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Abstract: Motor imagery (MI)-based brain–computer interface (BCI) has emerged as a crucial method
for rehabilitating stroke patients. However, the variability in the time–frequency distribution of MI-
electroencephalography (EEG) among individuals limits the generalizability of algorithms that rely on
non-customized time–frequency segments. In this study, we propose a novel method for optimizing
time–frequency segments of MI-EEG using the sparrow search algorithm (SSA). Additionally, we
apply a correlation-based channel selection (CCS) method that considers the correlation coefficient
of features between each pair of EEG channels. Subsequently, we utilize a regularized common
spatial pattern method to extract effective features. Finally, a support vector machine is employed for
signal classification. The results on three BCI datasets confirmed that our algorithm achieved better
accuracy (99.11% vs. 94.00% for BCI Competition III Dataset IIIa, 87.70% vs. 81.10% for Chinese
Academy of Medical Sciences dataset, and 87.94% vs. 81.97% for BCI Competition IV Dataset 1)
compared to algorithms with non-customized time–frequency segments. Our proposed algorithm
enables adaptive optimization of EEG time–frequency segments, which is crucial for the development
of clinically effective motor rehabilitation.

Keywords: motor imagery; brain–computer interface; time–frequency segments; sparrow search
algorithm

1. Introduction

Brain–computer interface (BCI) technology establishes communication between brains
and computers or other devices without relying on peripheral nerves or muscles [1]. Among
various types of signals from the brain, EEG is considered the most promising brain signal
due to its portable, cost-effective, and non-invasive advantages. Motor imagery (MI) is one
typical electroencephalography (EEG)-based paradigm for BCI development; the voltage
fluctuation in the motor area cortex due to imaging a real movement or executing MI
is similar to a large degree [2]. Specifically, it has been observed that imagination and
finishing of a movement results in a power decrease and increase in EEG signals in the
alpha (8~12 Hz) and beta (14~30 Hz) frequency bands. This phenomenon is recognized
as event-related desynchronization (ERD) and event-related synchronization (ERS), and
serves as the foundation for MI-BCI classification [3].

Spatial filtering and channel selection are commonly utilized in order to enhance
the performance of MI-BCI. The common spatial pattern (CSP) algorithm and its related
algorithms [4–7] serve to enhance the discernibility of MI-BCI mental states by maximizing
the variance of one class while minimizing the variance of the other class. Jin et al. proposed
a channel selection method based on brain network parameters using the Pearson coefficient
to quantify the statistical relationship and select the optimal channels [5]. Zhang et al.

Sensors 2024, 24, 1678. https://doi.org/10.3390/s24051678 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24051678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9526-3860
https://doi.org/10.3390/s24051678
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24051678?type=check_update&version=1


Sensors 2024, 24, 1678 2 of 18

incorporated an auto channel selection layer into the neural network, allocating weights
based on the EEG channels’ contributions to MI signal classification, thereby facilitating
adaptive channel selection [8].

The aforementioned algorithms have demonstrated some degree of enhancement
in the performance of the MI-BCI systems. However, their effectiveness heavily relies
on pre-adopted time truncation and frequency filtering. Most of the existing literature
has set a broad frequency band (typically 8~30 Hz) and a non-customized time segment
(typically a short period of time after onset of the MI cue). Nevertheless, the time–frequency
characteristics of ERD/ERS evoked by different subjects vary. Therefore, a non-customized
time–frequency segment leads to subpar classification results across different subjects. The
appropriate time–frequency segments are very subject-dependent, which will be the main
concern of this paper.

To address the challenge of selecting appropriate time–frequency segments,
Kai et al. [9,10] proposed a band selection algorithm, namely, FBCSP, which decomposes
signals into several frequency bands. Subsequently, CSP is applied to each band before com-
bining and selecting the CSP features. Sliding windows and overlapping time–frequency
segments are employed in other studies to further increase the optional time–frequency
segments [11].

The aforementioned methods achieve the selection of time–frequency segments. How-
ever, they are hindered by limited optional time–frequency segments, which are dependent
on the preset parameters. To address this issue, we proposes the sparrow search algorithm
(SSA) correlation-based channel selection (CCS)-regularized common spatial pattern (RCSP)
algorithm, which adaptively explores the optimal time–frequency segments and selects
appropriate channels to enhance the performance of feature extraction for subjects. Initially,
the SSA is employed to optimize the time–frequency segments. Subsequently, the CCS
algorithm is utilized to identify EEG channels exhibiting significant correlation. Following
this, the RCSP algorithm is implemented to extract signal features from the aforementioned
selected channels. Lastly, the support vector machine (SVM) is employed to classify the
feature vectors.

Experiments were conducted to verify the effectiveness and generalization of the
algorithm across varying subjects and channels, utilizing the publicly available BCI Compe-
tition III Dataset IIIa, autonomously collected data from the Chinese Academy of Medical
Sciences, and the BCI Competition IV Dataset 1, respectively. The results showed that
the recognition efficiency of the proposed algorithm outperformed the algorithms in the
comparison group, demonstrating its suitability for diverse subjects and channels. The
proposed algorithm is expected to promote the application of MI-BCI in the field of motor
rehabilitation by customizing personalized time–frequency segments for subjects.

The major contributions of this study are listed as follows:

• A new approach to optimize the time–frequency segment is defined, aiming to provide
a subject-specific time–frequency segment.

• We develop a novel framework for MI decoding. Rather than employing a non-
customized time–frequency segment, our approach adaptively explores the optimal
time–frequency segment without constraints on limited optional segments.

• To verify the effectiveness of the proposed algorithm, three MI-EEG datasets are
included for classification experiments, and the proposed algorithm shows competitive
and robust performance.

The rest of the paper is organized as follows: In Section 2, some related work is
reviewed at first. Section 3 introduces the details of the proposed methods, including
optimization of time–frequency segments, channel selection, feature extraction, and clas-
sification. Section 4 elaborates upon data preprocessing, the overall framework of the
algorithm, and the results of the experiment. Section 5 analyzes the experimental results
and discusses the proposed algorithm. Section 6 concludes the study and points out
future work.
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2. Related Works

The feature extraction and channel selection process is key to the MI decoding pro-
cess. Feature extraction in MI decoding faces the challenge of a low signal-to-noise ra-
tio, inherent non-stationary nature, and high inter-subject variability. Currently, many
MI feature extraction algorithms have been developed to enhance the performance of
MI-BCI [12–14]. CSP is a powerful spatial filtering feature extraction method that provides
a filter to maximize the variance of one class of signals while minimizing the variance
from the other class. Many variations of CSP have been proposed to enhance its perfor-
mance, among which the regularized CSP exhibits promising results [5–7]. However, the
effectiveness of CSP heavily relies on pre-adopted time truncation and frequency filter-
ing. Moreover, the high inter-subject variability means that the optimal time–frequency
segments for extracting features could be different for different subjects. Hence, a broad
frequency range (typically 8~30 Hz) and a non-customized time segment are commonly
used [10]. Exhaustive search is another effective method for addressing this issue; however,
the impractical computational time requirements hinder its practical application.

