinate system,
effectively complementing the visual system and ensuring stability [9,10].

Reference [11] proposes a tightly coupled fusion scheme for visual inertial density
measurement (VIO) and UWB, where the measurement data from VIO and UWB are fused
to obtain the robot’s posture. Reference [12] uses the position information output with
the monocular vision ORB-SLAM algorithm and the positioning information obtained
using UWB as measurement information, employing the extended Kalman filter (EKF) to
fuse indoor positioning data. However, this article does not address the identification and
elimination of non-line-of-sight (NLOS) errors in UWB. Reference [13] proposes a loosely
coupled scheme for binocular VIO and UWB, utilizing the position information output
with binocular VIO and UWB separately. The optimal position estimation of the robot
can be obtained through data fusion using EKF. This scheme adopts a loosely coupled
fusion method, and the robustness of the combined system is relatively low. Reference [14]
proposed a method for EKF localization using inertial sensors, monocular vision, and UWB.
This method utilizes UWB assisted visual inertial range synchronization and mapping to
obtain improved drift free global six-degree-of-freedom attitude estimation. Although it
achieves high accuracy, using three sensors increases cost and complexity of fusion.

Data fusion processing is the most important step in visual SLAM/UWB combination
navigation solutions [15,16]. The methods of sensor information fusion mainly include the
weighted average method, Kalman filtering method, Bayesian inference method, neural
network algorithm, etc. The weighted average method is simple and intuitive, but it is
difficult to obtain the optimal weighted average, and calculating the optimal weighted
average value requires a lot of time. Describing Bayesian inference information as a
probability distribution requires prior probability and likelihood function, and the analysis
and calculation are complex. Neural network algorithms train and adjust network weights
based on input data samples, but require a large amount of data during the training
phase, resulting in poor real-time performance [17]. The extended Kalman filter (EKF)
and unscented Kalman filter (UKF) are commonly used filtering strategies for nonlinear
systems [18,19]. UKF uses a set of deterministic selected sigma points to approximate the
probability distribution of system states, and further propagates them through nonlinear
system models, resulting in higher order approximation accuracy than EKF. However,
due to the presence of negative weights, UKF is considered unstable, especially for high-
dimensional (over three) nonlinear systems [20]. EKF is one of the earliest nonlinear filters
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proposed, and D’Alfonso et al. found in their research that the performance of these two
filters is comparable [21]. This may be due to insufficient nonlinearity of the model or
the fact that the parameters have not been optimized yet [22]. The accuracy of location
information directly affects the performance of indoor mobile robots. Chen et al. combined
EKF with the least squares support vector machine to achieve accurate positioning [23].
In this method, EKF estimates the position and velocity information of the robot and
uses the results for training the compensation model. Although EKF is not suitable for
non-Gaussian processes, it has significant advantages in computing speed and resource
consumption, and is easy to implement and run online on computers. Therefore, in this
article, the extended Kalman filtering algorithm was chosen to handle nonlinear problems
for sensor information fusion [24].

In a visual/UWB fusion positioning system, obstacles can block UWB pulse signals,
leading to phenomena such as signal reflection, refraction, and penetration, resulting in
non-line-of-sight (NLOS) environments and NLOS errors. NLOS errors are the main source
of error in UWB positioning solutions, significantly reducing the accuracy and stability
of UWB positioning systems. There are two main approaches to handling NLOS errors:
robust filtering methods and data signal feature identification methods. In terms of robust
filtering methods, reference [25] proposes an algorithm that uses colored noise adaptive
Kalman filtering. While this algorithm produces significant results, it is complex and
computationally demanding. Reference [26] investigates the CC-KF algorithm, which
divides the TOF signal propagation path into three types and adjusts the parameters of the
Kalman filter based on the different paths. This method can effectively eliminate different
types of NLOS errors but may introduce larger errors due to path errors. In terms of
data signal feature identification methods, reference [27] proposes an NLOS identification
method based on signal strength. This method analyzes and identifies NLOS based on the
characteristics of received signals. It has significant identification performance and wide
applicability but requires prior observation and feature extraction of NLOS and line-of-sight
(LOS) samples, resulting in a significant amount of work. Reference [28] directly extracts
feature parameters from signals and uses least squares support vector machines for NLOS
identification. However, this method has high complexity and is time-consuming. While
robust filtering methods mostly provide weak constraints on NLOS errors and are difficult
to completely eliminate them, data signal feature identification methods are more direct
and accurate but have higher algorithm complexity. Therefore, it is necessary to design
more accurate and practical methods for NLOS error identification and suppression. One
approach is to monitor faulty data based on the consistency of redundant information at
the receiver end and directly remove faulty data from the raw data.

