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Abstract: Among unmanned surface vehicle (USV) components, underwater thrusters are pivotal
in their mission execution integrity. Yet, these thrusters directly interact with marine environments,
making them perpetually susceptible to malfunctions. To diagnose thruster faults, a non-invasive
and cost-effective vibration-based methodology that does not require altering existing systems is
employed. However, the vibration data collected within the hull is influenced by propeller-fluid
interactions, hull damping, and structural resonant frequencies, resulting in noise and unpredictabil-
ity. Furthermore, to differentiate faults not only at fixed rotational speeds but also over the entire
range of a thruster’s rotational speeds, traditional frequency analysis based on the Fourier transform
cannot be utilized. Hence, Continuous Wavelet Transform (CWT), known for attributions encapsulat-
ing physical characteristics in both time-frequency domain nuances, was applied to address these
complications and transform vibration data into a scalogram. CWT results are diagnosed using a
Vision Transformer (ViT) classifier known for its global context awareness in image processing. The
effectiveness of this diagnosis approach was verified through experiments using a USV designed for
field experiments. Seven cases with different fault types and severity were diagnosed and yielded
average accuracy of 0.9855 and 0.9908 at different vibration points, respectively.

Keywords: unmanned surface vehicle; underwater thruster; fault diagnosis; vibration signal;
continuous wavelet transform; transfer learning; time-frequency analysis; frequency response

1. Introduction

In maritime environments, systems are more susceptible to faults than in other envi-
ronments due to environmental perturbations [1,2], corrosive conditions [3,4], and floating
debris [5–7]. Moreover, recent research on navigational efficiency [8,9], use of renewable
energy [10–14], situation awareness [11,15], improved communication methods [16,17], etc.,
applied to surface platforms is broadening spatial and temporal boundaries for unmanned
surface platforms. Hence, with the anticipated expansion of unmanned vessels’ operational
scope in the near future, if a vessel becomes immobilized due to a malfunction in the middle
of the ocean, the time and cost for retrieval can be substantial. Therefore, it is imperative
to undertake research to automate the condition monitoring and fault detection that were
previously carried out by onboard ship engineers.
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For conventional ships, maintenance regulations are well organized. A daily checkup
on sensor values and checklist confirmation is routinely performed. Also, periodic main-
tenance, overhauls, and regulations of necessary replacement parts on board enable a
ship to maintain long-term operation and maintenance [18]. However, most Unmanned
Surface Vehicles (USVs) follow scheduled maintenance and reactive strategies, and most
fault-related research is heavily focused on commercial-class surface vessels [19–22].

Within the components constituting USVs, the integrity of the propulsion system is a
decisive factor for the successful completion of missions. Yet, owing to its direct interaction
with the marine environment, this system is inherently susceptible to a broad spectrum
of failures, prominently including sudden disruptions induced by external factors. The
capability to efficiently identify and categorize these faults during maritime operations is
crucial, as it enables the formulation of adaptive strategies in alignment with the system’s
level of autonomy and redundant thrust capabilities [23]. Given these considerations, this
research aims to diagnose the types and magnitude of underwater thruster faults of USVs.

However, if the system is not fabricated with consideration for fault diagnosis, it is
challenging to measure parameters such as rotational speed, power consumption, and
voltage in real-time without making alterations to the system. These parameters, which
are directly connected to the vehicle’s control and propulsion, are difficult to apply as
diagnostic parameters without prior integration in the system design. Additionally, for
smaller vehicles not subject to the mandates of the Automatic Identification System (AIS),
the lack of suitable Global Navigation Satellite System (GNSS) equipment poses an obstacle
to the effective real-time measurement and utilization of dynamic state data [24].

Therefore, this study aims to employ vibration-based fault diagnosis as a non-invasive
and sensitive method that allows the acquisition of high-quality data in real-time without
any alterations to the system or internal wiring. Vibration sensors offer a cost-efficient
alternative for acquiring diagnostic features when compared to other parameters such as
power consumption, supply voltage, propeller blade rotation speed, and high-accuracy
GNSS sentences. Fault diagnosis based on frequency analysis of vibration data has been
frequently utilized in various fields due to its simplicity and the ability to observe the
characteristics of different frequency components associated with faults [25,26]. The most
commonly used thrust source for surface vehicles, the underwater thruster, is a type
of rotating equipment that operates on rotational motion. Thus, the use of vibration-
based fault diagnosis becomes straightforward in the ease of identifying the fundamental
frequency (first-order vibration, 1X component), which occurs at the same speed/frequency
as the rotor [27] (p. 42).