To achieve automatic selection of frequency bands, Ang et al. proposed the Filter Bank
Common Spatial Pattern (FBCSP) method, which decomposes the signal into multiple
frequency bands through bandpass filtering. Subsequently, CSP is applied to each band,
followed by the use of a feature selection algorithm to automatically select frequency
bands and their corresponding CSP features [10]. However, there are still some limitations
involved. First, there is a lack of attention to the optimal time segment selection. Time
segment selection is another important issue in the decoding of MI EEG signals, aiming to
cover the interval strongly correlated with motor intention and remove unrelated sampling
points. Second, the search space for time–frequency segments is dependent on the choice
of initial parameters, and the limitations of the available time–frequency segments make it
difficult to find subject-specific optimal segments.

To address the first concern, Peterson et al. decomposed the EEG signals into multiple
time windows. In each window, they extracted FBCSP features, resulting in penalized
time–frequency band CSP features [15]. They simultaneously considered the selection of
time segments and frequency bands and achieved a more stable classification accuracy
compared to FBCSP. To address the second concern, a temporally constrained sparse group
spatial pattern applies bandpass filtering to the raw EEG data across a set of overlapping
filter bands [16]. This method enhances the variety of selectable time–frequency segments.
The utilization of sliding windows and overlapping time–frequency segments serves to
augment the pool of available combinations; nonetheless, the selection of time–frequency
segments remains contingent upon initial parameters, presenting a challenge in terms of
the freedom of time–frequency segment selection. Hence, achieving time–frequency band
optimization without being limited by selection space is a problem that needs to be solved.

The main types of channel selection algorithms encompass those employing neural
networks and those utilizing functional connectivity methods. Channel selection algorithms
utilizing functional connectivity methods are based on the theory that signals from the
same type of motor imagery task are more similar, while signals from different types of
motor imagery tasks exhibit more significant differences. By sorting the correlation across
different channels, the optimal channels are selected. In [17], cross-correlation is proposed
to evaluate the correlation across channels using the Pearson coefficient [18].

Channel selection algorithms employing neural networks have gained attention in
recent years. In [19], researchers considered EEG channels as a group of neural networks
and studied EEG channel selection. In [20], a convolutional neural network with specific
channels was employed as a feature extractor to enhance the separability of classifications.
Subsequently, a collection of deep sparse autoencoders was utilized to select the optimal
channels. Sun [21–24] et al. proposed a graph-based channel selection method, which
automatically selected a specified number of optimal channels in the graph convolutional
neural network by utilizing the time-domain correlation of signals.
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Optimization algorithms have also been applied to enhance channel selection. In [25], a
neural evolutionary channel selection algorithm was proposed based on an improved particle
swarm optimization algorithm for channel selection, and CSP was used for feature extraction.

In this study, we propose an adaptive time–frequency segment optimization algorithm
to overcome the selection space limitation and customize personalized time–frequency
segments for subjects. Furthermore, we incorporate CCS for channel selection and utilize
RCSP for feature extraction to enhance the decoding performance of MI.

3. Materials and Methods
3.1. Datasets

The performance of the proposed method was validated on three datasets: the BCI
Competition III Dataset IIIa, the Chinese Academy of Medical Sciences autonomous dataset,
and the BCI Competition IV Dataset 1.

3.1.1. BCI Competition III Dataset IIIa (DS1)

The BCI Competition III Dataset IIIa is a four-class EEG dataset (left hand, right hand,
foot, tongue; the first two actions were used for the experiments in this paper) which was
acquired using a 64-channel Neuroscan EEG amplifier, with the left mastoid for reference
and the right mastoid as ground. The sampling frequency for the data was set at 250 Hz,
and the recording was conducted using 60 electrodes [26,27]. The distribution of the
channels is shown in Figure 1.
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Figure 1. Distribution of channels of DS1. The circles and different numbers correspond to the
positions of EEG electrodes.

During the experimental sessions, the subjects sat in chairs with armrests and per-
formed different MI tasks according to cues, and the order of cues was random. Each trial
commenced with a period of silence lasting 2 s, then an acoustic stimulus and a cross on the
screen indicated the start of the trial. From 3 s to 7 s, the subjects were asked to performed
the indicated mental task. The timeline is shown in Figure 2.
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of trials per class were 90 and 60 for participants K3b and L1b, respectively. Due to the
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considerable variability in the accuracy of the K6b data reported in different studies, as well
as suspicions regarding potential errors in the true labels, the credibility of this particular
dataset was not deemed sufficiently high. Consequently, only the K3b and L1b datasets
were employed as experimental data for the purposes of this paper.

3.1.2. Chinese Academy of Medical Sciences Autonomous Dataset (DS2)

The Chinese Academy of Medical Sciences autonomous dataset is a two-class EEG
dataset which was acquired using a 64-channel Neuracle EEG amplifier, with the REF
channel for reference and the GND channel as ground. The sampling frequency for the
data was set at 1000 Hz. The electrode locations adhered to the international 10–20 system.
The distribution of the channels is shown in Figure 3.
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Figure 3. Distribution of channels of DS2.

Subjects performed 2 MI tasks of right-handed ball bouncing and foot lifting; the
movements are shown in Figure 4. In each trial, the experiment commenced with a rest
period of 1 s. Then, a visual stimulus in the form of a movement picture was presented to
prompt the subjects to mentally simulate the depicted movement. Following a duration
of 6 s for MI, the subjects were alerted to transition into a 3 s period of rest through the
activation of a system buzzer and the display of a black screen. Each subject participated in
320 trials, with an equal distribution of 160 trials for each type of movement. The timeline
is shown in Figure 5.
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The recording process involved nine subjects (A01~A09) in DS2 from the Chinese
Academy of Medical Sciences, Tiangong University, and Tianjin Medical University. All
subjects were right-handed, with an average age of 22.3 +/− 2.9 years. All subjects provided
their informed consent (Supplementary Materials S1).

3.1.3. BCI Competition IV Dataset 1 (DS3)

The BCI Competition IV Dataset 1 was acquired from 59 EEG channels [28,29]. For
each subject, two classes of motor imagery were chosen from the three classes: left hand,
right hand, and foot. Each trial began with a 2 s display of a fixation cross at the center
of the screen, followed by the presentation of cues (arrows pointing left, right, or down)
for 4 s. Participants were instructed to perform the corresponding MI task during this
period. Subsequently, a 2 s blank screen ensued. The fixation cross overlaid the cues and
was displayed for 6 s. Each of the two runs consisted of 100 trials, and the timeline for each
trial is depicted in Figure 6.
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DS3 comprises recordings from 7 participants engaged in MI tasks without feedback.
Data from participants ‘a’, ‘b’, ‘g’, ‘f’ were utilized in this study, and ‘c’, ‘d’, and ‘e’ were
excluded due to the fact that they were artificially generated.

