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Abstract: Wheat seed detection has important applications in calculating thousand-grain weight
and crop breeding. In order to solve the problems of seed accumulation, adhesion, and occlusion
that can lead to low counting accuracy, while ensuring fast detection speed with high accuracy,
a wheat seed counting method is proposed to provide technical support for the development of
the embedded platform of the seed counter. This study proposes a lightweight real-time wheat
seed detection model, YOLOv8-HD, based on YOLOVS. Firstly, we introduce the concept of shared
convolutional layers to improve the YOLOvS detection head, reducing the number of parameters
and achieving a lightweight design to improve runtime speed. Secondly, we incorporate the Vision
Transformer with a Deformable Attention mechanism into the C2f module of the backbone network
to enhance the network’s feature extraction capability and improve detection accuracy. The results
show that in the stacked scenes with impurities (severe seed adhesion), the YOLOv8-HD model
achieves an average detection accuracy (mAP) of 77.6%, which is 9.1% higher than YOLOvS. In all
scenes, the YOLOv8-HD model achieves an average detection accuracy (mAP) of 99.3%, which is
16.8% higher than YOLOv8. The memory size of the YOLOv8-HD model is 6.35 MB, approximately
4/5 of YOLOVS. The GFLOPs of YOLOv8-HD decrease by 16%. The inference time of YOLOv8-HD
is 2.86 ms (on GPU), which is lower than YOLOVS. Finally, we conducted numerous experiments
and the results showed that YOLOv8-HD outperforms other mainstream networks in terms of mAP,
speed, and model size. Therefore, our YOLOvS8-HD can efficiently detect wheat seeds in various
scenarios, providing technical support for the development of seed counting instruments.

Keywords: wheat seed detection; YOLOVS; lightweight; attention mechanism

1. Introduction

Wheat is one of the main crops in the world today, with about 40% of the population
relying on wheat as their main food source [1]. China is the largest producer and consumer
of wheat globally, and improving wheat yield and quality is of great significance for food
security [2,3]. Thousand-grain weight is an important indicator for evaluating wheat
quality and yield [4-7]. Thousand-grain weight is measured in grams and represents the
weight of 1000 grains [8,9]. However, accurate counting of wheat grains is necessary to
determine thousand-grain weight. Therefore, precise detection of wheat seeds is crucial.
Seed detection can also provide important support for wheat breeding, phenotype analysis,
sorting damaged and moldy grains, and other purposes. However, in complex agricultural
production environments, there are challenges such as overlapping and dense adhesion
of wheat seeds, which greatly affect counting accuracy. Achieving accurate detection of
wheat seeds under adhesion has become a hot topic in related research and is receiving
increasing attention.

In the early days, wheat seeds were mostly counted manually, which could not meet
the demand. The counting work was tedious and required patience. It could only be

Sensors 2024, 24, 1654. https:/ /doi.org/10.3390/s24051654

https:/ /www.mdpi.com/journal /sensors


https://doi.org/10.3390/s24051654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24051654
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24051654?type=check_update&version=1

Sensors 2024, 24, 1654

2 0f 23

accurately counted under extreme concentration. Prolonged work could easily tire the
human eyes, posing a great challenge. Additionally, it was difficult to identify the standards
for high-quality wheat seeds, resulting in high labor costs and large errors in this counting
method. Although seed counters were introduced to solve the problems of traditional
manual counting in field experiments, with higher accuracy and automation effectively
liberating a large amount of manpower, the issue of slow identification speed of seed
counters in large-scale field yield estimation experiments has also emerged. Therefore,
maintaining a high accuracy rate while simultaneously having faster detection speed for
counting and statistics has always been a topic of discussion among scholars.

In recent years, machine vision technology has been continuously developed and
improved, and it has been widely used in research on crop quality inspection, yield
estimation, and seed counting. Based on this, researchers have proposed seed counting
methods based on traditional digital image processing [10-13].

Zhao et al. [14] proposed a new method for improving the efficiency and accuracy
of seed counting using MATLAB image processing techniques and mechanical vibration
technology. It effectively addresses the issues of seed overlap and impurity through me-
chanical vibration and image erosion processing. Zhao et al. [15] developed an automated
method for counting corn kernels based on image processing. They proposed an image
preprocessing method according to the characteristics of corn cob images. This method
includes median filtering to eliminate random noise, Wallis filtering to sharpen image
edges, and histogram enhancement. The accuracy of kernel counting for corn cobs using
this method can reach 96.8%. Wu et al. [16] compared several methods using different
image acquisition devices and various shapes of panicles for counting accuracy in indica
and japonica subspecies of rice. The developed linear regression model achieved counting
accuracies of over 96% and 97% for japonica and indica rice seeds, respectively.

However, along with the advantages of traditional image processing techniques in
seed counting, there are also some disadvantages. Traditional image processing techniques
require manual extraction of seed features, which is difficult in practical applications. It is
heavily influenced by human factors and requires a significant amount of time and effort.
Additionally, the limitations of traditional image processing models restrict their operation
to specific environments and experimental conditions. For example, if there is a change in
the height of the captured seed image, the model may fail to recognize the seeds, making it
challenging to apply in real-world seed detection and yield estimation applications.

With the development of high-performance computer hardware, deep learning has
become a research hotspot. Deep learning algorithms for various processing tasks are
constantly improving and innovating and are being applied in various fields [17-20].
The integration and innovation of traditional agricultural production methods with deep
learning has become a general trend, and agricultural informatization and intelligentization
have been vigorously developed. Currently, deep learning is widely applied in fields
such as plant disease and insect pest control [21-23], plant counting [24-27], and plant
phenotyping [28-31].