While the direct attachment of vibration sensors to thrusters facilitates the acquisi-
tion of characteristic data conducive to fault diagnosis, implementing sensors within the
hull’s interior is a more pragmatic strategy for general applications. The hull’s interior
comprises structures with disparate stiffness and mass, leading to a complex array of
resonance frequencies and harmonics [27,28] (pp. 275–279). This complexity makes the
collected data notably noisy and challenging to analyze. Hence, under these conditions,
the identification and isolation of faults with varying thruster speeds pose an intricate
problem [29]. Nevertheless, data for this study was acquired according to a driving profile
that entailed a ten-second acceleration from a static state to maximum rotational speed,
followed by a subsequent ten-second deceleration phase. This driving profile was used not
just to facilitate the diagnosis of faults across the entire spectrum of the thruster’s possible
rotational speed outcomes but also to enable a variation in the spectrum of frequencies
applied for fault detection. This approach enhances the capability of structural frequency
analysis, allowing for the examination of not only the thruster but also the joint condition
or damage of other structures, thereby extending its functional scope beyond diagnosing
faults at fixed, specific speeds [29,30] (pp. 249–259).

To address the inherent challenges in fault diagnosis via hull vibrations and to diagnose
faults at varying rotational speeds of USVs’ propulsion systems, the Continuous Wavelet
Transform (CWT) was applied to convert time-series vibration data into scalograms [30,31].
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Although a number of methodologies have been applied for fault diagnosis at a constant
rotation speed of USV thrusters [32–34], analyzing varying rotational speeds demands
a methodology that simultaneously accounts for attributes in both the temporal and fre-
quency domains. CWT, renowned for its ability to encapsulate both the physical character-
istics and time-frequency domain nuances, has been extensively researched and validated
within the realm of Physics-Informed Neural Networks (PINNs) [35]. Hence, scalogram
images obtained as an output of CWT were applied as an input for deep neural network
(DNN) classifiers. Leveraging the widely applied and validated DNN techniques in image
classification through transfer learning. A particular emphasis was placed on the appli-
cation of the Vision Transformer (ViT) model, which is known for its ability to increase
global context awareness and transfer learning efficiency [36]. This paper also proposes to
present the critical considerations and analytical reflections required during experimental
procedures involving varying thruster rotational speeds and the subsequent application of a
DNN classifier. A USV with wireless DAQ (Data Acquisition) and a remote-control system
was fabricated to experiment with the viability of the approach. The experimentation was
conducted at sea, encompassing the collection of both normal status data and data under
simulated fault cases. Common fault scenarios that are attributed to external factors were
selected as fault cases [32,37–39]. The experimental results of this study aim to demon-
strate the proposed method’s effectiveness as a non-invasive technique capable of not only
identifying the type but also the extent of the faults. The study illustrated some results of
wavelet transformations conducted on vibrations transmitted to the interior of a hull in
marine environments and analyzed the physical characteristics across the time-frequency
domain. The study quantitatively evaluates the acuity of a wavelet-based DNN classifier
and discusses potential avenues for future research.

2. Related Works and Backgrounds

This chapter examines fault diagnosis research, focusing on underwater thrusters and
unmanned maritime platforms. In addition, this chapter intends to provide an overview
of previous research conducted on the platforms analogous to the ones used in this study
and supplement the conceptual basis of the vibration-based approaches employed in
this research.

2.1. Related Works
2.1.1. Fault-Related Research on Unmanned Marine Platforms

Unmanned marine platforms can be categorized into various types, with three primary
groups depicted in Figure 1. USVs navigating the water’s surface, Autonomous Underwater
Vehicles (AUVs) functioning wirelessly, and Remotely Operated Vehicles (ROVs) that
operate underwater tethered by cables. Due to its unique operating methods, areas of
activity, and structural differences, each platform requires different methodologies and
approaches for fault detection and diagnosis.
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ROVs commonly adopt an over-actuated system (more actuators than the minimum
required for controlling all its degrees of freedom) for enhanced maneuverability, stability
in various underwater tasks, and increased payload capabilities. Their design allows for
power supply via an umbilical cable, affording greater flexibility in the number of thrusters
utilized compared to other marine platforms and offering the substantial benefit of ease in
recovery in the event of a malfunction. Consequently, there has been a vigorous pursuit
of research in fault tolerance using remaining thrusters in cases of individual thruster
failures [23,39,40].