3.2. Method
3.2.1. Sparrow Search Algorithm-Based Time–Frequency Segment Optimization

SSA is a swarm intelligence optimization algorithm that is mainly inspired by the
foraging and antipredator behavior of sparrows. Since the optimal time–frequency seg-
ments of EEG vary from subject to subject [30], non-customized time–frequency segments
cannot represent the optimal segments for different individuals. To solve this problem, the
SSA-based algorithm is utilized to obtain the optimal time–frequency segments of different
individual EEG signals. During the search process, sparrows are classified into 3 roles [31]:

(1) Producer, responsible for providing appropriate exploration areas or directions for all
sparrows seeking to optimize the time–frequency segments of EEG signals;

(2) Scrounger, following the sparrows that can indicate the direction of better time–
frequency segments;

(3) Scout, aware of potential shortcomings in the current process of optimizing the time–
frequency segment range of EEG signals, and seeking better time–frequency segments
by escaping from the current position.

The sparrow position parameters can be represented by the following matrix:

X =


X1,1 X1,2
X2,1 X2,2

· · · X1,d
· · · X2,d

...
...

Xn,1 Xn,2

...
...

· · · Xn,d

, (1)

where n is the number of sparrows and d denotes the parameter dimension, and the value
of each row Xi represents the time–frequency segment corresponding to the ith sparrow,
i.e., the frequency start point fstart (Xi,1), frequency width fwidth (Xi,2), time start point tstart
(Xi,3), and time width twidth(Xi,4).
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Sparrow roles are classified according to the fitness value, which is derived from the
classifier’s accuracy. It can be expressed by the following vector:

F =


f
([

X1,1 X1,2 · · · X1,d
])

f
([

X2,1 X2,2 · · · X2,d
])

...
f
([

Xn,1 Xn,2 · · · Xn,d
])
, (2)

f (Xi) denotes the fitness value obtained based on Xi. The position of the sparrow with
the lowest fitness value corresponds to the current optimal time–frequency segment. The
k sparrows with lower fitness are classified as producers. Since producers are responsible
for guiding other sparrows, they search in a broad range around themselves for better
time–frequency segments. The producer location is updated as below:

Xt+1
i,j =

Xt
i,j· exp

(
−i

α·itermax

)
, R2 < ST

Xt
i,j + Q·L, R2 ≥ ST

, (3)

where t denotes the current iteration, j = 1, 2, . . . , d. itermax is the largest number of itera-
tions, α ∈ (0 , 1] is a random number, Q is a random number obeying normal distribution,
and Xt

i,j denotes the jth dimensional parameter of the ith sparrow in t iteration. L is a 1 × d
matrix with all elements equal to 1. R2 ∈ [0 , 1] is alarm value and ST ∈ [0.5 , 1) is the safety
threshold; both of them are random numbers. When R2 ≥ ST, producers will fly to other
areas, searching for better time–frequency segments. On the other hand, when R2 < ST,
it means that no predator is around and the producers enter extensive search mode. This
mechanism prevents the algorithm from falling into local optima.

The scrounger position is updated as follows:

Xt+1
i,j =


Q· exp

(
Xt

worst−Xt
i,j

i2

)
, i > n2

2

Xt
best+

1
d ∑d

j=1

(
rand{−1, 1}·

(∣∣∣Xt
i,j−Xt

best

∣∣∣)), i ≤ n
2

, (4)

where Xt
worst and Xt

best are the global worst and best positions in t iterations, respectively.
n2 denotes the numbers of scroungers; if i > n2

2 , the current time–frequency segment is
not suitable for the subject under investigation and the scrounger will leave the current
position. If i ≤ n2

2 , the scrounger will approach the producer corresponding to the optimal
time–frequency segment.

Some of the sparrows are aware of the danger; these sparrows are scouts, and they
will abandon their current time–frequency segments and move to new locations. The scout
is updated as below:

Xt+1
i,j =


Xt

best + β·
(

Xt
i,j − Xt

best

)
, fi ̸= fg

Xt
i,d + K·

(
Xt

i,j−Xt
worst

| fi− fw |+ε

)
, fi = fg

, (5)

where β and K are random numbers,β conforms to the standard normal distribution, and
K ∈ (0 , 1] denotes the direction of the sparrow. ε is a small constant to avoid zero-division
errors. Here, fi is the fitness value of the ith sparrow. fg and fw denote the best and worst
fitness values, respectively. If fi = fg, the sparrow will need to move closer to others;
otherwise, it will move to the vicinity of the current optimal position.

After comparing using grid search method to determine the ratio, producers and
scroungers are sorted by fitness, constituting 70% and 30% of the total, respectively, while
scouts are randomly generated in the population with a ratio of 0.2.
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3.2.2. Correlation-Based Channel Selection Algorithm

The channels associated with MI should contain common information for performing
the same task [5]. Therefore, removing less correlated channels can improve feature
extraction. By calculating the Pearson correlation coefficients between signals from different
channels, the CCS algorithm can select the subject-specific best channels that are associated
with MI [32]. Two steps need to be taken in the CCS algorithm:

First, data normalization: z-score normalization is applied to the EEG signals with
the assistance of the sklearn package in Python, so that the mean of EEG data is 0 and the
standard deviation is 1. Before normalization, the signal undergoes time segmentation and
frequency filtering, but without artifact removal.

Second, based on the Pearson correlation coefficient, the statistical relationship be-
tween every pair of channels is quantified. The Pearson correlation coefficient is calculated
as below:

ρ(X, Y) =
1

n − 1∑n
i=1

(
Xi − X

σX

)(
Yi − Y

σY

)
, (6)

where X and Y are the observed variables, X and Y are the mean variables, n is the sample
size, and σX and σY are the standard deviations of the variables. The matrix of correlation
coefficients of the N channels is defined as:

R =


ρ(X1, X1) ρ(X1, X2)
ρ(X2, X1) ρ(X2, X2)

· · · ρ(X1, XN)
· · · ρ(X2, XN)

...
...

ρ(XN , X1) ρ(XN, X2)

...
...

· · · ρ(XN, XN)

, (7)

where N is the total number of channels. The mean of the ith row represents the correlation
between the ith channel and other channels, while a higher correlation indicates that
channel i is more related to other channels. Therefore, Nt × Ns highly correlated channels
are selected after Nt trials, and the Ns channels that most frequently appear in Nt × Ns
recordings are chosen as the ideal channels.

