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Abstract: Soccer player performance is influenced by multiple unpredictable factors. During a game,
score changes and pre-game expectations affect the effort exerted by players. This study used GPS
wearable sensors to track players’ energy expenditure in 5-min intervals, alongside recording the goal
timings and the win and lose probabilities from betting sites. A mathematical model was developed
that considers pre-game expectations (e.g., favorite, non-favorite), endurance, and goal difference
(GD) dynamics on player effort. Particle Swarm and Nelder–Mead optimization methods were
used to construct these models, both consistently converging to similar cost function values. The
model outperformed baselines relying solely on mean and median power per GD. This improvement
is underscored by the mean absolute error (MAE) of 396.87 ± 61.42 and root mean squared error
(RMSE) of 520.69 ± 88.66 achieved by our model, as opposed to the B1 MAE of 429.04 ± 84.87 and
RMSE of 581.34 ± 185.84, and B2 MAE of 421.57 ± 95.96 and RMSE of 613.47 ± 300.11 observed
across all players in the dataset. This research offers an enhancement to the current approaches for
assessing players’ responses to contextual factors, particularly GD. By utilizing wearable data and
contextual factors, the proposed methods have the potential to improve decision-making and deepen
the understanding of individual player characteristics.

Keywords: optimization; model fitting; energy expenditure; soccer; player profiling; GPS data

1. Introduction

During analysis of low-scoring team sports such as soccer, game status primarily falls
into three categories: winning, losing, or drawing. The game status serves as a measure of
performance achievements, significantly influencing a player’s level of effort [1]. Evaluating
effort in soccer poses a challenge because of the sport’s complexity, with an average of
approximately 1330 activities occurring during a game, involving activity changes every
4–6 s [2]. These activities, classified based on intensity zones, require both aerobic and
anaerobic capacities. Evaluating effort is valuable for performance analysis, helping coaches
and athletes identify strengths and weaknesses and optimize strategies. However, there are
other situational variables, like game location, opponent level, and players’ fatigue, that
can also affect soccer effort [3].

Sports journalists have been speculating a lot about the impact of the scoreline on a
player’s work rate during a game. The commentators often mention that teams winning a
game “sit on their leads”, while teams trailing “chase the game” [4,5]. Because of these ideas,
academics have studied how the scoreline affects different parts of sports performance.
Changes in a team and individual strategy, in reaction to the scoreline, demonstrate the
importance of this situational variable. Section 1.1 will delve into diverse methodologies for
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evaluating players’ physiological responses to fluctuating scorelines and various contextual
influences, as well as critically evaluate the limitations inherent in existing approaches.

1.1. Related Work

There are two primary approaches to measuring athletes’ physical performance: exter-
nal load, which assesses the work they perform, and internal load, which evaluates how
this work affects the individual [6]. In soccer, the gold standard for measuring external
load is through GPS wearable devices [7]. These devices capture various metrics, such as
total distance (TD) covered, number of accelerations and decelerations, distance covered
in sprinting zones, and high-intensity actions [8]. However, a drawback of GPS devices is
the requirement for athletes to wear them, necessitating careful attention from coaching
staff [9].

With the advancement of video tracking technology and the installation of camera
systems in stadiums, an alternative method has emerged. This technology extracts the
players’ data points from the video footage, providing their positions on the pitch, usually
at 25 frames per second [10]. Tracking data offers the same features as GPS trackers, with
very close accuracy, but includes additional contextual details such as the positions of
opponents and the ball, which can greatly aid tactical analysis [8]. However, implementing
tracking data requires infrastructure, and GPS trackers offer more flexibility in day-to-day
usage, especially when teams move between different training and match locations.

The internal load of soccer players can be measured through simple methods, such as
filling out Rate of Perceived Exertion (RPE) questionnaires [11]. Through these surveys,
players rate how hard a particular session was on a scale of 1 to 10 (category-ratio scale)
or 6 to 20 (Borg scale) [12]. While this method is efficient and cost-effective, athletes need
to be educated about its purpose and motivated to provide honest responses after each
session. The subjectivity of the approach is a drawback, prompting consideration of more
objective alternatives, like heart rate (HR) sensors, which provide valid insights about
players’ internal states [13]. Enhanced athlete understanding typically correlates with
greater answer certainty. However, the abundance of diverse data necessitates soccer
coaches’ careful selection and prioritization of the most relevant and specific measures [14].

The rest of the section will explore various methodologies for utilizing both internal
and external load data to assess player performance about different contextual factors
and GD. Table 1 provides a comprehensive overview of research papers, which will be
discussed later in the text.