Based on the above analysis, this article proposes a visual/UWB fusion localization
method. It uses the displacement increment of visual measurement method (VO) and
the ranging information of UWB as measurement values, and uses the EKF algorithm
for parameter estimation. Considering that measurement noise is easily affected by com-
plex environments, threshold detection and adaptive measurement noise estimator are
introduced to suppress the impact of outliers and time-varying measurement noise on
filter performance. This fusion positioning method utilizes visually obtained distance
information to eliminate UWB NLOS errors, effectively suppressing the impact of NLOS
errors on the fusion system and improving the positioning accuracy of the fusion system.

2. Principles of the Visual and UWB Localization Algorithms
2.1. Principles of the Visual SLAM Localization Algorithm

The ORB-SLAM2 algorithm is used for visual positioning, and the front-end visual
odometer is based on the “Oriented FAST” key points and the BRIEF descriptor, with the
aim of achieving feature point extraction and matching [29]. The back end is based on
a nonlinear optimized BA visual SLAM system. It divides the traditional visual SLAM
algorithm into three threads: position tracking, local mapping, and loop closing. The
flowchart of the algorithm is shown in Figure 1. In the RGB-D mode, the tracking thread is
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responsible for real-time pose localization, tracking, and optimization processing based
on the provided feature point depth information. The local mapping thread creates new
map points through the obtained keyframes and removes points outside the map. The pose
of the keyframes is locally optimized via BA, and redundant keyframes and map points
are deleted. The closed-loop detection thread uses a mathematical model to evaluate the
similarity of adjacent keyframes and determine the closed-loop situation of keyframes,
which helps to reduce the cumulative drift of trajectories. This article selects an RGB-D
camera as the image input source. Compared to monocular and binocular cameras, the
RGB-D camera can simultaneously capture color images and corresponding depth maps.
Not only can it solve the problem of scale uncertainty in monocular vision, but it can also
eliminate the tedious steps of calculating the parallax between left and right cameras in
binocular vision, reduce computer computation, and ensure real-time requirements.
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2.2. Principle of the Ultra-Wideband (UWB) Positioning Algorithm

Ultra-wideband communication is a wireless carrier communication technology that
uses nanosecond non-sinusoidal narrow pulses to transmit data, occupying a wide spectral
range. Due to its simple system structure, high transmission rate, and low functionality, it
is widely used in positioning technology.

The commonly used positioning methods for UWB technology include TOA (time of
arrival), TDOA (time difference of arrival), TWR (time of flight ranging), etc. The principle
of TOA positioning is to calculate the distance of signal propagation by measuring the
propagation time of the signal from the transmitting source to the receiver. It uses multiple
receivers (anchors or base stations) to simultaneously measure the arrival time of the signal
and calculate the position of the target via multilateral positioning algorithms (such as
triangulation). The TDOA positioning principle is based on using the difference in the
signal arrival time to calculate the target position. In TDOA positioning, at least three
receivers are required for measurement. By measuring the time difference between signals
reaching different receivers, the position of the target relative to these receivers can be
calculated. The principle of TWR positioning is to calculate distance based on the flight
time of the signal. TWR calculates the distance of signal propagation by measuring the
flight time from the transmitter to the receiver, combined with the propagation speed.
Multiple TWR measurements can be used for multilateral positioning and calculating
target positions.
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In our experiments, TOA positioning was selected. Unlike other positioning methods,
TOA does not require advanced hardware or complex signal processing algorithms, and it
is relatively easy to implement. It has high accuracy and a relatively simple implementation
method. Moreover, TOA positioning is based on time measurements, and its measurement
accuracy can reach the sub-nanosecond level or better. Therefore, it has high positioning
accuracy and a good ability to suppress multipath effects. The schematic diagram is
as follows:

Assuming the target generates a signal at time t0 and, at time tR, reaches the receiver,
the propagation time of the signal from the transmitting source to the receiver ∆t (TOA)
can be expressed as:

∆t = tR − t0 (1)

The distance d of signal propagation is as follows:

d = c × ∆t (2)

where c represents the propagation speed of the signal (usually approximately the speed
of light).