3.2.3. Feature Extraction Based on Regularized Common Spatial Pattern

The RCSP algorithm is an improved version of the CSP algorithm [5,7]. The CSP
algorithm uses a spatial filter to maximize the variance for one class and minimize the
variance for another class. The RCSP algorithm introduces regularization parameters α
and β into the covariance calculation to obtain the regularized mean covariance matrix
Qclass(α, β), which is calculated as:

Qclass(α, β) = (1 − β)Pclass +
β

Ns
trace

(
Pclass

)
I, (8)

where trace(·) represents the matrix trace, I represents the identity matrix, and Pclass is the
average covariance matrix, which is calculated as follows:

Pclass(α, β) =
(1 − α)∑Ntr

i=1 Cclass
i + α∑Ntr

i=1 Ĉclass
i

Ntr
, (9)

where Cclass
i is the normalized covariance matrix and Ĉclass

i is the pair-wise covariance,
which are defined as:

Cclass
i =

EiET
i

trace
(
EiET

i
) , (10)

Ĉclass
i = cov

(
ET

i

)
, (11)
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where cov(·) is the function that calculates the pair-wise covariance of each channel. To
maximize the variance of one class while minimizing the variance of the other class, a filter
ω is defined as:

ω = argmin
ωTQc1ω

ωTQc2ω
, (12)

The above equation is transformed into the generalized eigenvalue problem by means
of the Lagrange multiplier method:

Qc1ω = λQc2ω, (13)

The eigenvectors of the m maximum and minimum eigenvalues are obtained as the
optimal spatial filter ω2m ∈ RNs×2m, and the EEG signal features are extracted with the
following equations:

f = ln
(

var
(

ωT
2mE

))
(14)

For the convenience of comparing the performance of the proposed algorithm on
different datasets, the parameters m, α, and β are fixed at 2, 0.4, and 0.01, respectively.

3.2.4. Feature Classification Based on Support Vector Machine

SVM is a binary classification model which is suitable for nonlinear and high-dimensional
classification [33]. In this paper, a radial basis function (RBF) kernel function is used to trans-
form the inner product in the high-dimensional feature space into the computed result of the
kernel function in the low-dimensional feature space to reduce the computation’s complexity.

The penalty parameter C and the kernel function parameter g have a large impact
on the SVM classification effect; thus, in the proposed method, we used a grid search
method(C ∈ [0.001, 0.01, 0.1, 1, 10, 100, 1000] and g ∈ [0.001, 0.01, 0.1, 1, 10, 100, 1000]) to
find their optimal values.

Generalizability is an important indicator of the practical application capability of
the model. To improve generalizability, in addition to tuning by hyperparameters, the
calculation method of model evaluation can be adjusted. In this paper, a five-fold cross-
validation method was employed to estimate the accuracy of SVM, and the Sklearn package
in Python was used.

4. Results

This section describes the experimental data processing framework, results, and
performance of the proposed model and four benchmark models used for comparison.

4.1. Data Preprocessing

In this study, we underwent preprocessing using the EEGLAB toolbox [34] in Mat-
lab (The MathWorks Inc., Natick, MA, USA) and the mne package in Python 3.6 (The
Python Software Foundation, Wilmington, DE, USA). The preprocessing process included
downsampling, filtering, time slicing, baseline correction, and artifact rejection.

For the DS1, the signals was downsampled to 250 Hz by the provider of the DS1. Since
significant power changes occurred in the alpha (8~12 Hz) and beta (14~30 Hz) rhythms
of EEG, the EEG data were filtered between 1 Hz and 50 Hz after notch filtering. In the
experiment, data from 2 to 7 s were utilized, and baseline correction was performed using
data ranging from 0 to 2 s. For the artifact rejection, source derivations based on the center
and the neighbor electrodes were calculated, and the boundary electrodes were calculated
based on neighbors.

For the DS2, we only retained 26 electrodes, which covered the sensorimotor area. The
EEG data were filtered between 1 Hz and 50 Hz after 50 Hz notch filtering. Experimental
analysis data were analyzed using 500 samples of data from 2 to 6 s, and baseline correction
was performed using data ranging from 0 to 1 s. Then, the 1000 Hz raw EEG signal was
downsampled to 125 Hz to reduce the data volume, enhancing the efficiency of signal
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processing and analysis. In order to validate the effectiveness of the algorithm on data with
artifacts, no specific artifact removal processing was conducted.

For the DS3, the EEG data were filtered between 1 Hz and 50 Hz after 50 Hz notch
filtering. In the experiment, data from 2 to 6 s were utilized, and baseline correction
was performed using data ranging from 0 to 2 s. Then, the 1000 Hz raw EEG signal was
downsampled to 250 Hz, and no specific artifact removal processing was conducted.

For all datasets, the SSA time optimization range was set to within 4 s after the onset of
the MI task, enabling unrestricted exploration for the optimal time segment. The frequency
optimization range was 1~40 Hz, encompassing the sensorimotor rhythms alpha (8~12 Hz)
and beta (14~30 Hz), which are considered to be the main frequency bands related to MI. It
can be observed that the three datasets differed in terms of channel count, artifact removal
and motor intention. This difference contributed to validating the effectiveness of the
algorithm when dealing with data from different channels, with artifacts and data related
to different motor imagery tasks.

4.2. Whole Framework

In this work, we used SSA to determine the optimal time–frequency segments, specifically
the time window and frequency band of EEG. Additionally, optimal channels were selected
using the CCS method, and the RCSP method was applied to extract features before SVM
classification. The framework of the proposed SSA-CCS-RCSP is shown in Figure 7.
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The procedure is as follows:

(1) Initialize the positions of n (n = 10) sparrows, corresponding to time–frequency segments;
(2) Split the experimental data into a training set Dt1 and a test set Dt2 in a 7:3 ratio;
(3) Apply time–frequency filtering to Dt1 based on the current time–frequency segment;
(4) Utilize a five-fold cross-validation method, where Dt1 is split into a training set Dt3

and a validation set Dt4 in each iteration (in a 4:1 ratio);
(5) Calculate the optimal channels for Dt3 using the CCS algorithm and remove irrelevant

channel data from both Dt3 and Dt4;
(6) Compute RCSP spatial filters on Dt3 and extract features from both Dt3 and Dt4;
(7) Train an SVM classifier on Dt3 and evaluate the accuracy (fitness) on the test set Dt4;
(8) Update the time–frequency segments for each sparrow based on the fitness;
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(9) Repeat steps (3) to (8) until the predefined iteration limit is reached; in this experiment,
the iteration limit was set to 20. The current optimal result obtained is the best
time–frequency segment;

(10) Use Dt1 as the training set and Dt2 as the test set. The ratios are determined according
to the specifications of the datasets providers: 1:1 for DS1, 3:1 for DS2, and 3:7 for
DS3. Based on the best time–frequency segment obtained, calculate the accuracy of
the current model on the test set according to steps (5) to (7).