The term “sitting on lead” indicates that winning status is a comfortable state for a
team, which was observed in both top-class [15] and amateur soccer [16]. Contrary to that
conclusion, other studies [17–19] claim that the TD covered is greater while winning, but
Paul et al. [20] conclude that the game performance of elite soccer players is affected by a
multitude of factors (such as fatigue, pacing, contextual, and tactical). These factors (e.g.,
possession) have a strong impact on performance. Teams with low possession have to
cover more distance [21]. On the other hand, Barrera [22] concluded that the TD across each
speed threshold is greatest when the team is drawing. A similar conclusion was reached by
Redwood-Brown et al. [23]. They state that activity profiles change in a non-linear manner
with changes in goal differences (GD).

The influence of the GD on the playing position’s physical performance was considered
by several studies [5,24–26]. All of them agreed that the forward (FW) position covered
significantly greater distances in winning games, while defenders showed the same trend
for the losing games. A more recent study [26] supported the well-established finding that
center midfielders (CMs) covered a longer TD than the other playing positions, with a trend
of increasing activity in the winning game state.

Although many agree that scoreline influences game performance [5,15–19,22–26],
Bloomfield et al. [27] found no significant impact of the scoreline or the interaction of
scoreline and position on work rate. They concluded that midfield players tend to engage
in more exercise than forwards, and that the intensity increases following scoreline changes
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are short-lived. O’Donoghue et al. [28] arrived at a similar conclusion, noting a decrease in
V-cut path changes per minute following the first goal for both winning and losing teams.
They also stated that there is no difference in work rate between teams achieving different
outcomes.

Table 1. Categorization of related works. Arrows represent an increase, decrease, or maintenance of
intensity depending on the game status (winning, drawing, losing). An asterisk (*) indicates that the
intensity changes depending on the position or contextual factors. The position impact column gives
information on whether research investigates playing position differences.

Authors Winning Drawing Loosing Position
Impact

Lago et al. [15] ↗ - ↘ -

Shaw, Donoghue [16] ↗ - ↘ -

Moalla et al. [19] ↗ - ↘ -

Bordon et al. [17] ↘ - ↗ -

Castellano et al. [18] ↘ - ↗ -

Barrera [22] - ↗ - -

Redwood-Brown et al. [23] - ↗ ↗ -

Redwood-Brown et al. [5] * - * ✓

Andrzejewski et al. [24] * - * ✓

Bradley and Noakes [25] * - * ✓

Lago-Penas et al. [26] * - * ✓

Bloomfield et al. [27] → → → -

O’Donoghue et al. [28] → → → -

Several methodologies have been employed to evaluate how player performance
fluctuates in response to GD and other contextual factors. However, divergent conclusions
across studies underscore the necessity for a more tailored approach. While categorizing
players by position enhances alignment in research, substantial discrepancies persist due to
individual player profiles. In essence, the principal limitations of current studies include:

• Absence of an individualized approach to accommodate inter-player disparities;
• Lack of publicly available datasets for assessing and contrasting various

methodologies; and
• Inadequate mechanisms for operationalizing methods to provide coaching staff with

novel player insights.

1.2. Contributions and Structure

In previous research, the primary emphasis has been on comparing metrics like TD,
high-speed running (HSR) distance, or running and jogging distance across different GD
scenarios, aiming to draw general conclusions about specific playing positions or leagues.
However, given the unique nature of each team and individual player, a personalized
approach is necessary to assess their effort accurately in various GD situations. Moreover,
it is crucial to consider the contextual factors that influence a player’s performance, such as
coaching instructions and tactical decisions, thereby requiring careful interpretation of the
findings. While the existing papers have utilized different statistical analysis tests to draw
conclusions, these approaches can be challenging to implement consistently in practice.

In this paper, we propose a mathematical approach utilizing optimization methods that
consider individual player traits and specific distributions, departing from the prevalent
group-centric approach in the current research. By employing two optimization algorithms,
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we evaluate the reliability of our approach, pinpointing potential areas of weakness. Thus,
the primary contributions of this paper are as follows:

• Development of a mathematical framework employing optimization methods tailored
to individual player traits;

• Provision of a publicly available dataset and source code for replication and further
exploration; and

• Improve the validity of actionable player insights for more informed decision-making.

The structure of this paper unfolds as follows. Section 2 carefully explains the steps
involved in data acquisition and preprocessing, detailing the procedures for constructing
and assessing the mathematical model. Additionally, it outlines the optimization process for
selecting parameters that most accurately encapsulate player attributes. The outcomes of
the optimization algorithms across various players and matches, along with player profiling
visualizations, are discussed in Section 3. Subsequently, Section 4 critically analyzes the
obtained results, exploring their implications and potential interpretations. Finally, Section 5
summarizes the paper with concluding remarks and suggestions for future research.

2. Material and Methods

This section is structured into five distinct components, each addressing specific stages
of constructing an energy consumption model. The initial part focuses on data acquisition,
the second on data preprocessing, the third articulates the optimization objective, the
fourth explains the optimization methods used, and the fifth section details the practical
implementation of optimization for each player, alongside the expected outcomes. We
offer a complete source code, including data and instructions, for reproducing the results
and generating the plots. The code is available at https://github.com/askoki/expectation-
score-profiler (accessed on 28 February 2024).