In this way, by measuring the time of arrival (TOA) and signal propagation speed
of the signal, the distance of signal propagation can be calculated, thereby achieving
target positioning. In practical applications, multiple receivers (anchors or base stations)
are usually used to calculate the position of the target through multilateral positioning
algorithms (such as triangular positioning algorithms), as shown in Figure 2.
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When installing and deploying base stations 1, 2, and 3, their positions are fixed and
known. For base stations 1 (x1, y1), 2 (x2, y2), and 3 (x3, y3), the coordinates of the required
positioning labels are R0 (x0 , y0). The location of an unknown tag R0 (x0 , y0, z0) can be
computed via trilateration, i.e., Pythagoras theorem:

x2
0 + y2

0 + z2
0 = d2

1
(x0 − x2)

2 + y2
0 + z2

0 = d2
2

(x0 − x3)
2 + (y0 − y3)

2 + z2
0 = d2

3

(3)

where di is the measured distance (radius of a circle or sphere) between the ith anchor and
the tag, and (x0 , y0) is the interested unknown location of the tag.

Through the deformation of formulas, we obtain the following:

x0 =
d2

1 − d2
2 + x2

2
2x2

(4)
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y0 =
d2

1 − d2
3 + x2

3 + y2
3 − 2x0x3

2y3
(5)

z0 = ±
√

d2
1 − x2

0 + y2
0 (6)

To determine the ambiguous solutions from (6), the information from the fourth anchor
is necessary in 3D trilateration. There are three constraints in the geometry of trilateration:
(i) the first anchor (A1) should be located in the origin of a coordinate system, i.e., (0, 0, 0) in
3D Cartesian coordinate, (ii) the second anchor should be located on the X-axis, and (iii) the
height of the anchors (Z-value) should be the same for all anchors. In an arbitrary system
set-up, the first constraint can be accomplished by subtracting the value of the first anchor
(A1) from all the three available known anchors including itself. The second constraint can
be accomplished by projecting the second anchor’s value (A2) onto the X-axis.

The generic spherical equation for true-range multilateration can be represented in 3D
as follows:

d2
i = (xi − x0)

2 + (yi − y0)
2 + (zi − z0)

2 (7)

where, di is the distance (range or radius of a sphere) between the coordinates of the ith
anchor and the tag.

3. Fusion Localization Algorithm
3.1. UWB Non-Line-of-Sight Error Identification

When NLOS error occurs in UWB positioning, the ranging value of UWB will undergo
significant changes. If an NLOS error is not processed, the accuracy and stability of the
visual/UWB combined positioning system will be greatly reduced. Visual SLAM obtains
the pose of each keyframe of the camera by preprocessing, initializing, estimating pose,
and tracking local maps on image sequences. Under normal tracking conditions, the
displacement increment of visual SLAM is relatively accurate. Therefore, this article uses
the displacement increment of visual SLAM to identify NLOS errors in UWB ranging
values. Based on the coordinate increment of visual SLAM and the coordinates of the
previous epoch in the combination system, calculate the coordinates of the current epoch
combination system, and then calculate the distance between the combination system and
the UWB reference station: {

xc
k = xk−1 + ∆xc

k
yc

k = yk−1 + ∆yc
k

(8)

dc
k,i =

√(
xc

k − xb
i
)2

+
(
yc

k − yb
i
)2, i = 1, 2, 3 · · · , N (9)

In the formula,
(

xc
k, yc

k
)

is the coordinate of the combined system visually solved at
time k; (xk−1, yk−1) is the coordinate of the combined system at time k − 1; ( ∆xc

k, ∆yc
k
)

is
the visual coordinate increment at time k; and dc

k,i is the distance between the combination

system visually calculated at time k and the i-th UWB reference station. (x b
i , yb

i

)
is the

known coordinate of the i-th UWB reference station; N is the number of UWB reference
stations, N ≥ 3. Subtract the ranging value of UWB from the visual calculated distance
value and compare the difference with the set threshold, as follows:

du
k,i =

√(
xu

k − xb
i
)2

+
(
yu

k − yb
i
)2

+ vk,i, i = 1, 2, 3 · · · , N (10)

∆dk,i = dc
k,i − du

k,i (11){ ∣∣∆dk,i
∣∣ ≥ L, NLOS∣∣∆dk,i
∣∣ < L, LOS

(12)

In the formula, du
k,i is the observation distance between the UWB mobile station

and the i-th UWB reference station in the combination system at time k. (x u
k , yu

k
)

is the
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coordinate of the UWB mobile station at time k; vk,i is the measurement noise sequence of
UWB, ∆dk,i is the distance difference; and L is the threshold, L > 0.