Deng et al. [32] proposed the seed detection model for automatically identifying and
counting seeds on the main branch of rice panicles. This model uses an image analysis
approach based on deep learning convolutional neural networks (CNNs) and integrates
feature pyramid networks (FPNs) into the faster R-CNN network. The overall accuracy
of the grain detection model was 99.4%. Li et al. [33] utilized annotated information to
generate ground truth density maps using convolutional Gaussian kernels. They designed a
simple and effective method, using a dual-column convolutional neural network (TCNN) to
interpret pod images into seed density maps, ultimately achieving seed counting. The mean
absolute error (MAE) was 13.21, and the mean squared error (MSE) was 17.62. Devasena
et al. [34] proposed a new quality checking process through a machine vision system with
deep learning. The seeds are passed through cameras, and image process techniques
with deep learning algorithms are utilized to match the quality, which is trained into the
system to identify and classify the seeds. Shi et al. [35] utilized an improved lightweight
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object detection method, YOLOv5s-T, to detect and count wheat spikes. The coefficient
of determination (R?) between the predicted and true values of wheat spikelets was 0.97
for the flowering stage, 0.85 for the grain filling stage, and 0.78 for the mature stage. Feng
et al. [36] used two deep learning-based counting algorithms for rice: an MCNN-based
algorithm and a density map-based counting algorithms. Additionally, they introduced
an improved algorithm with advanced priors based on the original algorithm. After the
experiments, it was proven that both algorithms can count rice well. Sun et al. [37] proposed
a deep learning optimization method based on pre-labeling contour grouping for counting
overlapping rice seeds. The average error rate for rice seeds in a single image was 1.06%,
and the average recognition time of counting was 0.45s.

The above studies mainly focus on the occlusion problem between the target and
complex background. When multiple targets are occluded and the degree of occlusion
is high, only very small local features are visible. The algorithms used in these studies
cannot accurately identify the target from the remaining unoccluded local features alone.
As a result, occluded targets may be mistakenly recognized as the same targets as other
adjoining targets, leading to missed detections. In addition, most of the seed detection
methods based on deep learning currently have high detection accuracy but also high
computational complexity, resulting in slow detection speed. On the other hand, methods
with low computational complexity and fast detection speeds often sacrifice detection
accuracy. This is because the computational resources on the embedded platform of the
seed counter are limited. The slow detection speed of complex models cannot meet real-
time requirements, which poses challenges in deployment. Therefore, finding a balance
between detection speed, detection accuracy, and model computational complexity in seed
detection methods has always been a hot and challenging research topic.

We evaluated the recent popular deep learning network, YOLOVS, as the latest detec-
tion algorithm in the YOLO family. It has the characteristics of high detection efficiency,
high accuracy, and small model memory occupation. Therefore, based on YOLOVS as
a benchmark, we proposed a lightweight real-time wheat seed detection model called
YOLOV8-HD, focusing on detecting wheat seeds in different scenarios. Our contributions
are summarized as follows:

o  We created a well-labeled dataset of wheat seeds. The dataset includes five different
scenarios: dispersed without impurities, dispersed with impurities, aggregated with-
out impurities, aggregated with impurities, and stacked, covering the placement of
wheat seeds in various situations, which helps in counting the number of wheat seeds
in different scenarios.

e Based on YOLOVS, we designed a lightweight detection method using the idea of
shared parameters. To improve detection accuracy, we incorporated the Vision Trans-
former with Deformable Attention mechanism into the C2f module. Finally, we
proposed a lightweight real-time YOLOv8-HD model for wheat seed detection and
performed statistical counting of the detected wheat seeds.

e  We conducted extensive experiments on wheat seed detection tasks, and the results
showed that our proposed YOLOvS8-HD model, compared to other detection algo-
rithms, not only improved detection accuracy but also further reduced model size
and improved inference speed, providing technical support for real-time counting of
wheat seeds on embedded platforms.

2. Materials and Methods
2.1. Dataset Processing
2.1.1. Dataset

The wheat seed used in this study is Changmai 6197. This seed has a compact
plant type, good stem elasticity, and is resistant to drought, lodging, freezing, premature
senescence, and has high and stable yields. It is a new variety of drought-resistant and
high-yielding wheat, suitable for dryland cultivation in the central part of Shanxi Province,
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China. The wheat seed image data in this study were taken using a Vivo Z3i smartphone,
and the wheat seeds were randomly placed in each batch.

Traditional wheat seed segmentation algorithms mainly focus on segmenting 2-20 ad-
hered seeds, and the segmentation effect is not satisfactory for more adhered seeds. There-
fore, based on previous research results [38—41], this study defines the local region con-
taining 2-20 adhered seeds as mild adhesion and the local region containing more than
20 adhered seeds as severe adhesion. To enable the model to learn more features of adhered
wheat seeds, as many wheat seed images as possible should be input for training, and the
images should include both mild and severe adhesion of wheat seeds. Therefore, in the
experiment, a certain number of wheat seeds were randomly scattered on the platform, and
slight shaking was performed to make the wheat seeds distribute randomly, preventing the
occurrence of single adhesion situation images due to human intention.

Finally, this study set up five scenarios: dispersed without impurities, dispersed with
impurities, aggregated without impurities, aggregated with impurities, and stacked. Data
were collected with 100 images for each scenario, totaling 500 images. The specific divisions
of the five scenarios are presented in Table 1:

Table 1. 5 Scene divisions.

Scene

Description Adhesion Condition

Dispersed without impurities

Each image contains scattered wheat seeds, with
no adhesion condition
Each image contains scattered wheat seeds, with

No adhesion

Dispersed with impurities no adhesion condition, and there are impurities No adhesion

Aggregated without impurities
Aggregated with impurities

Stacked with impurities

such as wheat straw and husk
Each image contains wheat seeds with mild
adhesion phenomenon, and there are no impurities
Each image contains wheat seeds with mild
adhesion phenomenon, and there are impurities
Each image contains wheat seeds with severe
adhesion phenomenon

Mild adhesion

Mild adhesion

Severe adhesion

Example images collected under different scenarios are shown in Figure 1.

Figure 1. Cont.
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Figure 1. Wheat seed collection example images: (a) scattered without impurities; (b) scattered
with impurities; (c) clustered without impurities; (d) clustered with impurities; (e) stacked without
impurities; (f) stacked with impurities.