2.1. Study Design

Data collection occurred throughout the competitive season (2021–2022) of a pro-
fessional soccer club that competed in a top-tier national division. Player exertion was
quantified using GPS wearable sensors, specifically the GPexe pro2 (Exelio srl, Udine,
Italy), with a sampling rate of 18 Hz. Before each match, probabilities of winning or losing
were extracted from a betting website. Post-match data on the timing of goals scored and
conceded were incorporated into the dataset. Players were categorized into five primary
playing positions based on the coaches’ classification at season-end. These positions com-
prised: (1) center back (CB) for central defending, (2) wide back (WB) for wide defending,
(3) midfielder (MF) for central midfield, (4) forward (FW) for central attacking, and (5) wing
forward (WF) for wide attacking roles.

2.2. Subjects

The dataset comprised 33 games, played by 19 male soccer players (age 25 ± 3 years;
height 180± 6 cm; weight 75± 6 kg). Throughout these games, 3135 min of game time were
recorded. Player distribution across playing positions was as follows: 5 CBs, 5 MFs, 5 FWs,
3 WFs, and 1 WB. The entire analysis was made on the same team without revealing the
player’s and clubs’ identities. The data from the opposition was not available for analysis.
This research was conducted under the guidelines outlined by the Ethical Committee of
the University of Rijeka (REF: 2170-1-43-29-23-2), in compliance with the principles of the
Declaration of Helsinki.

2.3. Data Acquisition

Players wore lightweight vests equipped with small devices on their backs for conve-
nient monitoring. Ten minutes before each game, players would put on the GPexe pro2

sensors, which provided sufficient time for calibration. These wearables were equipped
with: GPS, gyroscope, accelerometer and magnetometer sensors. Post-game, data was
retrieved from the sensors and segmented into 5-min intervals, chosen as the optimal

https://github.com/askoki/expectation-score-profiler
https://github.com/askoki/expectation-score-profiler
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balance between post-processing efficiency and granularity of recorded data. While sensors
can extract various features, this paper focuses only on energy expenditure, which was
measured in J/kg. Detailed information on energy calculation in the GPexe system is
thoroughly described in a paper by di Prampero et al. from 2005, determining the energy
cost of acceleration on flat terrain [29]. To better illustrate the 5-min interval energy ex-
penditure, an example of a single game and one player is shown in Figure 1. The energy
parameter takes into account both the energy required to cover the given distance (at
constant speed), as well as the energy needed to perform speed variations. The latter is
calculated by equating accelerated running and sprinting to uphill constant running, which
was described by Osgnach et al. [30].

Figure 1. A randomly selected example of a 5-min interval energy expenditure in a single game for
one player.

The other crucial part of the data comprised the win, draw, and lose ratios for
each game played by the observed team, which was sourced from the website
http://clubelo.com (accessed on 6 November 2023). The odds displayed on the website
reflected the probabilities of winning or losing before each championship game. The third
component involved scoring and conceding minutes for the observed team throughout
the entire competitive season. These timings were extracted from the official competition
website after the conclusion of each game.

2.4. Data Preprocessing

For each fixture, an expectation e was calculated by dividing the probability of winning
a game by the probability of losing it. If the resulting e was equal to or greater than 2, the
team was considered the favorite, while if it was less than 0.5, the team was deemed the
underdog. Games falling within the e range of 0.5 to 2 were classified as closely contested
games. The dataset included 21 games where the team was the favorite to win, 13 close
games, and only 2 games in which the team was considered the underdog. Given the
scarcity of games featuring the team as the underdog, the analysis was simplified into states
of being either the favorite or non-favorite.

The influence of the scoreline on the energy expenditure was limited to GD of −2,
−1, 0, 1, and 2. GD refers to a difference in the score of the team analyzed in this paper
versus the opponent they are playing against. The border values (−2 and 2) included all
the situations where the team was losing by 2 goals or more or was winning by 2 goals
or more, respectively. The resulting distribution of game time concerning a particular GD
can be seen in Figure 2. The most dominant GD was 0 because the game starts at 0-0, and
this scoreline is the most frequent one in the full 90 min of the game. Drawing minutes
that differed from the starting 0-0 score included only 272 min (out of 1401, i.e., 19.4%).
GD distribution is asymmetric and negatively skewed (left-skewed, shifting mean to the

http://clubelo.com
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right/positive score). This is likely because the observed team was one of the top teams in
the league and a favorite to win in a lot of games (21 out of 36).

Figure 2. Distribution of game time with respect to the particular GD. The plot was generated by
using all the available games and combining them with scoring minutes. A player would have the
same distribution (as shown) if he participated in all the games and always played the full length
of the game. GD refers to a difference in the score of the team analyzed in this paper versus the
opponent they are playing against. The border values (−2 and 2) included all the situations where
the team was losing by 2 goals or more or was winning by 2 goals or more, respectively.

