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Abstract: Wood surface broken defects seriously damage the structure of wooden products, these
defects have to be detected and eliminated. However, current defect detection methods based on
machine vision have difficulty distinguishing the interference, similar to the broken defects, such
as stains and mineral lines, and can result in frequent false detections. To address this issue, a
multi-source data fusion network based on U-Net is proposed for wood broken defect detection,
combining image and depth data, to suppress the interference and achieve complete segmentation of
the defects. To efficiently extract various semantic information of defects, an improved ResNet34 is
designed to, respectively, generate multi-level features of the image and depth data, in which the
depthwise separable convolution (DSC) and dilated convolution (DC) are introduced to decrease
the computational expense and feature redundancy. To take full advantages of two types of data, an
adaptive interacting fusion module (AIF) is designed to adaptively integrate them, thereby generating
accurate feature representation of the broken defects. The experiments demonstrate that the multi-
source data fusion network can effectively improve the detection accuracy of wood broken defects
and reduce the false detections of interference, such as stains and mineral lines.

Keywords: multi-source data fusion; wood defect detection; deep learning; U-Net; semantic segmentation

1. Introduction

In the wood industry, broken defects, such as cracks and dead knots on the wood
surface, can destroy the structural integrity of wood and affect the quality of wooden
products; therefore, these defects need to be strictly detected and eliminated. These broken
defects can be inspected with human vision and touched by experienced workers; however,
due to human subjectivity, problems such as low efficiency and poor accuracy remain
within the manual inspection. Therefore, it is necessary to develop an automatic broken
defect detection method for the wood industry.

Initially, many non-destructive approaches were developed to identify a broken defect
region, such as the ultrasonic [1], infrared [2], stress wave [3], and acoustic laser tech-
niques [4], which are sensitive to the depth variation in the broken region, but ignore
the appearance characteristic, leading to an incomplete detection of the broken defects.
With the support of machine vision, which focuses on image data with high resolution
and intuitiveness, the researchers proposed numerous deep-learning-based approaches,
which utilize convolutional neural networks (CNN) with excellent feature representation
capabilities [5] to perform wood defect detection in region level [6,7] or pixel level [8].

The deep-learning-based approaches have effectively improved the detection accuracy
of wood defects. However, these defection methods based on single image data have
difficulty when distinguishing the wood broken defects with the interference similar to the
defects due to the limitation of feature representation. Specifically, in the wood image data
shown in Figure 1, the natural texture and the stains represent similar shapes and colors
with the dead knot and crack defects, the subtle differences cause confusion for the model
when distinguishing the wood broken defects from the interference, resulting in frequent
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false detections. In the practical wood industrial field, interference without damage is
allowed to be retained, which means that a lot of woods without damage will be wasted
during the wood production process.

Deadknot Crack

(a) Defects (b) Interference

Stain Stain Natural texture

Figure 1. The challenges of wood broken defect detection.

To address this issue, a multi-source data detection method is proposed for the wood
broken defect detection. By introducing the depth information to obtain the discriminative
features of wood broken defects, and combining the color texture information to achieve
complete segmentation of the broken defects. In addition, a multi-source data fusion
network is proposed for the wood broken defect detection based on U-Net [9]. Specifically,
the contributions of this article are as follows:

1. Laser profile sensors and cameras are adopted to capture the depth data and image of
wooden board. Furthermore, a multi-source data fusion network is designed to recog-
nize the wood broken defect by simultaneously focusing on the depth information
and color texture information, to achieve a precise segmentation of the wood broken
defects and effectively eliminate the influence of interference;

2. An improved ResNet34 is developed to efficiently extract multi-level features from
wood image and depth data, in which the depthwise separable convolution (DSC)
and dilated convolution (DC) are added to reduce feature redundancy and enhance
the overall perception of the wood broken defects;

3. An adaptive interacting fusion (AIF) module is designed to integrate the features
extracted from image and depth data via calculating the weights of different features,
achieving accurate feature representation of the broken defect. Additionally, the
coordinate attention (CA) is added to further highlight the discriminative effect of
depth information.

The rest of this article is structured as follows: Section 2 reviews the related works.
The dataset collection process is introduced in Section 3. Section 4 presents the proposed
multi-source data fusion model in detail. Section 5 gives the experimental results and the
related analysis. The discussions of the potential application and improvements of the
proposed method are given in Section 6. The conclusion of this article is given in Section 7.