2.1.2. Dataset Labeling

Using Labellmg software, different wheat seeds, husks, and straws in the images were
labeled. The labeling format is in .txt documents, with the wheat seed labeled as “w”, the
husk labeled as “k”, and the straw labeled as “g”. Due to the lower presence of husks and
straws as impurities in the wheat seeds, there are fewer labeled instances of husks and
straws in the collected images. Therefore, there is a severe data imbalance, with a higher
number of labeled instances for wheat seeds. This situation requires higher demands for
wheat seed detection algorithms.

The numbers of different categories labeled in the dataset are shown in Table 2.

Table 2. The number of annotations for different categories in the dataset.

Scene Category Total Annotations
Scattered without impurities Wheat seeds 2065
Wheat seeds 2261
Scattered with impurities Straw 114
Husk 360
Clustered without impurities Wheat seeds 2296
Wheat seeds 2860
Clustered with impurities Straw 86
Husk 147
Wheat seeds 1949
Stacked with impurities Straw 33
Husk 72

2.1.3. Dataset Augmentation

In order to improve training model performance and enhance model generalization,
data augmentation techniques are used to increase the number of samples and prevent
overfitting caused by insufficient training data. In this study, random pixel removal, image
sharpening, affine transformation, brightness adjustment, hue adjustment, and horizontal
flipping are randomly combined as data augmentation methods to expand the dataset.
Five new augmented images are generated for each original image. Some examples of data
augmentation samples are shown in Figure 2.

A total of 3000 sample images were obtained through data augmentation, and they
were randomly divided into a training set, a validation set, and a test set in a ratio of 7:2:1.
The specific division of the training set, validation set, and test set for the five scenes is
shown in Table 3.
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Figure 2. Wheat seed data augmented images: (a) original image; (b) augmented image 1; (c) aug-
mented image 2; (d) augmented image 3; (e) augmented image 4; (f) augmented image 5.

Table 3. Dataset partitioning details.

Scene Training Set  Validation Set Test Set Total
Scattered without impurities 420 120 60 600
Scattered with impurities 420 120 60 600
Clustered without impurities 420 120 60 600
Clustered with impurities 420 120 60 600
Stacked with impurities 420 120 60 600
Total 2100 600 300

After dataset partitioning, the annotation counts of different categories in the five
scenes are shown in Table 4.

Table 4. The number of annotations for different categories after partitioning the dataset.

Scene Category Training Set Validation Set Test Set Total
Scattered without impurities Wheat seeds 8541 2402 1233 12,176
Wheat seeds 9345 2620 1313 13,278
Scattered with impurities Straw 477 142 61 680
Husk 1062 290 161 1513
Clustered without impurities Wheat seeds 9473 2642 1382 13,497
Wheat seeds 11,834 3374 1641 16,849
Clustered with impurities Straw 359 113 43 515
Husk 603 187 81 871
Wheat seeds 9275 1680 738 11,693
Stacked with impurities Straw 120 36 42 198

Husk 222 108 102 432
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2.2. Improved YOLOv8-HD Network

Wheat seed counting is prone to interference from impurities such as wheat straw and
husks, especially when some husks are similar to wheat seeds and are easily mistaken for
seeds. Additionally, wheat seeds are susceptible to adhesion and stacking, making accurate
detection of wheat seeds challenging. Existing deep learning-based convolutional neural
network models achieve high detection accuracy but come with high computational com-
plexity and slow detection speed. To balance detection speed, accuracy, and computational
complexity, as well as effectively address the issue of impurities and seed stacking affecting
detection performance, this study improves the YOLOv8 model.

Firstly, to achieve high detection accuracy and speed with minimal model parameters,
the detection head of YOLOVS is designed to be lightweight, sharing the convolutional layer.
To enhance wheat seed detection performance under the presence of impurities and seed
stacking, a Vision Transformer with Deformable Attention mechanism is integrated into the
C2f module of the backbone network to improve network feature extraction capabilities. We
named the improved YOLOv8 model YOLOvS8-HD. The lightweight wheat seed detection
model structure of YOLOv8-HD is shown in Figure 3.
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Figure 3. Improved YOLOVS lightweight network model.
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2.2.1. Lightweight Design of Detection Head

The head of YOLOvVS adopts the currently mainstream Decoupled-Head structure,
separating the classification and detection heads. The head of YOLOVS first branches into
two 3 x 3 convolutional modules, then each goes through a Conv2d module, and finally
calculates the Cls loss and Bbox loss separately. The design of the YOLOvVS8 detection head
is shown in Figure 4.

Conv H Conv | —» Conv2d _,,,.CIDU+DFL
S um }_" Conv. —» Conv2d -—:-. BCE

Figure 4. YOLOVS head.

L

h 4

Due to the small size of wheat seeds as the target, in order to improve detection speed
and reduce the parameter quantity of YOLOvS, we made lightweight design modifications
to the detection head of YOLOVS. It is modified to first share a 1 x 1 convolutional layer
and a 3 x 3 convolutional layer. Then, each goes through a Conv2d module, and finally
calculates the Cls loss and Bbox loss separately. The modified detection head structure is

shown in Figure 5.
Conv2d - CloU+DFL
—b{ Conv H Conv <

Figure 5. Lightweight YOLOVS detection head.

2.2.2. Vision Transformer with Deformable Attention

The Vision Transformer with Deformable Attention (DAT) is a simple yet effective
deformable self-attention module proposed by Zhuofan Xia et al. in 2022 [42]. This
module selects the positions of key-value pairs in self-attention in a data-dependent manner.
This flexible approach allows the self-attention module to focus on relevant regions and
capture more information. A powerful Pyramid Backbone, called the Deformable Attention
Transformer (DAT), is constructed on this module for image classification and various dense
prediction tasks. Therefore, in this study, DAT is integrated into the YOLOvV8 backbone
network C2f to better extract wheat seed features.