In the process of optimizing time–frequency segments based on the SSA, channel selec-
tion was accomplished by CCS through the computation of signal similarity across diverse
channels. An imperative consideration for effective channel selection is maintaining a high
signal-to-noise ratio; consequently, CCS was employed subsequent to time segmentation
and frequency filtering. And prior to the classification process, RCSP was employed as a
method for feature extraction.

4.3. Experimental Results

The performance of the proposed algorithm was evaluated through experimental
comparisons using the datasets mentioned earlier. The comparison involved standard
feature extraction methods like CSP, RCSP, and their fusion with SSA or CCS. Additionally,
FBCSP, which integrates frequency band processing, was included for comprehensive
comparison. The classification tasks were executed using an SVM classifier, and the results
are presented in Table 1.

Table 1. Comparison of classification accuracies achieved by CSP, CCS-CSP, RCSP, CCS-RCSP, SSA-
RCSP, FBCSP, and SSA-CCS-RCSP, with SVM being the classifier, respectively, on DS1, DS2, and DS3.

Subjects
Accuracy (%)

CSP CCS-CSP RCSP CCS-RCSP SSA-RCSP FBCSP SSA-CCS-RCSP

k3b 92.22 94.89 92.22 95.33 98.00 79.38 99.56
l1b 91.33 94.33 88.33 92.67 93.00 53.93 98.67

mean 91.78 94.61 90.28 94.00 95.50 66.66 99.11

A01 73.25 73.25 76.00 79.25 76.25 84.00 87.75
A02 91.50 92.75 91.50 93.00 94.25 95.75 97.25
A03 82.75 86.75 88.75 89.25 89.75 83.50 92.25
A04 88.75 90.25 90.50 91.50 94.75 90.50 96.75
A05 70.00 70.50 67.75 73.25 73.75 72.50 76.75
A06 96.00 96.25 95.00 96.25 97.00 93.75 98.50
A07 59.00 65.50 63.50 65.50 72.50 58.75 72.50
A08 83.50 86.50 80.00 84.50 88.00 90.00 91.00
A09 73.25 73.25 65.25 65.25 67.25 72.75 78.75

mean 79.78 81.67 79.81 81.97 83.72 82.39 87.94

a 63.67 86.67 59.33 91.00 86.00 81.60 94.00
b 72.67 76.67 71.33 76.67 74.33 62.13 82.67
f 75.17 86.00 88.33 89.33 88.00 81.80 91.33
g 75.17 91.33 89.00 92.00 90.33 84.53 94.00

mean 71.67 85.17 77.00 87.25 84.67 77.52 90.50

The accuracy of the fusion method using SSA or CCS surpassed that of the original
algorithm. Moreover, for all datasets, the classification accuracy of our approach was the
highest. The results indicate that proposed algorithm effectively enhanced the efficiency of
MI decoding.

4.4. Analysis of Variance for Results

We conducted a two-way analysis of variance on the experimental results to analyze
whether the influence of different algorithms and datasets on classification accuracy was
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statistically significant. The analysis of variance with two factors was also employed, with
the first factor being the algorithm and the second factor being the dataset. The results
in Table 2 show that the interaction between the datasets and the algorithms was not
statistically significant (p > 0.05). However, the algorithm factor had a significant impact
on the classification accuracy (p < 0.05). The dataset factor significantly influenced the
classification accuracy (p < 0.05), potentially stemming from individual disparities and
variations in collection environments. In Table 3, post hoc analysis with least significant
difference shows statistical differences between the SSA-CCS-RCSP and three algorithms
implementing a variant of the CSP algorithm alone (namely, FBCSP, CSP, RCSP; p < 0.05).
This would indicate that adding SSA, CCS, and RCSP to the classification chain will
significantly increase the classification performance.

Table 2. Two-way analysis of variance for experimental results.

Subjects Degree of
Freedom

Sum of
Squares Mean Square F PR (>F)

dataset 2.0 0.077 0.039 3.517 0.034 *
algorithm 6.0 0.198 0.033 3.002 0.010 *
dataset *

algorithm 12.0 0.141 0.012 1.070 0.396

Residual 84.0 0.924 0.011
* p < 0.05

Table 3. Post hoc analysis with least significant difference.

Comparison Mean
Difference

Standard
Error t-Value p-Value

CCS-CSP CCS-RCSP −0.007 0.038 −0.171 0.865
CCS-CSP CSP 0.051 0.038 1.328 0.187
CCS-CSP FBCSP 0.053 0.038 1.387 0.169
CCS-CSP RCSP 0.039 0.038 1.007 0.317
CCS-CSP SSA-CCS-RCSP −0.058 0.038 −1.505 0.136
CCS-CSP SSA-RCSP −0.012 0.038 −0.317 0.752

CCS-RCSP CSP 0.058 0.038 1.499 0.137
CCS-RCSP FBCSP 0.060 0.038 1.557 0.123
CCS-RCSP RCSP 0.045 0.038 1.178 0.242
CCS-RCSP SSA-CCS-RCSP −0.051 0.038 −1.334 0.185
CCS-RCSP SSA-RCSP −0.006 0.038 −0.146 0.884

CSP FBCSP 0.002 0.038 0.058 0.954
CSP RCSP −0.012 0.038 −0.322 0.748
CSP SSA-CCS-RCSP −0.109 0.038 −2.833 0.006
CSP SSA-RCSP −0.063 0.038 −1.645 0.103

FBCSP RCSP −0.015 0.038 −0.380 0.705
FBCSP SSA-CCS-RCSP −0.111 0.038 −2.891 0.005
FBCSP SSA-RCSP −0.066 0.038 −1.703 0.092
RCSP SSA-CCS-RCSP −0.097 0.038 −2.512 0.014
RCSP SSA-RCSP −0.051 0.038 −1.323 0.189

SSA-CCS-RCSP SSA-RCSP 0.046 0.038 1.188 0.238

5. Discussion
5.1. Optimal Time–Frequency Segment Distributions

By setting different target channel numbers, the CCS algorithm segmented the EEG
signals of subjects K3b and L1b into 10 subsets of DS1 with varying channel numbers. The
proposed algorithm was employed to calculate the optimal time–frequency segment. By
statistically analyzing the optimal time–frequency bands for different datasets, Figure 8a,b
illustrate the distribution of time–frequency bands for two subjects in the DS1.
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Figure 8. Optimal time–frequency segment distributions. (a) Frequency start and end point distribu-
tion; (b) time segment start and end point distribution. *** and ** above certain lines denote that the
distribution of time and frequency between two subjects was significantly different at the 0.001 and
0.01 levels of significance. The two closely spaced dashed lines at the top and bottom represent the
maximum and minimum values, while the dashed line in the middle represents the median.