When NLOS error occurs, UWB ranging values will be affected by the NLOS error and
cause jumps, resulting in range differences fluctuating within a certain range. Therefore,
this article first provides an initial empirical threshold and then amplifies the average
of n distance differences by an appropriate multiple as the dynamic testing threshold
for distance differences. When

∣∣∆dk,i
∣∣ is greater than or equal to threshold, the distance

measurement value from the combined system to the i-th UWB reference station at the
current time is removed. If

∣∣∆dk,i
∣∣ is less than the threshold, the current ranging value

is retained.
According to the visual SLAM and UWB ranging accuracy levels, an initial threshold of

0.3 m is given. If
∣∣∆dk,i

∣∣ ≥ 0.3 m, then exclude ∆dk,i and du
k,i. If

∣∣∆dk,i
∣∣ < 0.3 m, then du

k,i join
the combined positioning process while retaining ∆dk,i until n ∆dk,is are retained, stop using
the initial threshold, and take n as 20. Take the average of these 20 distance differences and
multiply the obtained average by three times as the dynamic test threshold. Afterwards,
a dynamic testing threshold is used to distinguish whether there is an NLOS error in du

k,i,
and the dynamic testing threshold is continuously updated based on ∆dk,i.

3.2. Algorithm for Combined Positioning

Compared with loose coupling, the tight coupling fusion localization of UWB and
vision has strong environmental adaptability and better robustness. Considering that the
tight coupling mode has lower delay and faster response speed, it can better adapt to the
NLOS detection method proposed in the previous section by obtaining and processing
real-time information from the receiver and transmitter. Therefore, this paper chooses the
tight coupling mode.

According to Newton’s second law of motion, the state dynamic model of navigation
and tracking systems is usually assumed to be linear. Therefore, in the visual/UWB
combined positioning system of this article, nonlinearity only appears in the measurement
function in (10). This means that the state model in EKF remains exactly the same as the
standard KF.

The state equation of the combination algorithm is as follows:

Xk = FXk−1 + wk−1 (13)

where Xk =
[

xk, yk, vk, x, vk,y

]T
is the state vector, xk,yk represents the coordinates in

the x and y directions of the combined system at time k, and vk,x, vk,y represents the veloc-

ities in the x and y directions of the combined system at time k; F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 is

the state transition matrix, where ∆t is the sampling interval; wk−1 is a sequence of pro-
cess noise.

When using the EKF algorithm, the time update process is as follows:

X̂−
k = FX̂k−1 (14)

P−
k = FPk−1FT + Qk (15)

In the formula, X̂−
k is the prior predicted value of the state at time k; P−

k is the prior
estimation matrix of error covariance; and Qk is the covariance matrix of process noise at
time k.

According to Formula (10), the UWB positioning observation equation is

du
k,i =

√(
xu

k − xb
i
)2

+
(
yu

k − yb
i
)2

+ vk,i, i = 1, 2, 3 · · · , N (16)
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The true horizontal distance between UWB mobile station and reference station is

dk,i =

√(
xu

k − xb
i
)2

+
(
yu

k − yb
i
)2 i = 1, 2, 3 · · · , N (17)

The approximate location (xk0, yk0) of the UWB mobile station in the k-th epoch is
calculated using the previous epoch’s location information. The first-order Taylor expansion
of Equation (17) at (xk0, yk0) yields

dk,i = dk0,i +
∂dk,i

∂xk
dxk +

∂dk,i

∂yk
dyk

In the formula,

dk0,i =

√(
xk0 − xb

i
)2

+
(
yk0 − yb

i
)2 i = 1, 2, 3 · · · , N

So, the linearized equation is

∼
d

u

k,i = dk0,i + εu
k,i = dk0,i +

∂dk,i

∂xk
dxk +

∂dk,i

∂yk
dyk + εu

k,i (18)

Measurement equation is as follows:

∼
d

u

k,i − du
k0,i =

xk0 − xb
i√(

xu
k0 − xb

i
)2

+
(
yu

k0 − yb
i
)2

dxk +
yk0 − yb

i√(
xu

k0 − xb
i
)2

+
(
yu

k0 − yb
i
)2

dyk + εu
k,i (19)

In the formula,
∼
d

u

k,i is the distance measurement value identified via NLOS; (xk0, yk0) is
the approximate coordinates of the combined system at time k; du

k0,i is the approximate
distance between the combined system at time k and the i-th UWB reference station;
and εu

k,i is linearized noise.
Equation (8) can be expressed as{

xc
k−1 + ∆xc

k − xk0 = dxk + εc
xk

yc
k−1 + ∆yc

k − yk0 = dyk + εc
yk

(20)

In the formula, εc
xk

,εc
yk

represents the linearized noise in the x and y directions at time k.
The measurement equation for a composite system is

Zk = HXk + 𝓋k (21)

In the formula, Zk =
[∼

d
u

k,i − du
k0,i xc

k−1 + ∆xc
k − xk0 yc

k−1 + ∆yc
k − yk0

]
is a measure-

ment vector.