Compared to CNN models, Transformer-based models have a larger receptive field
and are adept at modeling long-term dependencies. They have achieved excellent per-
formance with a large amount of training data and model parameters. However, they
come with higher computational costs, slower convergence speed, and increased risk
of overfitting. In order to reduce computational complexity, Swin Transformer adopts
window-based local attention to restrict attention within a local window, while Pyramid
Vision Transformer (PVT) saves computational resources by down-sampling key and value
feature maps. However, manually designed attention mechanisms are data-agnostic. For a
given query, we expect its key/value set to be flexible and adjustable according to different
inputs. The success of Deformable Convolution Networks (DCNs) has prompted the ex-
ploration of deformable attention patterns in Vision Transformers. However, due to high
computational costs, no one has considered it as a basic component for building a powerful
backbone. DAT is a simple and efficient deformable self-attention module that can capture
more informative features.

The comparison between DAT and other visual transformer models is shown in
Figure 6:
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In ViT, all Q have the same receptive field, targeting global features for all positions.
In Swin, there is local attention, so the receptive field regions for two Q in different
windows are different.

e  DCN learns biases for the surrounding nine positions and then samples and corrects
the feature positions. As shown in the figure, there are a total of nine red and blue
points.

e  DAT combines ViT and DCN. All Q share the same receptive field, but these receptive
fields have learned positional biases. To reduce computational complexity, the number
of targeted features is also down-sampled. Therefore, there are a total of 16 sampling
points in the figure, which is 1/4 smaller than the original.

¢ & Query @ @ ® Deformed point

(b)

(c) (d)

Figure 6. Comparison between DAT and other Vision Transformer models: (a) VIT; (b) Swin
Transformer; (c¢) DCN; (d) DAT.

The information flow of the deformable attention mechanism in DAT is shown in
Figure 7. A set of reference points is uniformly placed on the feature map, and its offsets are
learned from the queries through an offset network. Then, the deformed keys and values
are projected from the sampled features based on the deformation points.

The C2f structure is shown in Figure 8. In Figure 8, we can see that the C2f module
first goes through Conv, enters the Split module, goes through multiple DarknetBottleneck
modules, then enters the Concat module, and finally goes through the Conv module for
output. The DarknetBottleneck module has two forms, as detailed in Figure 8.
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Figure 7. Information flow of the deformable attention mechanism in DAT.
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Figure 8. C2f model.

To enhance the feature extraction capability of the C2f module, we integrated the DAT
attention mechanism after the two convolutional layers in the DarknetBottleneck module.
Then, we replaced the C2f module in the 8th layer of the original YOLOvS8 with the C2f
module incorporating the DAT mechanism. The YOLOvV8 backbone network parameters
after the improvement are shown in the Table 5.

Table 5. The backbone network parameters of YOLOVS8-HD.

Layer Input Operation Parameters Output

0 640 x 640 x 3 Conv [16, 3, 2] 320 x 320 x 16
1 320 x 320 x 16 Conv [32,3,2] 160 x 160 x 32
2 160 x 160 x 32 C2f [32, True] 160 x 160 x 32
3 80 x 80 x 32 Conv [64, 3, 2] 80 x 80 x 64

4 80 x 80 x 32 C2f [64, True] 80 x 80 x 64

5 80 x 80 x 64 Conv [128, 3, 2] 40 x 40 x 128
6 40 x 40 x 128 C2f [128, True] 40 x 40 x 128
7 40 x 40 x 128 Conv [256, 3, 2] 20 x 20 x 256
8 20 x 20 x 256 C2f_DAttention [256, [20, 20], True] 20 x 20 x 256
9 20 x 20 x 256 SPPF [256, 3, 2] 20 x 20 x 256
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From Table 5, it can be seen that the channel parameter of the 8th layer is 256, with
an image size of 20 x 20. Upon entering the C2f module, it goes through a Split channel
to become 128 channels. When entering the Bottleneck module, it undergoes two Conv
operations, then enters the DAT network, where both the output channels and image size
remain unchanged. It then goes through the Concat module, and finally through a Conv
module, with an output parameter of 20 x 20 x 256. The parameters of the DAT network
are set, as shown in Figure 9.

W e H=Wx
HxWxC HWxC H*WxC it
b= (=]
E s = 5 S s % 5 @
b= S = S = =] S o
B 1= §= g‘_ = gr: - t =c e = == "
HxWxC| & 1 ] c2 X 3 p-] an ] ® 2 a8l e B2 H=W=C
— E Pl E A s E P R TIsS TN E IR s 2 EE
w y = = = w Yy = = = ! = = = [ =
5= 3 E= §= S £= o g g= i = a=
® 5 o = = 0 & b ® =
o o a o
xN4 xN2 N3 N4

Figure 9. DAT network parameters.

2.3. Evaluation Metrics

The process of wheat seed detection requires consideration of both detection accuracy
and speed. Therefore, this study adopts precision, recall, Average Precision (AP), and
mean Average Precision (mAP) metrics to characterize the performance of the models.
Additionally, the models” running speed is evaluated using metrics such as GFLOPs (Giga
Floating-point Operations Per second).

Precision is the proportion of cases that are classified as positive and are actually
positive in the entire sample. Accuracy is calculated using Formula (1):

TP

TP + FP 1

Precision =
Recall represents the proportion of actual positive cases to the predicted positive cases.
Recall is calculated using Formula (2):

TP

TP +FN @

Recall =
where:
TP represents the number of correct predictions as positive samples.
FP represents the number of incorrect predictions as positive samples.
FN represents the number of incorrect predictions as negative samples.
AP (Average Precision) represents the area under the precision—recall curve enclosed
by the curve and the coordinate axis. It is calculated using Formula (3):

-1
AP = / (Precision x Recall)dx 3)
J0

mAP (mean Average Precision) represents the average AP value for three categories
in this study, namely wheat seeds, wheat stems, and wheat husks. It is calculated using
Formula (4):
i=3
mAP = ) " AP;/3 4)

The mAP0.5:0.95 is the average mAP (mean Average Precision) calculated based on
ten different IoU (Intersection over Union) thresholds. These thresholds range from 0.5 to
0.95, with a step size of 0.05.