The player energy expenditure dataset included information concerning the start and
end timestamps. This was combined with the scoreline dataset to join GD information
with energy expenditure. The values close to the start of the game and the halftime—when
players were waiting in the dressing room—were discarded from the evaluation.

2.5. Energy Expenditure Model

As mentioned in Section 2.3, the data concerning a player’s energy is collected by the
sensors in 5-min periods. In general, energy consumption is assumed to be influenced by
the current game outcome, i.e., a win, draw or loss, as well as contextual factors, such as
whether a team is the favorite or underdog or whether it is a tightly-contested game. It is
important to understand that the values for energy expenditure can vary from player to
player. In addition, the effect of fatigue on a player’s performance, especially in the latter
stages of the game, is an important factor that should not be overlooked. The hypothesis is
that a player’s work rate changes depending on the GD, expectation and ability to maintain
intensity, i.e., endurance. We have created a model that captures each player’s performance
characteristics, based on the data compiled from the games they have played.

For game j, we define e as one of two categories: favorite (f) or non-favorite (nf), which
can be represented as ej ∈ { f , n f }. Furthermore, we consider GD as a function of game
time t, where GD can take values from the set dj(t) ∈ {−2,−1, 0, 1, 2}, which is considered
as a known input to the energy expenditure model.

To parameterize players’ performance, we defined score performance parameters
Pd,i for player i. These parameters remain constant across all analyzed games during the
season and need to be estimated from the available data. Given our assumption that
the performance of each player evolves not only with the score but also with pre-game
expectations, we model the current power exerted by player i in game j as a function of
both time and expectation, denoted as Pi(dj(t), ej).

Finally, the energy of each player spent during the game, Ei,j(t), is regulated using a
simple differential equation, with a starting condition Ei,j(0) = 0:
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dEi,j

dτ
=

τ=te,i,j−ts,i,j

∑
τ=0

Pi(dj(τ + ts,i,j), ej) · τ · ηi(τ). (1)

Here, we denote η as the power consumption efficiency, represented by a decaying
exponential function ηi(τ) = e−αi ·τ . The parameter αi is determined as − ln η90/90.

In this context, η90 represents the coefficient of the player’s energy tank at the
90 min of playing time, α is a coefficient describing the player’s condition, and τ is the
individual player’s playing time, which can differ from game time depending on whether
a substitute player was involved or not. If we define ts,i,j as a game j time when player i
entered the field, then τi,j = t − ts,i,j. Similarly, te,i,j defines the time when the player exited
the game. It is trivial to show playing time in the game’s absolute time: t ∈ [ts,i,j, te,i,j], as
used for expended energy and GD functions, or in player’s relative time (playing time)
τ ∈ [0, te,i,j − ts,i,j], as used in power consummation efficiency function. Energy expenditure
model (1) is solved using the Euler method with ∆t = 1min, for the game time interval
t ∈ [0, tend,j], where tend,j is the total duration of game j.

Figure 3 illustrates an sample solution of the energy model presented in Equation (1).
It explains the dynamics of energy expenditure, taking into account player-specific char-
acteristics such as pre-game expectations (e), physical and motivational parameters Pd,i,
endurance ηi and the evolving score dj(t). Key assumptions for constructing this sample
solution include (1) a player’s participation in the full 90 min of a game, (2) the fluctuation
of GD as shown in the middle graph, (3) the power used corresponding to GD as shown
in the bottom graph, (4) the fact that the player’s team is the favorite to win, and (5) a
η90 coefficient of 0.7. This method was used to derive the performance parameters and
evaluate the endurance coefficient for all players. The detailed outcomes of this analysis
are presented in the Section 3.

Figure 3. Model results for the sample use case. The player played 90 min with η being 0.7, and
the team being the favorite to win. The remaining parameters, including power vector Ps and GD
change through the game ds(t), are depicted in the plot. The top plot showcases calculated energy
expenditure values, accounting for both the impact of exponential decay with η and the variation in
power per GD. The middle plot depicts the fluctuation of GD through the 90-min game, with positive
GD values in green and negative GD values in red. The bottom plot represents the power associated
with GD. The blue line illustrates power without fatigue (η) effects, while the green line highlights
the influence of exponential decay (η) on the defined power per GD. Additionally, dotted vertical
lines are incorporated to emphasize changes in GD throughout the game.
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2.6. Model Fitting via Optimization

The model described in the previous section has some parameters that are unknown
and need to be estimated. The resulting energy curve over the players’ playing time should
come as close as possible to the real measurements of the GPS sensor. It is therefore obvious
that we have to set up and solve this as an optimization problem.