H =


xk0−xb

i√
(xu

k0−xb
i )

2
+(yu

k0−yb
i )

2

yk0−yb
i√

(xu
k0−xb

i )
2
+(yu

k0−yb
i )

2 0 0

1 0 0 0
0 1 0 0


is a measurement matrix, and 𝓋k =

[
εu

k,i εc
xk

εc
yk

]T
is a linearized measurement noise

sequence.
The measurement update process of the EKF algorithm is as follows:

Kk = P−
k HT

k

(
HkP−

k HT
k + Rk

)−1
(22)

X̂k = X̂−
k +Kk

(
Yk − HX̂−

k
)

(23)
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Pk = (I − Kk Hk)P−
k (24)

In the formula, Kk is the filtering gain matrix at time k; Rk is the covariance matrix of
the observed noise at time k; and I is the identity matrix.

Given the initial value of X̂0 = E[X0]P0 = E
[(

X0 − X̂0
)
−

(
X0 − X̂0

)T
]
, R0 = E

[
𝓋0𝓋T

0
]
.

Based on the state equation and measurement equation, the EKF algorithm is used to update
the state and measurement and to obtain the positioning information of the composite system.

3.3. Measurement Noise Estimation and Threshold Judgment

For combined positioning systems, the system is susceptible to abnormal interference
during maneuvering, and measurement inevitably involves errors such as typical outliers
in observations and non-Gaussian characteristics of noise statistics. Therefore, a method
is needed to effectively handle and eliminate the aforementioned errors involved. Ref-
erence [30] proposed a new adaptive robust strategy based on Mahalanobis distance to
weaken the influence of outlier model bias and outliers in measurements; reference [31]
uses the Variance Shift Outlier Model (VSOM) to detect faults in raw pseudo range data.
According to the magnitude of the relevant variance shift, measurements are partially
excluded or included in the estimation process. This method can accurately detect and iden-
tify faults that occur during the navigation process. In the estimation process, weighting
faults using appropriate weighting factors can ensure performance and accuracy. Refer-
ence [32] proposes an innovative saturation mechanism that applies the saturation function
to the innovation process of correcting state estimation in EKF. Therefore, when outliers
occur, the innovation of distortion is saturated to avoid disrupting state estimation. The
characteristic of this mechanism is used to adaptively adjust the saturation boundary,
making EKF robust to outliers. Reference [33] established a stochastic model of an integral
Kalman filter using analysis of variance and non-holonomic constraints. In a loosely and
tightly coupled integration mode, KF with fault detection and troubleshooting capabilities
is adopted to reduce the adverse effects of abnormal GNSS data. Reference [34] presents an
adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF.
According to the covariance matching technique, the innovation and residual sequences
are used to determine the covariance matrices of the process and measurement noises. The
proposed algorithm can estimate and adjust the system noise statistics online, and thus
enhance the adaptive capability of the standard UKF.

Therefore, this article adds a Sage Husa noise estimator and threshold judgment on the
basis of EKF. On the one hand, the noise estimator can continuously adjust the measurement
noise intensity. On the other hand, by adding a threshold judgment mechanism and deleting
measurement data that are severely offset from the actual position, optimization of the filter
can be achieved.

Due to the traditional EKF requiring measurement noise to follow a Gaussian distribu-
tion of zero mean on the noise assumption Qk ∼ N(0, Q), Rk ∼ N(0, R), where Qk should
be related to the system prediction model, Rk is mainly related to sensor measurement data.
In practical scenarios, such as SLAM and UWB positioning, the measurement noise may
not fully conform to the Gaussian distribution and it may be affected by the environment,
resulting in increased or even divergent estimation errors. Therefore, this article introduces
the Sage Husa noise estimator and threshold judgment mechanism based on traditional
EKF to optimize the performance of the filter.