To further evaluate the algorithm’s performance and analyze the network’s feature
extraction capabilities in more detail, TIDE, a framework and related toolbox for analyzing
error sources in object detection and instance segmentation algorithms, is used.
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TIDE defines six error types:

Classification error (Cls): Correct localization but incorrect classification.

Localization error (Loc): Correct classification but incorrect localization.

Both classification and localization errors (Both): Both classification and localization
are incorrect.

Duplicate detection error (Dupe): Correct classification, but another detection with
a higher score has matched the target. In other words, it is correct if there is no detection
with a higher score.

Background error (Bkg): Background detected as foreground.

Miss undetected error (Miss): All ground truths that were not detected except for Cls
and Loc errors.

2.4. Experiment and Model Training

The operating system used for the experiment is Windows 10. The CPU model is
Intel(R) Core(TM) i7-13700F @2.10GHz. The GPU model is NVIDIA GeForce RTX 4080.
The system has 32GB of RAM and a 1TB mechanical hard drive. The programming
language used is Python 3.9. The deep learning framework used is PyTorch 2.0.1. The GPU
acceleration libraries used are CUDA 11.8 and CUDNN 8.8.0.

The learning rate of the network training is set to 0.0001, the batch size is set to 16, and
the number of iterations is set to 200. Transfer learning can shorten the model training time.
Therefore, we use the pre-trained weight file obtained from training the YOLOv8 model on
the COCO2017 dataset as the initial weight file for training the wheat seed dataset. This
helps accelerate network convergence and improve training performance.

3. Results
3.1. Performance of YOLOv8-HD

We conducted experiments on the wheat seed dataset using the YOLOVS object detec-
tion algorithm, and the results are shown in Table 6. It can be observed that the detection
performance is good in four scenarios: scattered without impurities, scattered with im-
purities, clustered without impurities, and clustered with impurities. However, YOLOvV8
performs poorly in detecting stacked impurities, with a mAP of 68.5%. Therefore, this
study focuses on proposing the YOLOv8-HD algorithm to improve the detection accuracy
in scenarios with stacked impurities.

Table 6. Detection results of YOLOvS in different scenarios.

Scene Category P/% R/% mAPy5/% mAPgs5.0.95/%

Scattered without impurities =~ Wheat seeds 99.9 0.988 99.5 83
Wheat seeds 99.8 0.984 99.5 82.8
L. ... Straw 1 0.971 99.4 82.5
Scattered with impurities Husk 96.4 0.955 9%.6 830
Mean 98.7 0.97 98.5 82.8
Clustered without impurities =~ Wheat seeds 99.7 0.995 99.4 91.7
Wheat seeds 99.7 0.988 99.5 90.3
Sy .. Straw 98.4 1 99.5 90.3
Clustered with impurities Husk 98.9 98.6 99.4 887
Mean 99 99.1 99.5 89.8
Wheat seeds 92.7 98.8 98.5 74.8
1 - Straw 66.3 63.9 62.1 394
Stacked with impurities Husk 73 36.0 45 246
Mean 77.1 66.3 68.5 46.3

We compared the performance of the proposed YOLOv8-HD with YOLOVS in cluttered
scenes. The loss curves of the training and validation sets are compared in Figure 10.
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Figure 10. Training loss (above) and validation loss (below) curves of YOLOv8-HD and YOLOVS
models.

We can see that both YOLOv8-HD and YOLOvVS8 have decreasing loss curves within
200 epochs until they stabilize. Additionally, YOLOv8-HD has a faster convergence on
the training set, and the dfl_loss curve converges faster on the validation set compared
to YOLOVS. This indicates that YOLOv8-HD is able to extract features more effectively,
accelerating the convergence speed of the model.

We compared the precision, recall, mAP 5, and mAP 5.0 .95 of the proposed YOLOVS-
HD and YOLOVS in cluttered scenes over 200 runs and plotted the curves, as shown in
Figure 11. From Figure 11, we can see that the proposed YOLOv8-HD outperforms the
original YOLOVS algorithm in terms of precision, recall, mAP( 5, and mAP 5.0.95.

The specific detection results of wheat seeds using the YOLOvS-HD algorithm in
stacked impurity scenes are shown in Table 7. From Table 7, it can be observed that the
YOLOVS-HD algorithm proposed in this study achieves an average precision of mAPy 5 is
77.6% in stacked impurity scenes, which is a 9.1% improvement compared to YOLOVS. The
mAP for wheat seeds, straw, and husk also improves, with improvements of 0.6%, 14.3%,
and 12.3% respectively. The average precision of mAP s5.0.95 is 58.2%, which is an 11.9%
improvement compared to YOLOVS. The mAP 5,095 for wheat seeds, straw, and husk also
improves, with improvements of 2.8%, 19.8%, and 13.3% respectively.

The comparison of YOLOv8-HD and YOLOVS detection results in cluttered scenes is
shown in Table 8. Table 8 demonstrates that our proposed YOLOv8-HD not only improves
the detection accuracy but also shows improvements in speed and model size. Specifically,
the YOLOv8-HD model achieves precision, recall, mAP, and mAP 5,995 of 84.5%, 70.8%,
77.6%, and 58.2% respectively, which are 7.4%, 4.5%, 9.1%, and 11.9% higher than YOLOVS.
Additionally, the memory size of the YOLOvS8-HD model is 6.35 MB, which is approxi-
mately 4/5 of YOLOv8. The GFLOPs of YOLOv8-HD decrease by 16%. The inference
time of YOLOvV8-HD is 2.86 ms (on GPU), which is lower than YOLOvS8. These results
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indicate that our improvements on YOLOVS significantly enhance the baseline accuracy
and performance of wheat seed detection in cluttered scenes.
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Figure 11. Performance curves of YOLOv8-HD and YOLOvS models.

Table 7. YOLOv8-HD detection results.