Observing Figure 9a,b, it can be found that around 10 Hz and 20 Hz, there is a sig-
nificant energy distribution in the signal of subject K3b. At the same time, in Figure 8a, it
can be observed that the optimized frequency band for K3b is prominently concentrated
around 10 Hz and 20 Hz. The same phenomenon can also be observed in subject L1b from
Figures 8b and 9c,d. Additionally, the distribution of time and frequency between two subjects
was significantly different, indicating individual differences in EEG signals. From Figure 9, it
can be observed that L1B exhibited a significantly lower energy distribution frequency band
compared to K3b, and this phenomenon is reflected in Figure 8. It can be inferred that the
optimal time–frequency bands obtained by the proposed algorithm effectively reflect the
changes in the energy of the EEG signals.
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5.2. Effect of SSA on Channel Selection

We investigated the impact of SSA on channel selection in CCS. We applied the SSA
algorithm to DS1, and 20 channels were selected by the CCS algorithm for K3B and L1B, as
shown in Figure 10.
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The selected channels of the two participants cover areas located in the primary
sensorimotor region, which are considered significant areas for ERD/ERS. The overlap
between the selected channels and the significant regions of MI-EEG signals suggests that
the chosen channels may be neurophysiologically meaningful.

From Figure 10, it can be observed that the channel selection combined with time–
frequency optimization yielded results similar to the original CCS. Due to differences in
brain activation regions within different frequency bands during the motor imagery task,
there were still differences in individual channels. Considering the classification results in
Table 1, our proposed method was more effective for different subjects.

5.3. Effect of SSA on RCSP Feature Distribution

In order to compare the differences in the distributions of features with and without
SSA, Figure 11 illustrates the feature distributions of subjects K3B and L1B in DS1. The
feature distributions after optimization with SSA became more discriminative, which
provides a basis for explaining the improvement in accuracy at the feature distribution level.
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5.4. Effects of CCS and SSA on Improving Classification

We compared the CSP and RCSP algorithms with their fusion algorithms incorporating
CCS or SSA on DS1, DS2, and DS3. The obtained comparison results are presented in Table 4.

Table 4. Mean classification accuracies achieved by CSP, RCSP, SSA-RCSP, CCS-CSP, CCS-RCSP, and
SSA-CCS-RCSP, with SVM being the classifier, respectively, on DS1, DS2, and DS3. The abbreviation
NC represents the average number of channels selected across subjects in datasets by CCS under the
highest accuracy levels.

Algorithm Algorithm
DS1 DS2 DS3

Accuracy (%) NC Accuracy (%) NC Accuracy (%) NC

Spatial
Pattern

CSP [4,28,35] 91.78 60 79.78 26 71.67 59
RCSP [5,7] 90.28 60 79.81 26 77.00 59

SSA
Improved SSA-RCSP 95.50 60 83.72 26 84.67 59

Channel
Selection

CCS-CSP 94.61 19 81.67 20.4 85.17 25.25
CCS-RCSP 94.00 35 81.97 19.7 87.25 35.25

SSA
Improved

(This study)

SSA-CCS-
RCSP 99.11 42.5 87.94 21.4 90.50 25.75

Compared with the CSP and RCSP algorithms, the mean accuracy of the CCS fusion
algorithm was improved (2.83% and 3.72% for DS1, 2.17% and 2.19% for DS2, 15.58% and
10.25% for DS3, respectively). Compared with the CSP and RCSP algorithms, the mean
accuracy of the SSA-RCSP algorithm was improved (3.72% and 5.22% for DS1, 3.92% and
3.94% for DS2, and 13.00% and 7.67% for DS3, respectively). The proposed SSA-CSP-RCSP
proposed in this paper achieved the highest accuracy on all datasets, with 99.11%, 87.70%,
and 90.50%, respectively.

The results show that the fusion algorithms of SSA and CCS enhanced the classification
accuracy by optimizing time–frequency segments and channel selection when compared to
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algorithms employing non-customized time–frequency segments and utilizing all channels.
Furthermore, the fusion algorithm incorporating CCS effectively reduced the number of
required channels and decreased the amount of data to be processed.

5.5. Performance of SSA with Different Channel Numbers

The channels of the EEG signal datasets are usually not uniform, necessitating an
examination of the suitability of SSA in datasets with varying channel numbers. The CCS
algorithm segmented the EEG signals into datasets with varying channel numbers, and the
SSA-based algorithm was employed to obtain the optimal time–frequency segment.

Prior to employing the CCS-RCSP algorithm for extracting signal features, time–frequency
filtering was separately performed using the optimized segments and non-customized param-
eters (0~4 s and 8~30 Hz). The accuracy of classification by SVM is illustrated in Figure 12.
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It can be observed from Figure 12 that, with data from different channels, the accuracy
of the SSA-CCS-RCSP method consistently exceeded the accuracy of methods based on
non-customized time–frequency ranges. The results indicate that this algorithm can be
generalized to data with different channel counts.

6. Conclusions

To address the problem of poor generalization in algorithms utilizing non-customized
time–frequency segments due to the individual variability, this paper proposes a new
approach to optimize the time–frequency segment. Further, the CCS was employed to
select channels relevant to the MI tasks, while the RCSP was utilized for feature extraction.
The performance of the proposed method was evaluated using three datasets: the BCI
Competition III Dataset IIIa, the Chinese Academy of Medical Sciences autonomous dataset,
and the BCI Competition IV Dataset 1. The results show that the classification efficiency of
the proposed algorithm outperformed the algorithms in the comparison group. It effectively
addressed the issue of time–frequency segment optimization.

Although this algorithm does consume more computational resources compared to
those based on non-customized time–frequency segments, the computational cost is not
required for testing (almost real-time), but only for model training (approximately 2000 s
is required for data with 59 channels, 1000 sampling points, and 200 trials), and this will
not impede its significant importance in practical implementations. Accordingly, we have
enough reasons to believe that the proposed methods could significantly improve the MI
classification performance. Meanwhile, the proposed methods would potentially contribute
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to the field of MI-BCI motor rehabilitation systems and assistive devices, which emphasizes
the need to customize time–frequency bands for each subject.

In addition, the dataset used in this study was collected from healthy participants,
mainly young individuals. Therefore, further work is needed in order to test the proposed
algorithm in patients with motor dysfunction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24051678/s1, S1: Patient consent form.