AUVs, particularly those designed as torpedo-type, are generally non-over-actuated.
Even AUVs with specialized designs and objectives are conservatively designed in terms
of thruster quantity due to the limitations of continuous energy supply for prolonged
operations. As wireless platforms, AUVs encounter communication challenges with opera-
tors, leading to active research in risk analysis and reliability, focusing not only on fault
diagnosis but also on sustained operational stability [39,41].

In contrast, USVs, unlike their submergible counterparts, benefit from the feasibility of
real-time positioning via GNSS and radio communications, making their retrieval compara-
tively straightforward. Hence, research in this domain has primarily focused on navigation
and guidance rather than fault diagnosis-related issues involving field testing [9,42,43].
However, as recent technological advancements extend the spatio-temporal capabilities of
USVs, they will also increase difficulties associated with retrieval distance and cost. As such,
automated condition monitoring, fault detection, and prognosis will become compelling
areas for research.

2.1.2. Underwater Thruster Stand-Alone Fault Detection and Diagnosis Research

Numerous studies have been reported on detecting and diagnosing underwater
thruster faults and their stand-alone experiments. Fault diagnosis was performed using a
small underwater thruster’s current and underwater acoustic data as features, employing a
1D-CNN (Convolutional Neural Network)-based deep learning structure and visualization
through t-SNE (T-distributed Stochastic Neighbor Embedding) [33]. A thruster model was
driven based on the control input, rotation speed, and current of the thruster, and the
residual between the thruster model and actual data was used as a feature to compare
classification performance through an MLP (Multi-Layer Perceptron) and LSTM (Long
Short-Term Memory)-based classifier [44]. A fault diagnosis method was proposed using
both current-rotational speed correlation analysis and support vector machines [45]. A test
bed and data collection system for thruster experimentation were used and research was
conducted on fault diagnosis using underwater acoustic data. Clustering and frequency
analysis-based methods were used to identify fault features [34].

This study aims to diagnose faults through signals from vibration sensors attached to
the hull. Hence, this research requires a method of vibration-based fault diagnosis that is
sensitive and capable of handling noise, taking into account the structural influence and
the damping effect of the fluid-contacting bottom surface. Hence, USV, which is capable of
DAQ and field tests, was introduced to acquire actual noisy vibration data.

2.2. Backgrounds

This section provides an overview of previous research on the platform analogous to
the one used in this study and supplements the conceptual basis of the vibration-based
approaches employed in this research. The platform is designed for Fault Detection and
Diagnosis USV (FDD USV) and has been revised for different research purposes. The FDD
USV used in a series of previous studies and for this research is shown in Figure 2.
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In prior studies involving FDD USV, extensive analyses were conducted on data pa-
rameters such as rotational speed, power consumption, supply voltage, and vibration to
determine thruster malfunctions due to external causes. It was determined through experi-
mental validation that, among these parameters, vibration presented the highest degree
of sensitivity for fault identification [46]. Further research in FDD USVs also involved
the application of dimension reduction and entropy-based numerical transformation tech-
niques for each fault case [47]. The significance of vibration data was not only underscored
in the context of FDD USV’s previous works but also broader applications involving the
fault diagnosis of various rotational machines [26]. When factors such as propeller blade
damage, temporary obstructions, or biological fouling occur, they cause a shift in the center
of gravity away from the geometric center aligned with the propeller blade’s rotational
axis. This shift results in a misalignment of the geometric center, leading to an imbalance
in the rotating body [46]. This rotational imbalance acts as a vibromotive force, which is
then transmitted through the structural components of the hull and detected by vibration
sensors mounted inside.