Model Scene P/% R/% mAP0,5/% mAP0'5:0.95/°/0
Stacked Wheat seeds 91.7 99 99.1 77.6
. Straw 96 66.3 76.4 59.2
YOLOv8-HD imvﬁffﬁes Husk 659 472 57.3 37.9
p Mean 84.5 70.8 77.6 58.2

Table 8. Comparison of YOLOvS-HD vs. YOLOVS in the stacked with impurities scenario.

o o o o Model Inference

Model P/% R/% mAP0.5/ Yo mAP0.5:0_95/ %o Size/MB GFLOPs Time/ms
YOLOv8-HD 845 708 77.6 58.2 6.35 6.8 2.86
YOLOvVS8 771 663 68.5 46.3 7.67 8.1 3.47

To better visualize the network’s feature extraction capability, we plotted the heatmaps
of YOLOv8-HD and the original YOLOvVS8 algorithm for wheat grain detection, as shown
in Figure 12. The red boxes in Figure 12a indicates a part where feature extraction is not
prominent. From the image, it can be observed that the original YOLOv8 network exhibits
weak feature extraction capabilities in cases of severe grain adhesion, making it prone to
missed detections.
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(b)

Figure 12. Comparison between YOLOv8-HD and YOLOVS8 heatmaps: (a) YOLOvS8 heatmaps, where
the red boxes indicate regions with less prominent feature extraction.; (b) YOLOv8-HD heatmaps.

We used TIDE to calculate the false positive and false negative rates of YOLOvV8 and
YOLOv8-HD models in wheat grain detection and plotted a bar graph for comparison, as
shown in Figure 13. In Figure 13, FP represents False Positive, and FN represents False
Negative. It can be seen that YOLOvS8-HD significantly reduced the false positive rate but
showed a slight increase in the false negative rate, indicating a major improvement in the
false alarm rate with YOLOv8-HD but not a significant effect on the missed detection rate.
However, in wheat grain statistics, false alarms have a greater impact, as they may result in
impurities being counted as wheat grains.

Y
N

YOLOv8-HD

Mode |

Figure 13. Comparison of FP/FN for YOLOvS-HD and YOLOVS.

To further validate the YOLOvS8-HD algorithm proposed in this paper for wheat seed
detection in practical operations, we conducted experiments by mixing wheat seeds in
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five different scenarios: scattered without impurities, scattered with impurities, clustered
without impurities, clustered with impurities, and stacked with impurities. The experimen-
tal results are shown in Table 9. The YOLOv8-HD model achieved precision, recall, mAP,
and mAPq 5,095 of 99.1%, 98.5%, 99.3%, and 89.2%, respectively, surpassing YOLOVS by
17.2%, 14.8%, 16.8%, and 49%. This once again proves the effectiveness of the proposed
YOLOvV8-HD in improving wheat seed detection performance in various scenarios.

Table 9. Comparison of YOLOv8-HD vs. YOLOVS in all scenarios.

Model Scene P/% R/% mAP0_5/% mAP0'5:0.95/°/0
Wheat seeds 99.8 99.1 994 89.7
5 types of Straw 99.5 98.6 99.5 90
YOLOv&HD = 0 s Husk 98 979 98.9 87.8
Mean 991 985 99.3 89.2
Wheat seeds 98.9 91.9 97.8 45.7
5 types of Straw 809 774 73.4 38.4
YOLOv8 scenes Husk 658 819 76.5 36.6
Mean 819 837 825 402

The visual detection results of the proposed YOLOv8-HD algorithm in dispersed clean,
dispersed cluttered, clustered clean, clustered cluttered, and clustered clean with cluttered
scenes are shown in Figure 14. It can be observed that the YOLOv8-HD algorithm can
accurately detect wheat seeds in different scenes, and even in heavily imbalanced datasets
of wheat husks and wheat straws, it can still effectively detect impurities such as husks
and straws.

Figure 14. Visualization of YOLOv8-HD detection results: (a) dispersed clean; (b) dispersed cluttered;
(c) clustered clean; (d) clustered cluttered; (e) clustered clean with cluttered; (f) clustered cluttered.
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3.2. Ablation Experiments

We introduced a lightweight design for the detection head and the Vision Transformer
with a Deformable Attention mechanism into the YOLOvS8 network. To further validate the
performance of the improved YOLOv8 model, this study sets up a series of ablation experi-
ments to verify the performance of four different network configurations. The performance
is shown in Table 10. In Table 10, D represents the Vision Transformer with Deformable
Attention module, H represents the lightweight detection head module, YOLOv8-D repre-
sents the integration of the Vision Transformer with the Deformable Attention mechanism
into YOLOv8 C2f, YOLOVS-H represents the network with a lightweight design detection
head, and YOLOv8-HD represents the network formed by introducing both improvements
into the YOLOvS8 model. From a quantitative perspective, the performance of the four
network configurations is analyzed, and objective evaluations are conducted on the test set
of wheat seed images. Evaluation metrics include model detection accuracy and model
parameters. It can be observed from Table 9 that the improved model achieves higher
average precision compared to the other three models, and the model parameters are
reduced compared to YOLOvVS.

Table 10. Performance of the improved network.

AP/%
Model mAP5/% Parameters
Wheat Seeds Straw Husk
YOLOvVS8-D 98.8 63.9 62 74.9 3,902,297
YOLOvS8-H 99 64.9 52.8 72.2 3,074,009
YOLOvVS8 98.5 62.1 45 68.5 3,834,521
YOLOvS8-HD 99.1 76.4 57.3 77.6 3,214,169

To further compare the performance of YOLOvV8-D, YOLOv8-H, YOLOVS, and
YOLOvV8-HD networks, we used TIDE to compard the original YOLOVS algorithm with the
improved YOLOvVS-D, YOLOv8-H, and YOLOv8-HD. The results are shown in Table 11.
From Table 11, through lightweight design, YOLOv8-H shows a decrease in errors in Cls,
Both, Dupe, Bkg, and Miss aspects but an increase in error in the Loc aspect. After adding
the DAT module to YOLOvV8-H, we observed a decrease in errors in Cls, Loc, Both, Bkg,
and Miss. When the DAT module is added separately to YOLOVS, errors in Cls, Both,
Dupe, and Bkg decrease. This analysis indicates that YOLOv8-H’s localization ability in
wheat target detection is weakened, while YOLOVS-D'’s classification ability in wheat target
detection is enhanced, with a slight decrease in localization ability. By combining these
two improvement methods, YOLOv8-HD shows enhanced classification and localization
capabilities in wheat target detection.