Table 2 contains the list of all parameters that were used as optimization variables.
The constraints for the power zones (Pi) were limited to values in the range 200 ≤ Pi ≤ 800.
This is a valid range in which the player uses a predefined power to generate energy
over a certain period of time—in this case, 5 min. The function influencing endurance,
referred to as η, was calculated using a common approach to energy loss that uses a
constant parameter, α. This parameter determines the rate of power loss over time. The
calculation of the constant α is described in detail in Section 2.5, where the constraint on
the parameter η90 ensures that it falls within the valid range of 0.5 to 1.0. This range reflects
the typical decrease in player intensity towards the end of a 90-min game. In most cases,
players are clearly exhausted at the 90-min mark. A value of 1.0 means that the player
can maintain the same intensity as at the beginning of the game, while the lower limit of
0.5 means that the player’s performance has decreased by 50% compared to the beginning
of the game. All optimization variables are summarized in an optimization vector, which
is shown in Equation (2). The cost function ε was calculated by minimizing the squared
difference between the estimated and actual energy expenditure. This value was then
divided by the number of minutes the player had played (Equation (3)):

x =

P−2, f , P−1, f , P0, f , P1, f , P2, f ,
P−2,n, P−1,n, P0,n, P1,n, P2,n,

η90

 , (2)

εi(x) =
∑

j=n
j=1

∫ te,j
ts,j

(Ei,j(x, t)− Emeasured,i,j(t))2dt

∑
j=n
j=1 (te,i,j − ts,i,j)

, (3)

where n is the number of recorded games, ts is the time in a game the player has entered
the field, and te is the time when the player left the field. Now, we can formulate the
optimization problem whose solution represents the best-fitted parameters for an individual
player: x̂ = arg minx ε(x).

Table 2. Overview of the optimization parameters. The variables of the power vector P were restricted
to values in the range of 200 ≤ P ≤ 800, and the endurance parameter η90 was constrained to a value
between 0.5 and 1.0, which describes a valid range of the intensity of drop-in players after 90 min
of play.

Parameter Description

P−2, f Power if the team is the favorite to win and the GD is −2.
P−1, f Power if the team is the favorite to win and the GD is −1.
P0, f Power if the team is the favorite to win and the GD is 0.
P1, f Power if the team is the favorite to win and the GD is 1.
P2, f Power if the team is the favorite to win and the GD is 2.
P−2,n Power if the team is not the favorite to win and GD the is −2.
P−1,n Power if the team is not the favorite to win and GD the is −1.
P0,n Power if the team is not the favorite to win and the GD is 0.
P1,n Power if the team is not the favorite to win and the GD is 1.
P2,n Power if the team is not the favorite to win and the GD is 2.
η90 Energy potential at the 90 min of the game.

Model fitting is performed using two optimization methods: deterministic Nelder–
Mead (NM) and stochastic particle swarm optimization (PSO). NM is a commonly used
numerical method to find the minimum or maximum of a cost function in multidimensional



Sensors 2024, 24, 1700 9 of 17

space. It can be effective in optimizing functions with a small number of variables, but may
have problems with high-dimensional problems or functions with non-smooth landscapes.
On the other hand, PSO is a population-based metaheuristic algorithm that can handle a
wide range of optimization problems, including those with high-dimensional spaces and
nonlinear landscapes. However, PSO can prematurely converge to suboptimal solutions
and is sensitive to the choice of parameters. The results of these algorithms provide
insight into the stability of the proposed method for determining player motivation with
respect to the physical parameters. A large deviation in the results would indicate that the
problem is very challenging, which means that it is very difficult to find the optimum. The
methods were implemented using the Python packages SciPy (https://docs.scipy.org/doc/
scipy/reference/optimize.minimize-neldermead.html, accessed on 6 November 2023) and
Indago (https://pypi.org/project/Indago/, accessed on 6 November 2023).

2.7. Procedures

Optimization of energy expenditure considering pre-game expectation and fatigue
effect was performed for each player across all games played. Each optimization was
repeated 10 times for each individual player. Every run yielded: (1) cost function change
through evaluations, (2) parameter convergence of the best-performing run, (3) the resulting
NM vectors, (4) the resulting PSO vectors, (5) the minutes per GD, and (6) the individualized
GD influence matrix g. This matrix represents the positive or negative influence of GD
and expectation. It is calculated in the post-processing phase using Equation (4) and
first determines a reference parameter r for each GD scenario d. The parameter g is then
computed by dividing the cumulative energy per GD (product of power and time) and
expectation by the time spent in a particular GD. The resulting values range from 0.5 to 1.5
and describe the negative or positive impact of GD on a player’s energy expenditure.

ge,d =

∑
j|d,e

Pd,e · td,e

rd
, rd =

∑
j|d

Pd · td

∑
j|d

td
(4)

Depending on the resulting vectors of power and the endurance coefficient, the
calculated energy expenditure was compared with the real one. This enabled detailed
inspection of the algorithm quality through the game samples. An aggregated square of
error was calculated for each player and game, separately for each method. Also, two
baseline scenarios were introduced. The first baseline, denoted as B1, utilized mean power
values per GD, with η set to 1. The second baseline, referred to as B2, employed median
power values per GD, also with η set to 1. Model estimations were further compared to B1
and B2 by calculating standard regression metrics, including mean squared error (MSE),
root mean squared error (RMSE), and mean absolute error (MAE). This comparison allowed
for a thorough assessment of our approach’s performance relative to simpler methods.