The previous experiments with FDD USV were conducted in calm and controlled
environments like engineering water tanks, focusing on results under consistent control
inputs (rotational speeds). These conditions ensured isolation from external marine distur-
bances such as wind or waves, allowing fault identification within specific rotational speed
ranges. In contrast to certain land-based rotational machinery, USVs frequently encounter
scenarios where their rotational speeds are subject to continual variations during operation.
Consequently, this research incorporates a fault diagnosis methodology that effectively
copes with environmental perturbations and adapts to environments with fluctuating
rotational speeds. This is achieved through the application of CWT and ViT techniques,
demonstrating an advanced approach suitable for the dynamic operating conditions of USV.

3. Methods

This chapter provides a detailed explanation of the components that make up the
workflow to achieve the objectives of this study, as well as an overview of the entire
workflow process.

3.1. Fault-Induced Vibromotive Force

The study explicitly targets faults like propeller blade damage and debris entangle-
ment. Such faults cause a shift in the center of mass of the thruster blades, leading to
rotational unbalance (rotor imbalance) and vibration. The concept of rotor imbalance
is illustrated in Figure 3, with formulas representing the centrifugal force due to mass
displacement written in Equation (1) and the resulting vibrations detailed in Equation (2).

Fc = mrω2 (1)
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V =
Fc

kstr
(2)
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Figure 3. Imbalance on the underwater thruster blade.

In the formula, Fc represents the centrifugal force caused by imbalance, r is the distance
between the geometric center and the shifted center of mass, ω denotes angular velocity,
and m indicates the imbalance mass resulting from damage or entanglement, referring
specifically to the weight of a blade in case of blade breakage. V Signifies the vibration
caused by imbalance, while kstr represents the structure’s dynamic stiffness. The magnitude
of vibration caused by rotor imbalance is proportional to the imbalance mass and the square
of the angular velocity [46]. The vibration frequency corresponds to the rotational speed
of the body, denoted as the first-order vibration, fundamental vibration, 1X component,
etc. In a normal thruster, the rotor imbalance is minimal, leading to a smaller magnitude
of the first-order vibration. However, in the event of entanglement or relevant faults,
the first-order vibration’s magnitude increases. An illustration of the difference between
normal conditions and fault conditions is shown in Figure 4. The figure illustrates the
difference between normal and faulty thruster raw vibration data and their first-order
vibration. Following the onset of a fault, the vibration signal reveals an enhanced periodicity
that aligns with the blade’s rotational speed. The Fourier transform outcomes further
substantiate the amplification of the first-order vibration, indicating a direct correlation
between the fault condition and the specific vibrational pattern observed.
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3.2. Wavelets and Continuous Wavelet Transform

Wavelet is a short-lived wavelike oscillation localized in time. To be defined as a
wavelet, two essential conditions must be satisfied [30]
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1. Admissibility condition

As shown in Equation (3), it means that the wavelet has no zero-frequency component
or that the wavelet ψ(t) must have a zero mean.∫ ∞

−∞
ψ(t)dt = 0 (3)

Interestingly, sinusoidal functions, which are fundamental elements of the Fourier
transform and serve a contrasting purpose, also have a zero mean over the entire interval.
The second condition that distinguishes sinusoidal functions from wavelets is shown in
Equation (4).

2 Finite energy

The wavelet ψ(t) must have zero energy.∫ ∞

−∞

∣∣∣∣ψ(t)∣∣∣∣2dt < ∞ (4)

Having finite energy, wavelets possess the property of being localized in time. This is
in contrast to Fourier transforms, which decompose infinite sinusoidal functions. Because
wavelets exist within a localized time frame, they can capture information in both time
and frequency domains. This study employs the CWT, a wavelet application, to generate
scalogram images. The mathematical representation of CWT is formulated as Equation (5).
This method is integral to the research’s objective of analyzing data across both time
and frequency dimensions, providing a comprehensive analysis encompassing physical
characteristics caused by faults.

T(s, τ) =
∫ ∞

−∞
f (t) · ψ∗

s,τdt =
〈

f (t), ψs,τ
〉

(5)

Here, f (t) is the signal of interest to be transformed and ψ∗
s,τ is a complex conjugate of

the wavelet transform. Wavelet ψs,τ scaled (s) and translated (τ) over time, which can be
represented as shown in Equation (4). Adjustments in the scale parameter s, facilitate the
acquisition of frequency data, while modifications in the translation parameter τ, enable
the gathering of temporal domain information. Wavelet ψs,τ in Equation (6) is a normalized
form without consideration of complex-part.