2. Related Works

For wood surface defect detection, the methods mainly include traditional detection
approaches and deep-learning-based detection approaches.

2.1. Traditional Wood Defect Detection Approaches

Traditional detection approaches can be divided into the following three categories:
threshold-based approaches, statistical-based approaches, and model-based approaches.
The threshold-based approaches generally combine color difference and mathematical
morphology [10], setting a suitable threshold [11] to segment the defective region in the
local [12] or global [3] ranges. For the statistical-based approaches, which usually adopt
the local binary pattern (LBP) [13,14] and gray level co-occurrence matrix (GLCM) [15] to
measure the distribution of pixel values so as to achieve a classification result in the image
level. The model-based approaches generally design specific feature vectors according to
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the color, shape, and texture of defects, and utilize various machine learning algorithms,
such as the support vector machine (SVM) [16], the regression tree (CART) [17], and a
neural network [18] as the classifiers so as to achieve a satisfactory detection performance
on small-scale detection samples.

These approaches have achieved good performance on specific detection scenarios;
however, the dependence on expertise limits generalization for application.

2.2. Deep-Learning-Based Wood Defect Detection Approaches

In recent years, the convolutional neural network (CNN) is introduced to locate and
identify wood surface defects [19–21]. To improve the detection accuracy, Tu et al. [6]
designed an improved Gaussian YOLOv3 by adding a complete intersection over union
(CIoU) loss function to reduce repeated detection. Considering the complicated char-
acteristics and various sizes of wood defects, Meng et al. [22] proposed an improved
YOLOv5 model based on a semi-global network (SGN) to generate adequate contex-
tual information of wood defects; furthermore, Zhu et al. [7] proposed an efficient
multi-level-feature integration network (EMINet) to extract the discriminative features
of defects. Focusing on the tiny cracks, Lin et al. [8] proposed a data-driven semantic
segmentation network to recognize cracks at the pixel-level. Due to the limitation of
the receptive field of CNN, Ge et al. [23] introduced a detection transformer (DETR) to
improve the detection performance. Unlike these methods, based on wood surface depth
data, Xu et al. [24] designed an improved Bi-LSTM network to identify the detective
lines efficiently.

However, the above methods are conducted based on single image data or other
data types, which make it difficult to achieve simultaneous complete detection and
suppress the interference.

3. System Overview
3.1. Data Collection

The platform used for data collection and defect detection is shown in Figure 2, which
is deployed in the industry processing site. The platform is composed of a camera, laser
profile sensor, motor, conveyor belt, photoelectric switch, and a computer. The collection
process is carried out in an enclosed space, and the linear light sources are deployed inside
the space to obtain a stable lighting condition.

• Image cropping
• Make pixel annotation
• Training : Test = 8 : 2

Wooden boards

Data
Collection

Data Set
Construct

Model
Training

Model
Test

Computer

Image

Depth data

Cropping Ground-truth

Detection
Model

Generating

Result
Evaluation

• Data standardization
• Model design

Pixel 

annotation

Laser profile sensor

Wooden board

M

Motion direction

Motor

Conveyor belt

Switch

Laser profile sensor

Camera

Camera

Figure 2. The overall framework of wood broken defect detection process, including data collection
platform, dataset constructing, model training, and result evaluation.
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Firstly, the wooden board is transported to the data collection area via the conveyor
belt. When the wooden board arrives the site of the photoelectric switch, the cameras and
laser profile sensors installed at the bottom and top of the conveyor start scanning the
wooden board to capture the wood surface image. The obtained data are transmitted to the
computer for data processing and defect detection. As shown in Figure 2, the original data
are cropped into pieces due to the large aspect of wooden board, and the data with defects
are selected to make pixel annotations for model training and testing. It is worth noting
that the ground-truth corresponds to the defective region of image data.

3.2. Wood Broken Defect Dataset

The obtained data includes image and depth data. The three-dimensional visualization
of depth data is shown in Figure 3a, in which the sides with pink and blue denote the
top and bottom data, respectively. It can be seen that the distribution of the values are
different. Therefore, the z-score is adopted to standardize the value distribution of the
top and bottom depth data. In addition, the value of bottom depth data is inverted to be
consistent with the top one. Taking a broken defect shown in Figure 3b, its corresponding
three-dimensional visualization is shown in Figure 3c. Obviously, there is depression in the
broken region of defect.