3. Results

In this section, the performance and convergence speed of the PSO and NM algorithms
are displayed, alongside a comparison with the baseline models, denoted as B1 and B2, for
all observed players. Next, the results for a selected player are presented, along with an
explanation of their utility and the validation process for understanding the player profile.
Finally, the same player is used to illustrate the performance of the approach within the
game in a specific context.

3.1. Model Performance

As noted in Section 2.6, the cost function was calculated by minimizing the squared
difference between the estimated and the real energy expenditure. Table 3 displays the re-
sults of the PSO and NM optimization methods, in addition to the two baseline approaches,
denoted as B1 and B2. It is evident that both PSO and NM consistently outperform the two
baseline methods across all players.

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-neldermead.html
https://pypi.org/project/Indago/
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Table 3. Comparison of PSO and NM number of evaluations and cost function error per player
(calculated using Equation (3)). Both algorithms produce similar results; however, the number of
evaluations required for converging in NM is much lower than in PSO. Numbers printed in boldface
represent the best performing approaches with the lowest error.

Player PSO Evals NM Evals ϵPSO ϵN M ϵB1 ϵB2

athlete1 4543 2640 51,216.06154 51,215.88103 58,570.7 59,138.72

athlete2 4257 2999 54,454.21483 54,453.24721 56,773.98 57,262.04

athlete3 3498 1787 47,458.30669 47,453.25968 60,483.51 60,915.34

athlete4 4257 2340 61,689.72877 61,688.99921 67,441.84 67,568.55

athlete5 5511 2267 51,176.87398 51,176.17927 53,610.1 56,329.67

athlete6 4257 1996 86,327.95668 86,326.31882 102,836.27 106,435.89

athlete7 3861 2413 68,392.25968 68,381.8828 71,460.11 73,394.38

athlete8 3971 1987 38,786.39576 38,781.8148 42,469.21 43,583.95

athlete9 4631 2211 55,862.58061 55,859.77039 69,456.67 68,891.53

athlete10 9713 2252 52,416.0806 52,413.48422 60,658.66 60,922.99

athlete11 3146 1822 112,254.95409 112,249.95746 354,583.69 711,259.76

athlete12 1892 1495 53,581.03919 53,581.03919 59,896.14 62,422.84

athlete13 11231 2317 42,831.99707 42,830.85899 46,532.61 46,725.41

athlete14 3465 2267 70,119.45093 70,118.20461 73,136.68 77,705.22

athlete15 5808 2376 46,316.69107 46,316.25094 52,382.71 53,579.38

athlete16 2849 1875 27,232.6412 27,232.49181 32,279.82 31,625.92

athlete17 3113 2336 61,730.61292 61,730.61292 84,420.1 83,286.37

athlete18 2860 2170 35,525.36677 35,525.36677 40,719.77 41,091.19

athlete19 2893 1840 98,796.99767 98,796.99767 104,757.72 106,278.73

Furthermore, it is worth noting that PSO and NM demonstrate convergence towards
nearly identical cost function values for all players, with NM being slightly better. This
suggests consistent and reliable results from both algorithms. The primary distinction
lies in the number of evaluations required by PSO compared to NM. Typically, PSO takes
a higher number of evaluations to reach optimal values compared to NM. Nevertheless,
it is crucial to utilize both methods to assess the confidence level of each resultant pa-
rameter and ensure the validity of the information before potentially presenting it to the
coaching staff.

To thoroughly evaluate the performance of the proposed approach, we calculated stan-
dard regression metrics for the model outlined in this paper and two baseline approaches,
denoted as B1 and B2. For comparison, we have included a slightly more effective method,
NM, to represent the model presented in this paper. Table 4 shows the mean and standard
deviation of these metrics across all players utilized in the study, including MAE, RMSE
and MSE. The proposed model outperforms the baseline approaches on all metrics, has a
lower standard deviation between players and thus provides more stable results.

More detailed improvements across all players are provided in Table S1, while
the stability of the optimization results is elaborated in Table S2, available in the
Supplementary Materials.
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Table 4. Comparison between the proposed model, employing the NM optimization method, and
baseline approaches B1 (mean) and B2 (median), across standard regression metrics (MAE, RMSE,
MSE). The two columns (µ and σ) below each metric indicate the mean and standard deviation of
the metric values across all players in the dataset. Values printed in boldface represent the superior
performance across the columns.