ψs,τ =
1√

s
ψ

(
t − τ

s

)
(6)

T(s, τ) is a convolutional result between the signal of interest f (t) and ψs,τ . This
outcome reflects the degree to which the scaled and translated wavelet ψs,τ contributes to
composing the signal. As such, T(s, τ) serves as an indicator of the correlation between
the original signal f (t) and ψs,τ , with higher values (attributes to the brightness in the
scalogram) denoting more remarkable similarity and lower values (darkness in the scalo-
gram) indicating lesser similarity. The generation of a scalogram image is achieved by
varying the values of s and τ and plotting these convolution results in alignment with
time-frequency space.

The choice of wavelets varies across applications, with this study employing the
Morlet wavelet, known for its real part’s resemblance to a sinusoidal wave overlaid with
a Gaussian distribution. This wavelet has been widely used in different fault diagnosis
applications due to its similarity to mechanical vibration patterns [48]. The formulation of
the Morlet wavelet is presented in Equation (7).

ψ(t) = π−1/4
(

ei2π f0t − e−(2π f0)
2/2

)
e−t2/2 (7)
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An example of a scalogram generated from the results of the CWT is shown in Figure 5.
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Figure 5. Sample scalogram results: (a) Normal (healthy) thruster scalogram; (b) Faulty thruster
(breakage; 21% of diameter) scalogram.

3.3. Vision Transformer (ViT)

In the realm of image analysis, deep neural network (DNN) methodologies have
been rigorously developed, enabling the utilization of pre-trained models across a broad
spectrum of applications. Among these developments, the ViT, which utilizes transformer
architecture: a structure initially emerging in natural language processing, has been adapted
for vision-related tasks and is gaining traction in various disciplines. The ViT marks a
departure from traditional CNN usage in vision tasks, instead leveraging the Transformer’s
multi-head attention (self-attention) architecture to achieve significant performance. The
ViT partitions an image into patches, processes each patch as a token, equivalent to a word
in a sentence, and then employs a standard transformer architecture to process these tokens.
The architectural framework of ViT is illustrated in Figure 6 [36]. Vibration scalogram
datasets for both normal and various fault states from maritime experiments were stored
according to their respective case labels. Then, the network’s head was then replaced with
a new one tailored for the thruster fault diagnosis task, followed by fine-tuning on this
new dataset.
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Figure 6. The ViT Architecture.

In the ViT framework, the most distinctive aspect is segmenting images into patches
and their subsequent arrangement into sequences, known as position embedding. This
attributes ViT to various benefits, notably global context awareness and enhanced efficiency
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in transfer learning. ViT has been empirically validated to outperform many conventional
CNN-based DNN classifiers under specific prerequisites [36,49]. Figure 7 depicts the dataset
following a rotational speed-varying driving data profile intended for use in this research
and sample data.
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Figure 7. Sample data profile of FDD USV: (a) Analogue input, Rotational speed; (b) Acquired
vibration data and FDD USV’s natural frequency (red dotted square).

The driving profile entails an acceleration from a static state to maximum rotational
speed, followed by a subsequent deceleration phase. As shown in Figure 7b, the magnitude
of vibration does not increase in tandem with increasing rotational speed. Furthermore,
the presence of the structure’s main natural frequency plays a significant role in analyzing
the vibratory temporal response. Hence, ViT was selected as the foundational architecture
for the image classifier in this study, attributing to its capacity to assimilate characteristic
information relative to location.

3.4. Experiment Settings

This research verified the methodology’s effectiveness through sea trials using a
modified FDD USV capable of remote, real-time data acquisition. The control system
configuration of the FDD USV used in this study is depicted in Figure 8.

The workflow of the remote control and the DAQ system through the FDD USV is
illustrated in Figure 9.

The design was separated into two primary sections: the DAQ section for data collec-
tion and transmission and the control section for overall management. The control section
incorporated a Motion control board with individual thruster control, path tracing control,
dynamic positioning functions, and a power control board for managing various sensors
and the device’s power distribution. The motion control board was integrated with the NI
compact DAQ system and a microcontroller unit (MCU) to facilitate remote data acquisition
at user-defined times and intervals.