(a)

(b)

(c)

Figure 3. The three-dimensional visualization of wood depth data. (a) The 3D visualization of the
top and bottom depth data. (b) The visualization of the the top depth data. (c) The detailed 3D
visualization of a wood broken defect.

The broken defects that are detected in this article include dead knots and cracks. The
dead knot that generates with the growth of tree refers to a natural defect, it is usually
loose or falls off, which forms a cavity and creates a broken area. As shown in Figure 4a,
the broken area of a dead knot revealed in the depth data covers a part of the defective
region revealed in the image. For the crack shown in Figure 4b, which is formed by
the separation of fibers during the growth of wood, the broken area may expand due to
exogenic action during transportation. Unlike the dead knot defect, the broken area of
crack almost coincides with the defective region.

Image Depth data Ground-truth Image Depth data Ground-truth

(a) (b)

Figure 4. The broken defect data of wood dataset, and the red box denotes the defective region.
(a) Dead knot. (b) Crack.
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4. Methodology

To obtain the detection results of wood broken defects based on image and depth data,
a multi-source data fusion network is proposed based on U-Net, a typical network used for
semantic segmentation in various detection scenarios [25–27].

4.1. Architecture Overview

The overall architecture of the proposed network is shown in Figure 5, the multi-source
data fusion network includes the feature extraction backbone and decoders. Five stages are
deployed in the backbone for generating multi-level features Ci (i ∈ 1, 2, 3, 4, 5), and each
stage is composed of D-Conv, I-Conv, and the adaptive interacting fusion (AIF) module,
in which the D-Conv and I-Conv belong to different branches used for multi-level feature
extraction from image and depth data. Considering the critical role of depth variation for
recognizing wood broken defects, the branch of image is designed as the auxiliary part of
backbone so as to enrich the feature representation of wood broken defects. Specifically, the
integrated feature Ci (i ∈ 1, 2, 3, 4) is used as the input of I-Convi instead of Gi in the next
stage, thereby selecting effective color characteristics in various resolutions and enhancing
major effect of depth information. The calculation process of feature Ci can de performed
as follows:

Pi = D-Convi(Pi−1), Gi =

{
I-Convi(G0), if = 1
I-Convi(Ci−1), if = {2, 3, 4, 5}

(1)

Ci = AIF (Pi, Gi) (2)

where Pi and Gi denote the outputs of D-Convi and I-Convi, respectively. Finally, the pixel
prediction map with size of 512 × 512 × 3 is obtained through the decoders stage-by-stage,
and the details of decoders is shown in Figure 5.

Depth data
(1,512,512)

Image
(1,512,512)

D-Conv1

AIF

I-Conv1

D-Conv2

AIF

I-Conv2

D-Conv3

AIF

I-Conv3

D-Conv4

AIF

I-Conv4

D-Conv5

AIF

I-Conv5

1282×64

642×64

322×128

162×512

162×256

5122×3

Output：
512×512

C1

C2

C3

C4

C5

P1

P2

P3

P4

P5

G1

G2

G3

G4

G5

（3×3 Conv + BN 
+ ReLU）×2

Upsampling

1×1 Conv + BN 
+ ReLU

Concatenation

3×3 Conv + BN 
+ ReLU

P0 G0

Stage1

Stage2

Stage3

Stage4

Stage5

Figure 5. The overall architecture of the proposed multi-source data fusion network, in which the
upsampling denotes bilinear upsampling operation, BN denotes batch normalization, and ReLU
denotes rectified linear units activation.
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4.2. Backbone

As an essential part of network for extracting various semantic information of object
to be detected, the backbone indirectly determines the detection accuracy and speed of
network. Numerous current studies focus on improving the accuracy of detection by
increasing the scale of network [28,29], resulting in slower detection speed and heavier
computing resources, which is difficult to be applied in the practical industry production
process. Inspired by the ResNet [30], which is widely used in various industry detection
scenarios [31,32] due to its efficient feature extraction capacity, an improved backbone
based on ResNet34 is designed to constitute the encoders of the proposed method for
efficient feature extraction. The details of the encoders are shown in Table 1, in which the
“Number” denotes that the times to repeat the corresponding operation.

Table 1. The detail structure of the backbone.