Table 11. TIDE of the improved network.

Model Cls Loc Both Dupe Bkg Miss
YOLOVS 12.50 4.62 0.28 0.64 0.28 0.86
YOLOvS-D 9.22 472 0.11 0.05 0.25 212
YOLOvVS8-H 11.02 6.3 0.05 0.17 0.01 0.77
YOLOvS8-HD 9.15 4.35 0.04 0.27 0.00 0.12

3.3. Performance Comparison of Different Models

To quantitatively compare the performance of the improved model in the stacked
wheat seed scene, the improved model was evaluated on wheat seed images in the test set,
along with Faster R-CNN [43], YOLOv5, YOLOv?7 [44], and the original YOLOv8 models.
Table 12 presents the performance results of different detection models in the test set. From
Table 12, it can be seen that compared to other models, the improved YOLOvS8 wheat
seed detection model performs the best in terms of mAP 5 for wheat seeds, wheat stems,
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and wheat husks, with a value of 77.6%. This is an improvement of 11.8, 15.3, 13.1, and
9.1 percentage points compared to Faster R-CNN, YOLOv5, YOLOv?, and the original
YOLOvVS8 models, respectively. The improved model in this study also achieved the best
performance in terms of model memory consumption compared to the original YOLOvVS
model, as it has undergone lightweight improvements.

Table 12. Comparison of different algorithms in stacked cluttered scenes.

0,
Model AP/% mAP5/% MOdel
Wheat Seeds Straw Husk Size/MB

Faster r-cnn 98.5 48.6 50.3 65.8 108
Yolov5 98.9 56.8 31.2 62.3 14.4
Yolov7 98.9 45.1 49.6 64.5 74.8
YOLOvVS 98.5 62.1 45 68.5 7.67
YOLOvV8-HD 99.1 76.4 53.7 77.6 6.35

To further quantitatively compare the detection performance of the improved model
in all scenes for wheat seed detection, performance evaluations were conducted on wheat
seed images using the improved model, Faster R-CNN, YOLOv5, YOLOvV?7, and the original
YOLOv8 model. Table 13 presents the performance results of different detection models on
the test set. From Table 13, it can be observed that compared to other models, the improved
YOLOvVS wheat seed detection model achieves the highest mAP 5 for wheat seeds, wheat
stems, and wheat husks, which is 99.3%. This represents an improvement of 26.8, 18.7,
26, and 16.8 percentage points over Faster R-CNN, YOLOv5s, YOLOv7, and the original
YOLOvVS8 model, respectively. The improved YOLOvS wheat seed detection model also
performs the best in terms of mAP 5,995 and GFLOPs, providing strong evidence that the
proposed YOLOv8-HD model has excellent performance for wheat seed detection.

Table 13. Comparison of different algorithms in all scenarios.

Model API% mAPO,sl% mAPo,5:0_95/% GFLOPs
Wheat Seeds  Straw Husk
Faster r-cnn 97.5 52.6 67.5 72.5 35.8 15.5
Yolov5 97.6 70 74.3 80.6 40.4 15.8
Yolov7 98.6 66.5 54.6 73.3 39.3 103.2
YOLOVS 97.8 73.4 76.5 82.5 40.2 8.1
YOLOv8-HD 99.4 99.5 98.9 99.3 89.2 6.8

3.4. Wheat Seed Counting

Utilizing the YOLOv8-HD model, wheat seed counting in different scenarios was
conducted, and the statistical results are shown in Figure 15. From Figure 15, it can be
observed that the YOLOv8-HD model is capable of effectively detecting wheat seeds in
dispersed, clustered, and stacked situations, accurately counting the number of wheat
seeds within them.
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Figure 15. Wheat seed counting results: (a) wheat seed counting results in dispersed scenario;
(b) wheat seed counting results in clustered scenario; (c) wheat seed counting results in stacked
scenario.

4. Discussion

(1) When detecting wheat seeds, we compared the YOLO family algorithms, including
YOLOV5, YOLOv?, and YOLOv8. We found that the YOLOvVS algorithm achieved the high-
est mAP (mean Average Precision) value of 82.5% in wheat seed detection. Additionally, it
had the smallest model size and fastest running speed. Therefore, we selected YOLOVS as
the base algorithm for wheat seed detection.

(2) When using the YOLOVS object detection algorithm to detect wheat seeds, we found
that in stacked scenes, the wheat seeds are heavily occluded, resulting in poor detection
performance. Therefore, we considered improving the YOLOvV8 network structure to
enhance the detection capability of wheat grains.

The Deformable Attention Transformer (DAT) is a general backbone network model
with deformable attention. Its self-attention module can focus on relevant regions and
capture more informative features, effectively improving the model’s sensitivity to small
and dense targets, thus enhancing its detection capability. MS-Block, proposed in YOLO-
MS [45], is a module for multi-scale feature fusion, which can effectively integrate features
from different scales, enhance the detection capability for targets, and reduce the influence
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of background interference on recognition results. RFA [46] not only focuses on spatial
features in the receptive field but also provides effective attention weights for large-size
convolutional kernels, transferring attention from spatial features to receptive field spatial
features. In this way, network performance can be further improved, leading to better results.

We added the above-mentioned DAT, MS-Block, and RFA to the C2f network of the
YOLOvV8 backbone network and compared their performance in wheat grain detection. The
mAP values for wheat grain detection were 74.9%, 69.4%, and 52.1% for DAT, MS-Block,
and RFA, respectively. It can be seen that DAT performs the best in wheat grain detection.
Therefore, we adopted this method to improve YOLOvS8 and enhance its detection capability
for wheat grains.