The detailed experimental procedure is as follows. Initially, the power and communi-
cation status between the ground control console and the FDD USV are checked to ensure
smooth operation. Then, the function of the thruster’s operational state and essential
navigation performance are checked, including the status of the GNSS equipment used
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to track the platform’s position during experiments. Additionally, the operation of the
rendezvous mode, which returns the platform to the launch position if the navigation
control loop stops for any reason or if communication from the shore is interrupted for a
certain designated period, is checked.
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The DAQ process is primarily conducted from the onshore control console. The control
console connects to the NI DAQ equipment’s IP address and control section IP address
through an AP device that relays the connection between the shore and the FDD USV.
The control section controls navigation systems and thrusters to execute the desired data
profile. The NI DAQ equipment operates via the National Instruments’ FlexLogger 2021
R1 program and is connected to the control section using a hardware triggering method to
repeatedly capture data at consistent intervals. This hardware triggering allows navigation
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software to execute control for the data profile while starting data logging. It stops the
DAQ equipment’s logging function once control for the data profile is completed. The
navigation program and thruster control software are programmed in C language on the
control section’s Micro Controller Unit (MCU) and the GUI program on the onshore control
console, which executes control commands developed in C#.

Additionally, to automate the acquisition of repetitive data and dataset creation, a
macro program was developed in C# to automate the generation of data files through the
FlexLogger program, execution of the NI DAQ equipment, thruster operation according to
the data profile, stopping of DAQ equipment, and extraction of acquired data. The program
to convert the acquired data into CSV format, preprocessing, and iterating the Continuous
Wavelet Transform (CWT) was written in MATLAB R2023b. The program stores the data
for each fault case in separate folders and automatically processes and performs CWT on
the data within each folder, creating scalograms for each. As a result, separate folders
containing only the scalogram images for each fault case are created. Finally, folders named
after each fault case can be processed through a MATLAB-written ViT transfer learning
program to obtain classification results.

Specific faults, such as blade breakage and entanglements, typically resulting from
external factors, were synthetically induced to simulate the dataset for the experiment.
Simulated faults were applied to the starboard side thruster for all cases. The data acqui-
sition was executed by a data profile comprising ten-second intervals of acceleration and
deceleration each. Figure 10, in the study, provides a visual representation of both the
normal and propeller fault cases utilized in these experiments. The results of the CWT
corresponding to the sequence shown in Figure 10 are presented in Figure 11.
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Figure 10. Test cases: (a) Normal(healthy); (b) Breakage 7%; (c) Thin rope entanglement; (d) Breakage
14%; (e) Rope entanglement; (f) Breakage 21%; and (g) Net entanglement.
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Figure 10b,d,f depict cases simulating breakage faults in propellers, with damages
of 7%, 14%, and 21% relative to the radius of the propeller. Figure 10c,e,g represent
entanglement-type faults, showcasing scenarios with a thin rope and a rope of different
diameters entangled, as well as a net entanglement.

Figure 11 shows that all cases depict first-order vibration aligning with the rotational
speed variations in the data profile, yet breakage cases and entanglement cases have dis-
cernable differences. In scenarios involving breakage, a pronounced enhancement of the
first-order vibration is evident. In contrast, during entanglement events, the first-order vi-
bration remains detectable; however, characteristics such as its inability to exceed a certain
threshold due to speed-induced overload become apparent. Additionally, entanglements in-
volving turbulent interactions with water lead to a noticeable increase in residual vibration
components, yielding distinct and insightful outcomes across varying circumstances. Still,
distinguishing between the normal state shown in Figure 11a and the minor faults depicted
in Figure 11b,c remains challenging. Furthermore, in the case of breakage, the emphasis on
the first-order vibration makes it difficult to differentiate between them visually.

The study faced challenges in maintaining a uniform sample size across the datasets
due to difficulty replicating severe faults, experimental disruptions caused by spontaneous
naturally occurring faults, as shown in Figure 12, and adverse weather conditions. The
dataset sizes for each case are listed in Table 1.

Each dataset outlined in Table 1 was converted into scalogram images and subse-
quently transformed into RGB images of dimensions 384 × 384 × 3, aligning with the
ViT’s input layer specifications. These images were segregated into training, testing, and
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validation sets for targeted applications within the ViT framework. Utilizing a pre-trained
ViT model, adaptations were made to the input and output layers to align with the transfer
learning objectives of this research. Figure 13 illustrates the comprehensive framework for
fault diagnosis, as designed to achieve the objectives of this research.
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Figure 12. Naturally-occurred thruster entanglement faults during the experiment.