Backbone Type Number Output Size

Input – – 512 × 512 × 1

D-Conv1 & I-Conv1
7 × 7 Conv, 1s = 2 1 256 × 256 × 64

3 × 3 Max-pool, s = 2 – 128 × 128 × 64

D-Conv2 & I-Conv2
Res-DSC, 2c = 64 3 128 × 128 × 64

3 × 3 Max-pool, s = 2 – 64 × 64 × 64

D-Conv3 & I-Conv3
Res-DSC, c = 128 4 64 × 64 × 128

3 × 3 Max-pool, s = 2 – 32 × 32 × 128

D-Conv4 & I-Conv4
Res-DSC-DC, c = 256 2 32 × 32 × 256

3 × 3 Max-pool, s = 2 – 16 × 16 × 256

D-Conv5 & I-Conv5 Res-DSC-DC, c = 512 1 16 × 16 × 512
1 The parameter “s” denotes the stride of the convolution. 2 The parameter “c” denotes the number of group of
the DSC in Figure 6.

3×3 Conv, strid=1

3×3 DSC, strid=1, group=c

Input

BN+ReLU

BN+ReLU

Output

3×3 DC, strid=1, dilation=1

3×3 DSC-DC, strid=1, group=c, dilation=2

Input

3×3 DC, strid=1, dilation=5

3×3 DSC-DC, strid=1, group=c, dilation=1

3×3 DC, strid=1, dilation=2

3×3 DSC-DC, strid=1, group=c, dilation=5

Output

: Element-wise summation

Conv : Conventional Convolution

(b) Res-DSC-DC

(a) Res-DSC

DSC  : Depthwise Separable Convolution  

DC  : Depthwise Separable Convolution  

BN+ReLU

BN+ReLU

BN+ReLU

BN+ReLU

BN+ReLU

BN+ReLU

BN : Batch Normalization 

Figure 6. The structures of the proposed Res-DSC and Res-DSC-DC, in which the “group” refers to a
hyper-parameter of DSC, the “dilation” refers to the dilation rate of DC.
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To reduce feature redundancy and enhance feature extraction capacity of backbone,
Res-DSC and Res-DSC-DC are designed to replace the Basicblock of ResNet34, the
detailed structure of the two convolution modules are shown in Figure 6. In the backbone,
the structure of I-Convi is the same as D-Convi . Specifically, as shown in Table 1, only
the 7 × 7 convolution layer with stride of 2 and 3 × 3 max-pool operation with stride
of 2 in the ResNet34 are retained to constitute the stage1 in the encoders; the second
and third layers of ResNet34 are replaced with Res-DSC; the fourth and fifth layers are
replaced with Res-DSC-DC. Additionally, the 1 × 1 convolution used for downsampling
in the shortcut of ResNet34 is removed, and a 3 × 3 max-pool operation with stride
of 2 is added to the end of each layer to downsample the feature map so as to further
decrease the inference time of model.

4.2.1. Res-DSC

In numerous industrial defect detection scenarios, the depthwise separable convolu-
tion (DSC) [33] is widely introduced into the detection networks for reducing the computa-
tional resource and feature redundancy [34–36], so as to meet the real-time requirement of
industry production process. In this article, the DSC is adopted to constitute the designed
Res-DSC module.

As shown in Figure 7, the DSC is composed of the depthwise convolution and the
pointwise convolution. Specifically, each channel of the feature map is firstly calculated by
a separate kernel, so as to extract corresponding spatial feature of each channel. Then, the
feature maps are integrated by 1 × 1 convolutions, achieving the correlation information
among different channels. Compared with the conventional convolution, the DSC can
achieve less computational resource, however, it also reduces the diversity of semantic
information. Therefore, to optimize the detection network while maintaining the segmen-
tation precision, the conventional convolution and DSC are combined to constitute the
Res-DSC module, as shown in Figure 6a, where the detail of parameter “c” is shown in
Table 1.

3-channel 
input

Conventional
Convolution×3 Point

Convolution×c

Feature map×3

Feature map×c

Feature map×3

(a) DSC

3-channel 
input

Dilated
Convolution×3 Point

Convolution×c

Feature map×3

Feature map×c

Feature map×3

(b) DSC-DC

Figure 7. The structures of DSC and DSC-DC, the parameter “c” represents the number of the
output channels.
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4.2.2. Res-DSC-DC

In the CNNs, the receptive field of feature map is expanded with the increase in the
number of convolution layers. However, in the ResNet34, the receptive field of conventional
convolution is limited [30] for capturing overall perception of wood broken defects with
large sizes, thus affecting the classification of defect target. To address this issue, the
dilated convolution (DC) [37] is introduced to the backbone to enhance the global context
information of network. As shown in Figure 8a, compared with conventional convolution,
the DC introduces the dilation rate to obtain a larger receptive field without increasing
the parameters of network. To further reduce the computational resource, combining the
DSC and DC, the DSC-DC is designed to constitute the Res-DSC-DC module. As shown in
Figure 7b, replacing the conventional convolutions in DSC with dilated convolutions, to
achieve less parameters.