Author Contributions: Conceptualization, J.H., G.L., Q.Z., Q.Y. and T.L.; data curation, J.H., G.L., Q.Z.,
Q.Y. and T.L.; formal analysis, J.H. and G.L.; funding acquisition, Q.Y. and T.L.; investigation, J.H.,
G.L., Q.Z., Q.Y. and T.L.; methodology, J.H. and G.L.; project administration, Q.Y. and T.L.; resources,
Q.Y. and T.L.; software, J.H.; supervision, Q.Y. and T.L.; validation, J.H. and G.L.; visualization, J.H.
and G.L.; writing—original draft, J.H. and G.L.; writing—review and editing, J.H., G.L., Q.Y. and T.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Chinese Academy of Medical Science health innovation
project, grant numbers 2021-I2M-1-042, 2022-I2M-C&T-A-005, and 2022-I2M-C&T-B-012, and the
Tianjin Outstanding Youth Fund Project, grant number 20JCJQIC00230.

Institutional Review Board Statement: All subjects gave their informed consent for inclusion before
they participated in the study. The study was conducted in accordance with the Declaration of
Helsinki, and the protocol was approved by the Ethics Committee of TJUE-2021-019.

Informed Consent Statement: Not applicable.

Data Availability Statement: The DS1 is publicly available online: https://www.bbci.de/competition/
iii/ (accessed on 27 December 2023). The DS2 is available with permission from the authors. The DS3
is publicly available online: https://www.bbci.de/competition/iv/ (accessed on 27 December 2023).

Acknowledgments: We wish to thank Kaixue Ma for advice on experimental design and paper revisions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wolpaw, J.R.; Birbaumer, N.; Mcfarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for communication and

control. Suppl. Clin. Neurophysiol. 2002, 113, 767–791. [CrossRef] [PubMed]
2. Pfurtscheller, G.; Neuper, C.; Schlogl, A.; Lugger, K. Separability of EEG signals recorded during right and left motor imagery

using adaptive autoregressive parameters. IEEE Trans. Rehabil. Eng. 1998, 6, 316–325. [CrossRef] [PubMed]
3. Jasper, H.; Penfield, W. Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral

gyrus. Arch. Psychiatr. Nervenkrankh. 1949, 183, 163–174. [CrossRef]
4. Koles, Z.J.; Lazar, M.S.; Zhou, S.Z. Spatial patterns underlying population differences in the background EEG. Brain Topogr. 1990,

2, 275–284. [CrossRef] [PubMed]
5. Jin, J.; Miao, Y.; Daly, I.; Zuo, C.; Cichocki, A. Correlation-based channel selection and regularized feature optimization for

MI-based BCI. Neural Netw. 2019, 118, 262–270. [CrossRef] [PubMed]
6. Lemm, S.; Blankertz, B.; Curio, G.; Muller, K.-R. Spatio-spectral filters for improving the classification of single trial EEG. IEEE

Trans. Biomed. Eng. 2005, 52, 1541–1548. [CrossRef] [PubMed]
7. Lu, H.; Eng, H.-L.; Guan, C.; Plataniotis, K.N.; Venetsanopoulos, A.N. Regularized Common Spatial Pattern with Aggregation for

EEG Classification in Small-Sample Setting. IEEE Trans. Biomed. Eng. 2010, 57, 2936–2946. [CrossRef]
8. Zhang, H.; Zhao, X.; Wu, Z.; Sun, B.; Li, T. Motor imagery recognition with automatic EEG channel selection and deep learning. J.

Neural Eng. 2020, 18, 016004. [CrossRef]
9. Quadrianto, N.; Cuntai, G.; Dat, T.H.; Xue, P. Sub-band Common Spatial Pattern (SBCSP) for Brain-Computer Interface. In

Proceedings of the International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, HI, USA, 2–5 May 2007.
10. Ang, K.K.; Chin, Z.Y.; Zhang, H. Cuntai Guan Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface.

In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 1–8 June 2008; pp.
2390–2397.

11. Kirar, J.S.; Agrawal, R.K. Relevant Feature Selection from a Combination of Spectral-Temporal and Spatial Features for Classifica-
tion of Motor Imagery EEG. J. Med. Syst. 2018, 42, 78. [CrossRef]

12. Varone, G.; Boulila, W.; Driss, M.; Kumari, S.; Khan, M.K.; Gadekallu, T.R.; Hussain, A. Finger pinching and imagination
classification: A fusion of CNN architectures for IoMT-enabled BCI applications. Inf. Fusion 2024, 101, 102006. [CrossRef]

13. Yu, X.; Aziz, M.Z.; Sadiq, M.T.; Jia, K.; Fan, Z.; Xiao, G. Computerized Multidomain EEG Classification System: A New Paradigm.
IEEE J. Biomed. Health Inform. 2022, 26, 3626–3637. [CrossRef]

https://www.mdpi.com/article/10.3390/s24051678/s1
https://www.mdpi.com/article/10.3390/s24051678/s1
https://www.bbci.de/competition/iii/
https://www.bbci.de/competition/iii/
https://www.bbci.de/competition/iv/
https://doi.org/10.1016/S1388-2457(02)00057-3
https://www.ncbi.nlm.nih.gov/pubmed/12048038
https://doi.org/10.1109/86.712230
https://www.ncbi.nlm.nih.gov/pubmed/9749909
https://doi.org/10.1007/BF01062488
https://doi.org/10.1007/BF01129656
https://www.ncbi.nlm.nih.gov/pubmed/2223384
https://doi.org/10.1016/j.neunet.2019.07.008
https://www.ncbi.nlm.nih.gov/pubmed/31326660
https://doi.org/10.1109/TBME.2005.851521
https://www.ncbi.nlm.nih.gov/pubmed/16189967
https://doi.org/10.1109/TBME.2010.2082540
https://doi.org/10.1088/1741-2552/abca16
https://doi.org/10.1007/s10916-018-0931-8
https://doi.org/10.1016/j.inffus.2023.102006
https://doi.org/10.1109/JBHI.2022.3151570


Sensors 2024, 24, 1678 18 of 18

14. Yu, X.; Aziz, M.Z.; Sadiq, M.T.; Fan, Z.; Xiao, G. A New Framework for Automatic Detection of Motor and Mental Imagery EEG
Signals for Robust BCI Systems. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [CrossRef]

15. Peterson, V.; Wyser, D.; Lambercy, O.; Spies, R.; Gassert, R. A penalized time–frequency band feature selection and classification
procedure for improved motor intention decoding in multichannel EEG. J. Neural Eng. 2019, 16, 016019. [CrossRef] [PubMed]

16. Zhang, Y.; Nam, C.S.; Zhou, G.; Jin, J.; Wang, X.; Cichocki, A. Temporally Constrained Sparse Group Spatial Patterns for Motor
Imagery BCI. IEEE Trans. Cybern. 2019, 49, 3322–3332. [CrossRef] [PubMed]