MAE RMSE MSE
µ σ µ σ µ σ

Model 396.87 61.42 520.69 88.66 278,565.18 97,184.8

B1 429.04 84.87 581.34 185.84 370,678.57 316,947.31

B2 421.57 95.96 613.47 300.11 461,671.73 684,901.29

3.2. Individual Player Profile

Each player has a distinct and unique profile, so it is beneficial to analyze them
individually. As described in Section 2.5, our optimization goal is to determine the
power vector P with respect to the state of GD and the expectation e, taking into ac-
count the fatigue index η. The optimization results for a single player provide information
about the changing performance level with respect to e, the current context of the game
(e.g., GD) and the energy loss over the 90-min game duration. Figure 4 shows the most
successful optimization run for the randomly selected athlete3 playing in the FW posi-
tion. The figure illustrates how GD and e influence the player’s physical effort, along
with the endurance coefficient, which indicates his ability to sustain a given effort. This
visualization facilitates practitioners’ understanding of individual changes in response
to contextual factors. Each run provides the following results: (1) the change in the cost
function through the evaluations (Figure 5a), (2) the parameter convergence of the best iter-
ation (Figure 5b), (3) a radar plot representing the resulting vectors using the NM method
(Figure 4a), (4) radar plot showing the resulting vectors using the PSO method (Figure 4b),
(5) minutes per GD (Figure 6) and (6) individualized GD influence matrix g (Figure 7). The
presented results illustrate how the players’ effort varies with GD, e and their respective
endurance coefficient. In Section 3.3 we will explain how these results correspond to real-
world data. We will also examine how the model’s estimates match different games and
contextual scenarios.

(a) (b)

Figure 4. A depiction of the optimization results for athlete3 playing in a FW position. The reliability
of the obtained values can be assessed by examining the data density GD, as depicted in Figure 6.
(a) NM method results. (b) PSO method results.
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(a) (b)

Figure 5. Convergence analysis of the PSO optimizer for athlete3. The left panel illustrates the
convergence of the cost function through the iterations, with the Y-axis indicating cost function values
on a logarithmic scale. On the right, the convergence of optimization variables during the best run
is presented. Variable values were normalized with Min–Max scaling by using the constraints of
200 ≤ P ≤ 800 for power per GD and 0.5 ≤ η ≤ 1.0 for endurance coefficient. (a) Cost function
values through iterations. (b) Best run variable convergence.

Figure 6. The number of minutes athlete3 played per GD.

Figure 7. Influence matrix g for athlete3. Values above 1.0 denote an increase in effort compared to
baseline state of the observed GD while values below indicate decrease of effort. The y-axis is labeled
‘f’ for favorite to win and ‘nf’ for non-favorite, while the x-axis represents GD ranging from −2 to 2.

3.3. Individual Game Analysis

To better understand how the proposed approach fits the game data, the three-game
example is shown in Figure 8. In this analysis, we continue to focus on the same player
introduced in the preceding section, namely athlete3, who plays in the FW position. These
three selected games also cover different scenarios, namely: winning and drawing while
being non-favorite, and losing a game while being a favorite.
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Figure 8. Three distinct gaming scenarios are illustrated: one where the team is non-favorite but wins
a game, another where they are non-favorite but end up drawing the game, and the third where the
team was favorite and loses the game. The upper graph illustrates the comparison between actual
(blue) and calculated (orange) energy expenditure. The bottom graph shows the dynamic changes
in GD throughout the match. The green color indicates positive changes in GD, while red color
highlights negative changes in GD.

In the first game (G1), the team was not considered the favorite to win, but they
actually won the game. The calculated curve fits the data very well. The second game (G24)
illustrates a scenario in which the team was also not considered the favorite to win, but
ultimately drew. In this case, the model tends to underestimate the actual energy output,
with the score fluctuating between GD−1 and GD1 before ending in a draw with GD0.
The last game (G27) represents a case where the team was the favorite to win, but ended
up losing the game. The curve closely matches the measured data, but overestimates the
period from the 40th to the 60th minute. During this time, the opposing team scored another
goal, shifting the GD to −2. Figure 9 provides a condensed overview of the calculated and
actual values for the first ten games of the top five players, sorted by the number of games
played. Comprehensive data on all other players and games can be found in Figure S1 in
the Supplementary Materials.

Figure 9. Overview of the top five players, ranked by the number of games played, across their
first ten games. Each column represents an individual game (G1–G10), while rows correspond to
players (Athlete1–4, Athlete13), with the last row indicating GD across 90 min for each observed
game. The negative GD values are highlighted in red, positive values are in green. The orange line
reflects calculated values using the proposed model, and the blue area illustrates real values measured
via sensors.
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4. Discussion

A workload tied to GD differs from player to player, also when generalized across
the positions in the team. Every playing position in soccer requires different physical
characteristics. FWs and wide players tend to have more high-intensity actions that are
shorter in duration. MFs usually cover the longer distances, and CBs have the most tackles
and aerial duels but cover the least distance. As already mentioned in the Introduction,
FWs tend to work harder when the team has the lead and the CBs when the team is losing.