As shown in Figure 6b, the Res-DSC-DC module is composed of three identical units,
and each unit is composed of a DC and a DSC-DC. For the stacking of DC layers, unsuitable
expansion rates will lead to gridding issue [38], resulting in feature loss. As shown in
Figure 8b, for the continuous DC layers with dilation rates of 1 and 1, the feature map can
only realize the semantic information in a checkerboard fashion, and lose a large portion of
information, nearly 70%. In contrast, when the dilation rates are set as 1 and 2 (Figure 8c),
the coverage area of the pixels can achieve 67%. Therefore, as shown in Figure 6b, the
expansion rate of each DCs in the DSC-DC are set as {1, 2, 5, 1, 2, 5} according to [38].
However, the local location information contained in the low-level features of the backbone
will be weakened with the increase in receptive field, only the fourth and fifth layers of
ResNet34 are replaced with the Res-DSC-DC.

Dilated Convolution

Conventional Convolution

Layer-1 Layer-2 Layer-3

(a) (c)

(b)
dilation = 1 dilation = 1

dilation = 1 dilation = 2

Figure 8. Schematic of receptive field of the dilated convolution and conventional convolution.
(a) The receptive fields of dilated convolution and conventional convolution. (b,c) Pixel coverage
under different expansion rate groups.

4.3. Adaptive Interacting Fusion

For wood broken defect detection, the depth data that can accurately reflect the
damaged area are critical to distinguish broken defects. On the other hand, the image data
with high resolution contain detailed texture and color information, which can obtain a
complete description to the appearance of defects. Thus, the image and depth data are
both necessary for achieving precise recognition to the wood broken defects. To take full
advantage of them, an adaptive interacting fusion (AIF) module is designed to integrate
two feature maps in the encoders, by adaptively calculating the weights of each feature, to
achieve accurate representation of broken defects. The detailed structure of AIF module is
shown in Figure 9.
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C

Hi×Wi×Ci

Hi×Wi×Ci

Hi×Wi×2Ci Hi×Wi×2

Conv+Sigmoid GAP

1×1×2

G

P

iG

iP

CA

iC

C Concatenation Element-wise product

Hi×Wi×Ci

Element-wise summation

Figure 9. The structure of the proposed adaptive interacting fusion (AIF) module.

Given the Gi ∈ RHi×Wi×Ci and Pi ∈ RHi×Wi×Ci as the inputs of the AIF, the concate-
nated feature of them is integrated by a 1 × 1 convolution with stride of 1 and followed by
a Sigmoid activation function, generating a spatial map with Hi × Wi × 2. Going through
a global average pool (GAP) function, the weight of each input is obtained and multi-
plied with the corresponding input. Considering the essential effect of depth data for
distinguishing broken defects with interference, a coordinate attention (CA) [39] mech-
anism is introduced to enhance the location information of the weighted feature Pi in
spatial dimension and suppress the influence of interference. Finally, the integrated feature
Ci ∈ RHi×Wi×Ci is obtained by adding the two weighted features and Pi in pixel level.
Mathematically, it can be described as follows:

ωG, ωP = Split ( GAP ( σ ( W1×1 ∗ CAT (Gi , Pi)))) (3)

Ci = ( ωG ⊗ Gi )⊕ CA ( ωP ⊗ Pi )⊕ Pi (4)

where Split(· ) denotes that the vector with 1 × 1 × 2 is split into the weights ωG and ωP,
CAT refers to the concatenation, W1×1 denotes 1 × 1 convolution operation, σ refers to the
Sigmoid activation function, ⊕ and ⊗, respectively, denote the element-wise summation
and production.

4.4. Loss Function

To improve the detection accuracy, the hybrid loss is introduced to supervise the
training process. Formally, the total loss is defined as follows:

L = Lce + Ldice (5)

where the Lce and Ldice, respectively, denote the cross-entropy (CE) loss and dice loss [40],
which focus on the local pixel loss and global loss. This combination is effective for
achieving the complete segmentation result of broken defects.