17. Gaur, P.; McCreadie, K.; Pachori, R.B.; Wang, H.; Prasad, G. An automatic subject specific channel selection method for enhancing
motor imagery classification in EEG-BCI using correlation. Biomed. Signal Process. Control 2021, 68, 102574. [CrossRef]

18. Shan, H.; Xu, H.; Zhu, S.; He, B. A novel channel selection method for optimal classification in different motor imagery BCI
paradigms. Biomed. Eng. Online 2015, 14, 93. [CrossRef]

19. Strypsteen, T.; Bertrand, A. End-to-end learnable EEG channel selection for deep neural networks with Gumbel-softmax. J. Neural
Eng. 2021, 18, 0460a9. [CrossRef]

20. Wang, X.; Zhang, G.; Wang, Y.; Yang, L.; Liang, Z.; Cong, F. One-Dimensional Convolutional Neural Networks Combined with
Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG. Int. J. Neural Syst. 2022, 32, 2150048.
[CrossRef]

21. Sun, B.; Liu, Z.; Wu, Z.; Mu, C.; Li, T. Graph Convolution Neural Network based End-to-end Channel Selection and Classification
for Motor Imagery Brain-computer Interfaces. IEEE Trans. Ind. Inform. 2022, 19, 9314–9324. [CrossRef]

22. Sun, B.; Zhang, H.; Wu, Z.; Zhang, Y.; Li, T. Adaptive Spatiotemporal Graph Convolutional Networks for Motor Imagery
Classification. IEEE Signal Process. Lett. 2021, 28, 219–223. [CrossRef]

23. Sun, B.; Wu, Z.; Hu, Y.; Li, T. Golden subject is everyone: A subject transfer neural network for motor imagery-based brain
computer interfaces. Neural Netw. 2022, 151, 111–120. [CrossRef] [PubMed]

24. Sun, B.; Zhao, X.; Zhang, H.; Bai, R.; Li, T. EEG Motor Imagery Classification with Sparse Spectrotemporal Decomposition and
Deep Learning. IEEE Trans. Autom. Sci. Eng. 2021, 18, 541–551. [CrossRef]

25. Idowu, O.P.; Adelopo, O.; Ilesanmi, A.E.; Li, X.; Samuel, O.W.; Fang, P.; Li, G. Neuro-evolutionary approach for optimal selection
of EEG channels in motor imagery based BCI application. Biomed. Signal Process. Control 2021, 68, 102621. [CrossRef]

26. Blankertz, B.; Muller, K.-R.; Krusienski, D.J.; Schalk, G.; Wolpaw, J.R.; Schlogl, A.; Pfurtscheller, G.; Millan, J.R.; Schroder, M.;
Birbaumer, N. The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil.
Eng. 2006, 14, 153–159. [CrossRef] [PubMed]

27. BCI Competition: Download Area. Available online: https://bbci.de/competition/iii/#data_set_iiia (accessed on 27 December 2023).
28. Blankertz, B.; Dornhege, G.; Krauledat, M.; Müller, K.-R.; Curio, G. The non-invasive Berlin Brain–Computer Interface: Fast

acquisition of effective performance in untrained subjects. NeuroImage 2007, 37, 539–550. [CrossRef] [PubMed]
29. BCI Competition: Download Area. Available online: https://www.bbci.de/competition/iv/ (accessed on 20 December 2023).
30. Yang, Y.; Chevallier, S.; Wiart, J.; Bloch, I. Subject-specific time–frequency selection for multi-class motor imagery-based BCIs

using few Laplacian EEG channels. Biomed. Signal Process. Control 2017, 38, 302–311. [CrossRef]
31. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. Open Access

J. 2020, 8, 22–34. [CrossRef]
32. Feng, J.; Yin, E.; Jin, J.; Saab, R.; Daly, I.; Wang, X.; Hu, D.; Cichocki, A. Towards correlation-based time window selection method

for motor imagery BCIs. Neural Netw. 2018, 102, 87–95. [CrossRef]
33. Wang, L. Support Vector Machines: Theory and Applications; Springer Science & Business Media: Dordrecht, The Netherlands, 2005;

Volume 177.
34. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent

component analysis. J. Neurosci. Methods 2004, 134, 9–21. [CrossRef]
35. Pfurtscheller, G.; Neuper, C. Motor imagery and direct brain-computer communication. Proc. IEEE 2001, 89, 1123–1134. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIM.2021.3069026
https://doi.org/10.1088/1741-2552/aaf046
https://www.ncbi.nlm.nih.gov/pubmed/30623892
https://doi.org/10.1109/TCYB.2018.2841847
https://www.ncbi.nlm.nih.gov/pubmed/29994667
https://doi.org/10.1016/j.bspc.2021.102574
https://doi.org/10.1186/s12938-015-0087-4
https://doi.org/10.1088/1741-2552/ac115d
https://doi.org/10.1142/S0129065721500489
https://doi.org/10.1109/TII.2022.3227736
https://doi.org/10.1109/LSP.2021.3049683
https://doi.org/10.1016/j.neunet.2022.03.025
https://www.ncbi.nlm.nih.gov/pubmed/35405471
https://doi.org/10.1109/TASE.2020.3021456
https://doi.org/10.1016/j.bspc.2021.102621
https://doi.org/10.1109/TNSRE.2006.875642
https://www.ncbi.nlm.nih.gov/pubmed/16792282
https://bbci.de/competition/iii/#data_set_iiia
https://doi.org/10.1016/j.neuroimage.2007.01.051
https://www.ncbi.nlm.nih.gov/pubmed/17475513
https://www.bbci.de/competition/iv/
https://doi.org/10.1016/j.bspc.2017.06.016
https://doi.org/10.1080/21642583.2019.1708830
https://doi.org/10.1016/j.neunet.2018.02.011
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1109/5.939829

	Introduction 
	Related Works 
	Materials and Methods 
	Datasets 
	BCI Competition III Dataset IIIa (DS1) 
	Chinese Academy of Medical Sciences Autonomous Dataset (DS2) 
	BCI Competition IV Dataset 1 (DS3) 

	Method 
	Sparrow Search Algorithm-Based Time–Frequency Segment Optimization 
	Correlation-Based Channel Selection Algorithm 
	Feature Extraction Based on Regularized Common Spatial Pattern 
	Feature Classification Based on Support Vector Machine 


	Results 
	Data Preprocessing 
	Whole Framework 
	Experimental Results 
	Analysis of Variance for Results 

	Discussion 
	Optimal Time–Frequency Segment Distributions 
	Effect of SSA on Channel Selection 
	Effect of SSA on RCSP Feature Distribution 
	Effects of CCS and SSA on Improving Classification 
	Performance of SSA with Different Channel Numbers 

	Conclusions 
	References