Previous research in this field has predominantly utilized statistical methods to analyze
responses across different teams, leagues, or playing positions. However, the applicability
of these approaches is limited due to variations in data distribution and the challenge
of transferring methods from one team to another. In contrast, our proposed approach
utilizes modeling with exponential decay, offering enhanced flexibility in data fitting for
more realistic outcomes. This adaptable model can be easily applied to any team and
individual. Additionally, our approach considers variations in player behavior, accounting
for pre-game expectations and changes in the GD. The concept of endurance, crucial to
understanding the impact of player fatigue, is represented using exponential decay. This
concept was first introduced in a study by Bartow et al. in 1991, where they described the
relationship between oxygen uptake (VO2) and heavy exercise [31]. Subsequent research
has observed similar results in the context of repeated running sprints [32] and as an index
of physical work capacity [33]. Furthermore, more recent studies have utilized exponential
decay to determine the anaerobic power reserve in cyclists [34] and to understand the
physiological demands and recovery kinetics in women’s soccer [35].

To validate our approach, we conducted a comparative analysis of the performance
of PSO and NM optimized models against the baseline models, B1, which takes the mean
power per GD, and B2, which uses the median of power per GD. The results showed that
both PSO and NM methods consistently outperformed the baseline models when applied
to the observed dataset, reaching similar optimal values. This represents a pioneering
approach, being the first to model player energy expenditure based on both GD and
exponential decay. To enhance our approach, we can delve deeper by considering changes
in GD, such as GD−1 to GD0, GD0 to GD1, etc. Additionally, incorporating extended
pre-game expectations (underdog, close game, favorite) has the potential to refine and
adapt the model further. However, for a comprehensive analysis, this should be applied
across the entire league and all matches to account for various possibilities. Gathering more
data and comparing player profiles across different leagues would provide a basis for a
thorough validation of this approach.

Furthermore, we examined how the model performed when compared to real game
data, taking into account the dynamic and unpredictable nature of the game. While the
model exhibited a good fit to the measured values, there were some outliers. These outliers
could be attributed to unaccounted contextual factors, such as the ball’s position, the
specific area of the pitch, the game tempo, and others. These factors represent promising
avenues for future research expansion.

Constructing distinctive player profiles by integrating pre-game expectations, GD
scenarios, and the endurance coefficient can offer soccer coaches fresh perspectives or
confirm their existing insights about their players. It is evident that the volume of data
associated with a player significantly impacts the resulting values, rendering them more
dependable with larger datasets. The limitation of our study is that it was performed on
only one team, and the additional validity needs to be checked by analyzing the results of
other teams in different leagues.

It is crucial to recognize that a player’s effort is influenced not only by the variables
addressed in this paper, but also by additional ones, such as the game context and specific
tactical instructions from coaches. These factors should be taken into account by the
coaching staff when interpreting the results and making informed decisions based on
model profiling.
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5. Conclusions

In summary, this paper introduces a methodology that utilizes real energy expenditure
data collected through 5-min periods in soccer games to evaluate player effort. Our novel
mathematical model, incorporating GD states and exponential decay, surpasses baseline
approaches relying solely on mean and median values. Our approach’s primary objective
is to objectively quantify players’ physical states, which fluctuate according to contextual
factors and the mental profiles of players, offering valuable insights into their performance.
Notably, this study is the first of its kind to combine optimization methods and GPS data to
assess effort in soccer.

However, the practitioners should recognize that the resulting player profiles are not
ideal, as they do not encompass the game context and tactical instructions, which also play
a significant role in influencing energy expenditure. It is still a valuable tool for interpreting
the results of the energy expenditure analysis and making informed decisions to optimize
player performance.

Overall, our study underscores the need for a tailored and adaptable approach when
analyzing energy expenditure and endurance in soccer, emphasizing the importance of
considering individual player characteristics and an adaptive approach.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24051700/s1, Section S1: Comprehensive Results Analysis.
Table S1: Comparison of NM model vs. baselines B1 (mean) and B2 (median), displaying the abso-
lute error for each player. The proposed model consistently outperforms both baselines across all
players, showcasing a mean difference of −7.19% for B1 and −4.79% for B2. Values in bold indicate
the best-performing approaches with the lowest errors.; Table S2: Convergence stability of both
PSO and NM methods over ten runs for all players. The data presented includes the mean and
standard deviations of the final cost function results across the runs (run, ϵ), along with the number
of evaluations conducted throughout these runs (run, eval); Figure S1: Overview of all the games and
players used in the study. Columns represent individual games (G1–G33), while rows correspond
to players (Athlete1–Athlete19), with the last row indicating GD across 90 min for each observed
game. The negative GD values are highlighted in red, positive values in green. The orange line
reflects calculated values using the proposed model, and the blue area illustrates real values measured
via sensors.
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