Specifically, dice loss is adopted to measure the similarity between ground-truth and
predicted map. The value range of dice loss is limited between 0 and 1. It can be defined as:

Ldice = 1 −
2 ∑H×W

i PiGi + ϵ

∑H×W
i (Pi)2 + ∑H×W

i (Gi)2 + ϵ
(6)

where Pi and Gi refer to each pixel of the segmentation prediction map and the correspond-
ing ground-truth, the H and W, respectively, denote the height and width of the input data,
ϵ denotes the smoothing item to avoid zero division.

5. Experiments
5.1. Implementation Details

The wood broken defect dataset with image and depth data is provided by a third-
party partner company. To demonstrate the effectiveness of the proposed method, a series
of experiments are carried out on the wood dataset. The dataset totally contains 1100 sets of
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data with pixel-level annotations, each set is composed of an image and a depth data. The
dataset is divided into a training set and a test set according to the ratio of 8:2, generating a
total of 880 sets of training data and 220 sets of test data.

The image and depth data is resized to 512 × 512 for training and testing. For the
training of network, the number of epochs is set as 200 and the batch size is set as 6.
During the training process, the data are randomly selected as the inputs, and the Adam
optimization technique is selected to optimize the parameters of the network. The learning
rate is set as 0.0001 initially, and adjusted according to the cosine annealing learning rate
scheduling. The details of the environment used for conducting the experiments are listed
in Table 2.

Table 2. Experimental environment.

Category Version

GPU Nvidia GTX 2060S (12 GB, 1470 MHz) (Nvidia,
Clara, CA, USA)

CPU Intel i5-12400F (2.5 GHz 4.4 GHz) (Intel, Clara,
CA, USA)

Programming Python 3.8.8 + Pytorch 1.10.0 + Cuda 102
Operating system Windows 11 × 64

5.2. Evaluation Metrics

The pixel accuracy (Acc), mIoU, mean precision (Pre), mean recall (Rec), and mF1
are generally adopted to evaluate the performance of semantic segmentation tasks. The
pixel accuracy denotes the ratio of pixels that are correctly classified. mIoU represents the
averaged overlapping ratio between the ground-truth and the predicted map. The above
metrics are formulated as follows:

Accuracy =
∑N

i=1 TPi

∑N
i=1 TPi + ∑N

i=1 FPi
(7)

mIoU =
1
N

N

∑
i=1

pii

∑N
j=1 pij + ∑N

j=1(pji − pii)
(8)

mPre =
1
N

N

∑
i=1

TPi
TPi + FPi

(9)

mRec =
1
N

N

∑
i=1

TPi
TPi + FNi

(10)

mF1 =
1
N

N

∑
i=1

2 × Prei × Reci
Prei + Reci

(11)

where N equals to the number of defect categories plus one, and this category denotes
the background, pij denotes the number of class-i pixels that are classified as class-j, TP
denotes the number of pixels that are correctly classified, FP denotes the number of negative
pixels that are misclassified as positive samples, and FN denotes the number of positive
pixels that are misclassified as negative samples. Considering about the deployment of
detection model in industry, floating point operations per second (FLOPs) and parameters
are utilized to measure the computational expense.

5.3. Experiments on the Selection of Backbone

In a practical industrial production process, the defect detection model needs to
simultaneously meet the requirements of detection accuracy and speed. Thus, to select
an efficient backbone as the encoder of segmentation network, a series of experiments
based on ResNet with different scales (ResNet18, ResNet34 and ResNet50) were carried
out on our wood dataset. As shown in Figure 10, the U-Net was adopted as the baseline



Sensors 2024, 24, 1635 11 of 18

network by training the network with three types of inputs, including image, depth data,
and the concatenated data with a size of 512 × 512 × 2, to demonstrate the rationality of
the backbone selection; the experimental results are shown in Table 3. Additionally, the
parameters and computational resources of the three backbones are shown in Table 4. As
can be seen, compared with the detection models using ResNet18 and ResNet50 as the
encoder, the model using ResNet34 has achieved the best mIoU and mF1 on the three types
of input data. For the ResNet18 backbone with least parameters of 11.17M and FLOPs of
0.93 × 109, its detection performance is not enough for application in industry; therefore,
ResNet34 backbone was selected as the basic encoder of segmentation network.