Additionally, we incorporated the Swin Transformer, vanilla Transformer, and DAT
attention mechanism into the base YOLOv8 model and tested them on the wheat grain
dataset. The experimental results are shown in Table 14. From Table 14, it can be seen that
the DAT attention mechanism achieves higher detection accuracy for impurities such as
wheat straw and husks, indicating that the DAT attention mechanism has better handling
capabilities for imbalanced datasets.

Table 14. Comparison of different attention mechanisms.

AP/%
Attention Mechanism mAP0.5/%
Wheat Seeds Straw Husk
vanilla Transformer 98.8 40 29 55.9
Swin Transformer 98.3 35.6 37.8 57.2
DAT 98.8 63.9 62 74.9

(3) In practical applications, wheat seed counters are designed to be small and portable,
requiring the wheat seed detection model to have low memory usage and fast detection
speed. Therefore, we considered a lightweight design for the YOLOvVS8 base model. We
shared the convolutional parameters of the YOLOvVS detection head to reduce the pa-
rameter count and thus lighten the YOLOvVS8 detection head. As shown in Figure 5, we
designed a shared 1 x 1 convolutional layer and a shared 3 x 3 convolutional layer for the
YOLOVS8 detection head. However, in our experiments, we considered multiple approaches:
(a) sharing two 3 x 3 convolutional layers; (b) sharing two 3 x 3 grouped convolutions;
(c) sharing one 1 x 1 convolutional layer and one 3 x 3 convolutional layer. The results of
the three lightweight detection head methods are shown in Table 15. From Table 15, it can
be inferred that considering a balance between detection accuracy and model size, scheme
(c) achieves a relatively high mAP value while reducing the number of parameters in wheat
seed detection. Therefore, scheme (c), which shares one 1 x 1 convolutional layer and one
3 x 3 convolutional layer, is adopted for the lightweight design of the YOLOvV8 detection
head.

Table 15. Different schemes for lightweight detection head.

AP/%
Schemes mAP,5/% GFLOPs Parameters
Wheat Seeds Straw Husk
(a) 99 65.2 53.4 72.5 8.1 3,151,721
(b) 98.5 63.6 40.1 67.4 5.7 2,420,585
(c) 99 64.9 52.8 72.2 6.8 3,074,009

We attempted other lightweight design approaches for YOLOvVS by replacing the
YOLOVS backbone network with Fasternet, named YOLOv8-Fasternet. Experiments were
conducted on this dataset, and the results are shown in Table 16. From the experimental
results, it can be observed that although YOLOv8-Fasternet reduces model size, it is
inferior to the proposed YOLOv8-HD in terms of detection accuracy and GFLOPs, further
demonstrating the effectiveness of our algorithm.
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Table 16. Comparison of different lightweight methods.
Model P/% R/% mAP5/% mAPg5.095/% Model Size/MB GFLOPs Parameters
YOLOvVS-HD 84.5 70.8 77.6 58.2 6.35 6.8 3,214,169
YOLOvVS-Fasternet 54 63.1 55.9 31.3 6.21 10.7 4,175,869

(4) To further validate the performance of our algorithm after lightweighting, we
compared our algorithm with the lightweight model YOLOv7-tiny. The experimental
results are shown in Table 17. From Table 17, it can be seen that YOLOv8-HD outperforms
the lightweight object detection model YOLOvV7-tiny in terms of detection accuracy, model
size, and runtime speed.

Table 17. Comparison of different embedded models.

Model P/% R/% mAP0,5/% mAP0,5:0'95/% Model Size/MB GFLOPs
YOLOV8-HD 84.5 70.8 77.6 58.2 6.35 6.8
YOLOV7-tiny 61.5 55.6 53.6 28.9 123 13.2

Therefore, the YOLOv8-HD model demonstrates good performance in terms of accu-
racy, detection speed, and model size in wheat seed detection, making it easier to deploy
on embedded platforms.

(5) To validate the model’s generalization ability, we conducted experiments on the
global wheat ear dataset. The original YOLOv8 wheat ear detection mAP was 91.3%, with
GFLOPs at 8.1. In this paper, the YOLOv8-HD wheat ear detection mAP was 95.7%, with
GFLOPs at 6.8, indicating that the algorithm proposed in this paper has better detection
capabilities.

5. Conclusions

We constructed a wheat seed dataset, including five different scenes: scattered without
impurities, scattered with impurities, clustered without impurities, clustered with impuri-
ties, and stacked. By lightweighting the YOLOvVS8 detection head to improve the lightweight
network architecture and incorporating the deformable attention transformer (DAT) into
the YOLOVS backbone network’s C2f layer to enhance the model’s detection accuracy, we
named it the YOLOv8-HD network model. The YOLOv8-HD algorithm achieved an mAP
of 77.6% in the stacked scene for wheat seed detection and an mAP of 99.3% across all five
scenes, with a model inference time of 2.86ms. The YOLOvS8-HD model has a smaller size
and higher accuracy. Additionally, we compared the YOLOv8-HD model with mainstream
object detection models, and the experimental results showed that the YOLOv8-HD model
outperformed other networks in terms of mAP and model size. This ensures both detection
accuracy and improved detection speed, which aligns with the deployment and application
of agriculturally embedded devices, providing a wider range of application possibilities
and technical support for the further development of wheat counting devices.

The proposed YOLOv8-HD model achieved wheat grain detection and counting in
five different scenarios. However, in overlapping scenarios, the detection accuracy of wheat
grains was only 77.6%, indicating room for further improvement. In the future, we will
continue to optimize the model to enhance the performance of wheat grain detection in
overlapping scenarios. Additionally, factors such as height and lighting were not considered
in the data collection process, which may affect the model’s performance in real-world
scenarios. We will further enrich the wheat grain dataset to facilitate its application in
wheat grain counting.
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