The Sage Husa noise estimator is an adaptive noise estimation technique that con-
tinuously adjusts the intensity of measurement noise. In each iteration, by analyzing the
measurement data, the actual measurement noise intensity is estimated and applied to
the noise model in EKF to reflect the actual measurement error more accurately. The
threshold judgment mechanism analyzes the estimated values of the filter output to deter-
mine whether there is significant deviation from the actual position of the measurement
data, preventing these abnormal data from interfering with the filter estimation, and thus
achieving the optimization of the filter.
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When wk is fixed, the Sage Husa algorithm is used to estimate the covariance of system
measurement noise. For the k measurement, first, the measurement residual is calculated
as follows:

ek = yk − HX̂−
k (25)

where yk is the actual measurement value, H is the state observation matrix, and X̂−
k is

the prior state prediction value. Then, the covariance R̂k [35] of the measurement noise is
estimated using the following formula:

R̂k = (1 − dk)R̂k + dk

(
ekeT

k − HX̂−
k HT

)
(26)

where R̂k is the k-th estimated measurement noise covariance matrix, dk is the adaptive
weight, and dk =

1−b
1+bk+1 . b is the forgetting factor, ranging from 0.95 to 0.99, representing the

estimated weight before forgetting it. The specific value can be obtained through experiments.
To eliminate abnormal measurement data, before fusion, the measured values are

compared with the estimated values of the state vector, and the difference between the two
is subtracted from the pre-set threshold. If the threshold is exceeded, the previous state
estimation is used instead.

After combining the threshold judgment, Equation (22) in EKF is modified to

Kk =

{
0, |ek| > thresh

P−
k HT

k
(

HkP−
k HT

k + R̂k
)−1, |ek| < thresh

(27)

where the threshold is the pre-selected threshold. The main steps of the final fusion
localization algorithm are shown in Figure 3.
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4. Testing and Analysis
4.1. Construction of the Visual/UWB Platform

The camera used on the mobile positioning platform is Intel’s Realsense-D455 model
camera (Intel, Santa Clara, CA, USA), with a resolution of 1280 pixels by 720 pixels. The
sampling frequency was set to 10 Hz. The UWB used was the Decawave’s DW1000
communication and ranging module (DecaWave, Dublin, Ireland), with a bandwidth
of 3.5–6.5 GHz and a data sampling frequency of 10 Hz. In order to accurately obtain
the system error of each anchor point of the UWB, a mobile calibration platform was
constructed in this experiment, as shown in Figure 4. The platform consists of three main
parts: aluminum profile chassis, a control box, and a synchronous belt. Both the UWB and
the camera are fixed on the moving slider of the synchronous belt of the mobile calibration
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platform. By controlling the synchronous belt via the control box, the speed, acceleration,
and spatial coordinate values of the two sensors can be accurately obtained. Time tags
are added to the data collected via UWB positioning and the camera, ensuring that these
time tags are consistent with the system time of the computer. Data are collected from both
sensors on the laptop at the same time.
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4.2. Correction of UWB Positioning System

The TOA (time of arrival) algorithm used in this article usually includes two stages: a
ranging stage and a localization stage. Due to environmental and other external factors,
there may be some errors in the distance measured via UWB positioning. Therefore, in order
to accurately obtain the measurement error of UWB and improve subsequent positioning
accuracy, this section of the experiment collected distance information of four UWB anchor
points working simultaneously.

First, four UWB anchor points are fixed within the flat area of the large scene, as
shown in Figure 5. The label and anchor are kept at the same height. The target labels are
placed at different positions and distances within the range of 0–100 m for the distance
measurement, with 20 groups every 5 m. Data are collected for 2 min for each group,
including 400 measurement data. The measurement data of a laser rangefinder with a
measurement accuracy of 0.001 m as a reference value are compared with the collected
measurement data.
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Figure 6 shows the relationship between the absolute error and distance of each
anchor point, both before and after correction. As shown in Figure 6, there is a difference
in the absolute error between the measured values of each anchor point at the same
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true distance and the environment, which is caused by hardware factors. Moreover, the
measurement error of each anchor point fluctuates between 0.010 and 0.040 m at different
distances. This indicates that there are certain systematic and random errors in UWB
distance measurement.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 6. Absolute error of UWB anchor ranging before and after correction. 

The system error remains relatively stable throughout the entire measurement sys-
tem process. In order to eliminate the impact of the system error on the positioning results, 
the system is calibrated by collecting reference point data at a known distance, establish-
ing a system error compensation model, and applying it to distance measurement. The 
corrected absolute error is shown with the blue line in Figure 6. A comparison of meas-
urement error data before and after correction is shown in Table 1. The random error is 
processed using a Kalman filter, and the results before and after processing are shown in 
Figure 7. 

 
Figure 7. Comparison before and after Kalman filtering. 

Table 1. Comparison of errors before and after UWB correction. 