Table 1. Number of acquired datasets for all cases.

Type Normal Breakage 7% Breakage 14% Breakage 21%

Number of data 185 200 200 220

Type Thin rope
entanglement

Rope
Entanglement

Net
entanglement

Number of data 210 218 203

Type * Normal * Breakage 21% * Thin rope
entanglement *

Net
entanglement *

Number of data 191 194 269 150

* On-ground experiment datasets. Figures are shown in Appendix A, Figure A1.
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4. Results and Discussion

The analysis of the results will focus on the classification outcomes and accuracy of
the wavelet and Vision Transformer (ViT), as well as the confusion matrix. The study
concentrated on the results from two sensors located inside the hull. The attachment
positions of these two sensors are depicted in Figure 14. One sensor, labeled as vib No.4,
was affixed upper deck, near the structure for fixing the starboard side thruster that
simulated faults. The other sensor, vib No.9, was attached inside the container housing the
DAQ system.
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Figure 14. Vibration sensor attachment position of both vib No.4 and vib No.9.

Only the vibration data from sensors vib No.4 and vib No.9 were selectively stored
from the seven types of maritime experiment data. After transforming these data into
scalograms, they were used to train a wavelet ViT classifier. The execution and transfer
learning process of the ViT was conducted through MATLAB 2023b. The base model used
for transfer learning was the “base-16-imagenet-384” from MATLAB, with 86.8 million
learnable parameters. The adjustable parameters (hyperparameters) of the wavelet ViT
classifier model utilized in this research are shown in Table 2.

Table 2. The adjustable parameters of the ViT classifier.

Parameters Value

Input image size [384, 384, 3]
Number of Transformer blocks 12

Number of attention heads 12
Position encoding dimension 2D

Optimizer Adam (learning rate: 1 × 10−3)
Layer 143

Patch size 16
Batch size 12
Max epoch 12

Dropout probability 0.1
Attention dropout probability 0.1

The sample results of this classification are displayed in Figures 15 and 16. Repeated
results for each model are shown in Table 3.
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Figure 16. Vib No.9 maritime experiment dataset sample classification result.

Table 3. Accuracies of the maritime experiment classification result.

Sensor Number Accuracy

Vib No.4 0.9790
Vib No.4 0.9840
Vib No.4 0.9790
Vib No.4 1
Vib No.9 1
Vib No.9 1
Vib No.9 0.9790
Vib No.9 0.9840

The result demonstrated its capability of identifying minor faults, such as 7% breakage
and thin rope entanglement, which were previously challenging to discern using other
FDD USV-related research with different sensors and methodologies. This illustrates the
classification methodology’s efficacy across various operational conditions.

The study aimed to classify maritime data but also incorporated more challenging
on-ground experiment data into the training of the same model. The test settings and
sample scalogram results are depicted in Appendix A, Figure A1. The sample results of
this extended analysis, which includes both maritime and on-ground data, are presented in
Figures 17 and 18. Repeated results for each model are shown in Table 4.
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Table 4. Accuracies of maritime and on-ground experiment classification result.

Sensor Number Accuracy

Vib No.4 0.9009
Vib No.4 0.9054
Vib No.4 0.9009
Vib No.4 0.8964
Vib No.9 0.8919
Vib No.9 0.8649
Vib No.9 0.8873
Vib No.9 0.8603

The integration of on-ground and maritime data for fault diagnosis resulted in a
noticeable decrease in overall accuracy. Given that the primary objective of this research is
the diagnosis of faults within maritime data, a detailed examination of this phenomenon
has been provided in Appendix A.