Direction Index Before Correction Revised 

X-axis 
maximum 0.118 0.105 

average value 0.062 0.045 
standard deviation 0.034 0.028 

Y-axis 
maximum 0.305 0.086 

average value 0.076 0.020 
standard deviation 0.034 0.024 

Figure 6. Absolute error of UWB anchor ranging before and after correction.

The system error remains relatively stable throughout the entire measurement system
process. In order to eliminate the impact of the system error on the positioning results, the
system is calibrated by collecting reference point data at a known distance, establishing a
system error compensation model, and applying it to distance measurement. The corrected
absolute error is shown with the blue line in Figure 6. A comparison of measurement error
data before and after correction is shown in Table 1. The random error is processed using a
Kalman filter, and the results before and after processing are shown in Figure 7.

Table 1. Comparison of errors before and after UWB correction.

Direction Index Before Correction Revised

X-axis
maximum 0.118 0.105

average value 0.062 0.045
standard deviation 0.034 0.028

Y-axis
maximum 0.305 0.086

average value 0.076 0.020
standard deviation 0.034 0.024

The analysis shows that the average measurement error after correction has decreased
by 5.9 cm and the standard deviation has decreased by 0.08 compared to the values before
correction. This indicates that this pre-experiment effectively improved the performance of
the UWB positioning system, making its distance measurement more accurate and stable.

By conducting the pre-experiments described in this section, we obtained distance
error compensation models for UWB during the positioning process. These models can
be used in subsequent positioning experiments to reflect the distance measurement noise
of UWB. This is very helpful for the design and performance evaluation of subsequent
localization algorithms.
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4.3. Outdoor Positioning Test and Analysis

We conducted positioning experiments in both obstacle-free and obstacle-rich environ-
ments. The obstacle-free environment was a volleyball court outside the teaching building,
while the obstacle-rich environment was a forest next to the laboratory building. In the
obstacle-rich environment, tree branches and trunks served as obstacles during the posi-
tioning process, while the small field had no obstacles. The experiments were conducted
around 14:00 when the lighting conditions were good, facilitating the experiment.

For the experiments, we used four UWB modules, a self-made mobile positioning
platform, an Intel RealSense depth camera, and a Xiaomi laptop for fusion positioning.
The four UWB modules were placed at the four corners of the field as anchor nodes. The
coordinates of the four UWB reference stations were obtained in advance using a total
station and a laser rangefinder. The experimental setup and layout are shown in Figure 8.
The mobile positioning platform moved a distance of 3 m, with a conveyor belt speed of
0.105 m/s. The platform had a UWB mobile tag attached to it, and the camera moved along
a fixed trajectory at a constant speed.
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Figure 9 shows the comparison between UWB, visual/UWB loosely coupled models,
and visual/UWB-EKF tightly coupled fusion models with ground truth trajectories. In a
good line-of-sight (LOS) scene, visual/UWB-EKF achieves centimeter level positioning
accuracy, and the estimated trajectory closely matches the reference trajectory.
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Figure 9. Comparison between solution trajectory and reference trajectory in the line-of-sight state.

Throughout the entire experimental process, compared with the other two methods,
the visual/UWB-EKF tightly coupled fusion method consistently showed smaller position-
ing errors. Table 2 provides the error statistics of these three positioning methods in the x
and y directions. In Table 2, RMSE represents root mean square error, and MAX represents
maximum error value. See also Figure 10.

Table 2. Error statistics of three positioning methods in the line-of-sight state.

Direction Index UWB Loose Coupling EKF

X-axis
MAX 0.164 0.105 0.057
RMSE 0.078 0.039 0.024

Y-axis
MAX 0.089 0.052 0.033
RMSE 0.057 0.032 0.020
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From Table 2, we can observe the following:
The maximum error of the visual/UWB-EKF fusion method in the x direction is

5.7 cm, and the maximum error in the y direction is 3.3 cm. The positioning accuracy can
be continuously maintained at around 4 cm. Compared with the other two methods, this
fusion method has better robustness, higher positioning accuracy, and stronger reliability.

From Figure 11, it can be observed that in the presence of obstacles, the visual/UWB-
EKF fusion method effectively identifies and eliminates UWB NLOS errors by utilizing
visual displacement increments, resulting in a trajectory closely following the reference
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trajectory. The inclusion of UWB ranging information also helps reduce visual odometry
error accumulation. The maximum positioning error is 14.6 cm. Compared to the other
two methods, it is evident that the visual/UWB-EKF fusion method produces good results,
effectively mitigating the impact of UWB NLOS errors on positioning results and reducing
trajectory drift. The visual/UWB-EKF fusion method’s positioning trajectory aligns better
with the reference trajectory, demonstrating strong reliability.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 19 
 

 

visual displacement increments, resulting in a trajectory closely following the reference 
trajectory. The inclusion of UWB ranging information also helps reduce visual odometry 
error accumulation. The maximum positioning error is 14.6 cm. Compared to the other 
two methods, it is evident that the visual/UWB-EKF fusion method produces good results, 
effectively mitigating the impact of UWB NLOS errors on positioning results and reducing 
trajectory drift. The visual/UWB-EKF fusion method’s positioning trajectory aligns better 
with the reference trajectory, demonstrating strong reliability. 