An interesting discussion point is that despite requiring significantly more training
time under similar hyperparameter conditions, the ViT did not show a noticeable difference
in thruster scalogram classifying accuracy compared to traditional CNN-based classifiers
like ResNet50 or VGG counterparts. In an effort to explore this matter, repeated training of
both CNN and ViT models was considered, but it was beyond the scope of this paper and
challenging to discern whether the lack of significant performance difference was due to
dataset size or the inherent complexity of the task.
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During the training of the wavelet ViT model with maritime and on-ground datasets,
it was observed that training accuracy tends to decrease when the number of epochs
exceeds 14, likely due to dataset insufficiency and resultant overfitting issues. Similar to
considerations regarding comparisons with CNN models for USV thruster diagnostics,
further research seems necessary upon acquiring more data. Future studies will also aim
to publish data not only from various vibration sensors but also include thruster-specific
current consumption, voltage, noise, and USV states (position, velocity, and acceleration)
after augmenting the dataset.

However, the study observed sensitive responses from the wavelet-based learning
method to faults in marine platform thrusters and confirmed that ViT effectively distin-
guishes scalograms depicting the time-frequency distribution of vibrations transmitted
inside the hull from underwater thrusters. Expanding this research into anomaly detection,
which requires fewer additional datasets, could lead to more general and practical studies.

5. Conclusions

The underwater thrusters of USVs are crucial for mission execution yet, due to their
direct engagement with the marine environment, rendering them susceptible to faults. A
non-invasive and cost-effective vibration-based methodology that does not require altering
existing systems is employed to diagnose thruster faults and to identify faults across all
rotational speeds of the thrusters, not just at stationary speeds.

This research focused on diagnosing thruster faults due to environmental factors,
explicitly targeting thruster blade breakage and debris entanglement. These issues lead to a
shift in the center of mass, resulting in rotational imbalance and subsequent vibrations. The
study highlighted the challenge of signal attenuation and noise introduction as vibrations
traverse through varied materials to the hull. A data profile was employed to address
the dynamic range of rotational speeds, underscoring the limitations of conventional
Fourier-based vibration analysis methods in diagnosing faults within such fluctuating
frequency data.

Therefore, this study applied wavelet transform to acquire insights into the distribution
of frequency components aligned with variations in rotational speed and temporal changes.
The CWT, a specific wavelet technique, was utilized to transfigure one-dimensional vibra-
tional time-series data into scalogram representations. These scalogram images were then
diagnosed for normal and various fault conditions using a ViT-based classifier. To empiri-
cally substantiate the efficacy of the proposed methodology, a custom USV (FDD USV) was
fabricated for experimental trials at sea, conducting maritime experiments and facilitating
the direct examination of vibrational data attributes and scalogram configurations under
varied operational and fault-induced scenarios.

The FDD USV was engineered for both maritime navigation and wireless acquisition
of large-scale data to a land-based control console. The research includes acquiring ex-
perimental data across seven maritime fault scenarios, including normal operations, by
following a specific data profile of accelerating and decelerating the thruster from stationary
to maximum rotation and back within 10 s. Data was captured at a 100 Hz sampling rate,
and scalogram sample images for each fault condition were analyzed. The classification was
performed using the proposed wavelet-ViT method on vibration data collected from two
points inside the hull. Sensors affixed to the upper deck of the hull demonstrated an average
accuracy of 0.9855, whereas those installed within a DAQ-equipped container achieved
an average accuracy of 0.9905. Furthermore, classification efforts extended to eleven sce-
narios, incorporating four datasets from terrestrial tests, where sensors on the hull’s deck
and within the container reported average accuracies of 0.9009 and 0.8761, respectively,
illustrating the classification methodology’s efficacy across various operational conditions.
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Figure A1. On-ground collected fault case and its resulting CWT result: (a) Normal; (b) Breakage
21%; (c) Thin rope entanglement; (d) Net entanglement.

The comparative analysis of the CWT results from the on-ground and ocean experi-
ments shows significant distinctions. In instances of imbalance-induced faults, there is a
notable amplification of the primary component (first order, identical with rotor speed)’s
impact. It is postulated that in on-ground experiments, this prominence of the primary
component can be attributed to the absence of damping and interactions caused by fluids.
This leads to the hypothesis that the observed effects are primarily mechanical in nature,
occurring without the complicating influences of fluid dynamics. However, the CWT
findings from the ocean experiment, while identifying changes in the first order vibration,
also showed the presence of additional elements in other regions. This variation is hypoth-
esized to stem from residual vibrations due to fluid interaction, especially pronounced
in entanglement cases where the contact area with the fluid is enlarged, leading to the
detection of multiple components beyond the first order.
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