 
Figure 11. Comparison between solution trajectory and reference trajectory in the non-line-of-sight 
state. 

It can be observed that, compared to the loosely coupled mode, the visual/UWB-EKF 
fusion system reduces the root mean square error in the x direction from 0.106 m to 0.076 
m, and, in the y direction, it reduces it from 0.086 m to 0.082 m. The maximum positioning 
error in the x direction decreases from 0.195 m to 0.146 m, and, in the y direction, it de-
creases from 0.148 m to 0.122 m. The experimental results demonstrate that the vis-
ual/UWB-EKF fusion model effectively addresses the issue of large trajectory errors in 
UWB positioning and suppresses the impact of UWB NLOS errors on the fusion system’s 
positioning accuracy. See Table 3 and Figure 12. 

  
(a) (b) 

Figure 12. (a) Error in the x direction in non-line-of-sight scenarios; (b) error in the y direction in 
line-of-sight scenarios. 

  

Figure 11. Comparison between solution trajectory and reference trajectory in the non-line-of-sight state.

It can be observed that, compared to the loosely coupled mode, the visual/UWB-EKF
fusion system reduces the root mean square error in the x direction from 0.106 m to 0.076 m,
and, in the y direction, it reduces it from 0.086 m to 0.082 m. The maximum positioning error
in the x direction decreases from 0.195 m to 0.146 m, and, in the y direction, it decreases from
0.148 m to 0.122 m. The experimental results demonstrate that the visual/UWB-EKF fusion
model effectively addresses the issue of large trajectory errors in UWB positioning and
suppresses the impact of UWB NLOS errors on the fusion system’s positioning accuracy.
See Table 3 and Figure 12.

Table 3. Error statistics of three positioning methods in the non-line-of-sight state.

Direction Index UWB Loose Coupling EKF

X-axis
MAX 0.232 0.195 0.146
RMSE 0.128 0.106 0.076

Y-axis
MAX 0.168 0.148 0.122
RMSE 0.135 0.086 0.082
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The experimental results indicate that the proposed fusion positioning method is feasi-
ble. It effectively solves the problem of error accumulation in visual odometry, improves the
stability of the VO algorithm, and addresses UWB NLOS errors, enhancing the robustness
of UWB positioning results. The fusion positioning accuracy can reach sub-decimeter level.

5. Conclusions

This article introduces a fusion localization algorithm that combines visual simultane-
ous localization and mapping (SLAM) technology with ultra-wideband (UWB) technology
to address the issues of low accuracy and poor stability in single localization methods for
mobile robots. The algorithm is based on the traditional extended Kalman filter (EKF) and
utilizes visual displacement increment to design a UWB non-line-of-sight error discrimina-
tion method. It also adds measurement noise estimator and threshold detection, improving
the stability of the fusion positioning system in complex environments. The experimental
results show that the visual/UWB-EKF combination method reduces error accumulation,
eliminates the NLOS impact of UWB, and improves the overall positioning accuracy and
robustness compared to a single-sensor and loosely coupled combination.

However, due to various limitations, there are still aspects in the designed positioning
system that can be further explored. This article outlines the following aspects for reference:

(a) This article overlooks the small spatial offset generated using the UWB label device
on the mobile platform in the design. It uses the ranging value obtained from the
UWB sensor directly as the distance between the camera and the UWB anchor point.
This may introduce errors between the calculated position and the actual position,
which can impact the algorithm’s accuracy. Addressing this issue in the future could
provide greater flexibility for the mechanical setup of the system. Additionally, over
time, UWB anchor degradation may occur, and this should be carefully monitored to
ensure the accuracy of the obtained position.

(b) The experiments in this article are conducted in a small field, leading to fewer accu-
mulated errors. While the errors caused by the sensor itself are considered during
data modeling, the impact of accumulated errors is closely related to the experimen-
tal site and the system’s operation time. Therefore, the results obtained in different
environments may vary.

Future research will address these limitations to make this study more comprehensive.
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