It is worth noting that, compared with the ResNet50, which has more parameters, the
model that used ResNet34 achieved a better performance. This situation can be explained
that the network with larger scale generates redundant information, resulting in poor
detection results. In addition, compared with the model using single image input, the
concatenated data have achieved worse detection performance, which shows that utilizing
the direct concatenation of the depth data and image as the input will cause confusion for
the model to achieve accurate description of broken defects.

U-Net encoder U-Net decoder

Input

Input
types

Image
512×512×1

Concat data
512×512×2

Depth
512×512×1

Figure 10. The schematic of different input types.

Table 3. Performance comparison of different backbones and different input types.

Input
Types

U-Net
Encoder mIoU (%) Acc (%) mRec (%) mPre (%) mF1 (%)

Depth Data

ResNet18 69.06 97.97 82.06 78.20 80.08

ResNet34 71.32 98.05 82.03 81.37 81.70

ResNet50 70.65 97.97 84.06 78.67 81.28

Image

ResNet18 76.85 98.53 88.56 84.01 86.23

ResNet34 77.19 98.64 85.81 86.87 86.34

ResNet50 76.52 98.53 87.99 83.97 85.94

1 Concat
ResNet18 76.79 98.60 85.59 86.51 86.05

data
ResNet34 76.96 98.58 87.56 84.87 86.19

ResNet50 76.13 98.65 83.46 88.60 85.95
1 The Concat data denotes that the depth data and image are concatenated as the input, as shown in Figure 10.
Note: Under the current evaluation index, the bold text indicates that the corresponding model has the best effect.
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Table 4. The parameters and computational resources of different backbone.

Backbone Parameters (M) FLOPs

ResNet18 11.17 0.93 × 109

ResNet34 21.28 1.90 × 109

ResNet50 23.50 2.12 × 109

5.4. Ablation Study

To demonstrate the effectiveness of the improvements in the ResNet34 backbone,
the ablation experiments of DSC and DC were carried out on the wood dataset, and the
experimental results are shown in Table 5. In addition, the parameters and computational
resources of the improved ResNet34 are shown in Table 6.

According to the analysis in Section 5.3, ResNet34 was selected as the encoder of the
proposed network. As can be seen, when adding the DSC and DC to the backbone, the
mIoUs were improved by 0.29% and 0.36%, respectively, which shows that these improve-
ments are effective for the improvement in the segmentation of wood broken defects. It
is worth noting that the DSC with less parameters achieved better performance than the
ResNet34 without DSC, which demonstrates that the DSC is effective for the reduction in
feature redundancy and impairs the influence of interference. When adding DSC and DC
together to the backbone, compared with the baseline network, the mIoU was improved by
1.60% and mF1 was improved by 1.12%, while the parameters and FLOPs are decreased
between 10.00 M and 0.94 × 109, which is almost the same as ResNet18. In summary, the
improved ResNet34 can make the model achieve a better detection performance with less
computational expenses, which is more suitable for the deployment.

Table 5. Ablation study of DSC and DC in the improved ResNet34.

ResNet34 DSC DC mIoU Acc mRec mPre mF1
√

76.96 98.58 87.56 84.87 86.19√ √
77.25 98.67 85.02 87.82 86.39√ √
77.32 98.58 89.40 83.78 86.50√ √ √
78.56 98.76 86.75 87.88 87.31

Table 6. The parameters and computational resources of different backbone.

Backbone Parameters (M) FLOPs

ResNet18 11.17 0.93 × 109

ResNet34 21.28 1.90 × 109

Improved ResNet34 (ours) 10.00 0.94 × 109

5.5. Experiments on Fusion Methods

In this paper, multi-source data are used to detect the wood surface broken defects,
and the AIF module is designed to integrate the two features generated from depth data
and image. In order to verify the effectiveness of adopting multi-source data to perform
wood defect detection, based on the improved ResNet34, the experiments with single data
were carried out on the wood dataset, including single depth data and single image. The
experimental results are shown in Table 7, in which the third row denotes our proposed
method. Compared with the method with single depth data, the proposed method has im-
proved the mIoU and mF1 by 7.38% and 4.71%, respectively, which shows the limitation of
depth data for capturing color characteristics. Compared with the model with single image,
the proposed method has improved the mIoU and mF1 by 2.00% and 1.25%, respectively.
Benefiting from the depth information, the model can effectively suppress the influence
of interference.

In addition, to verify the effectiveness of AIF module, the experiment of another fusion
type between Pi and Gi was conducted. As shown in Figure 11, the concatenated feature Pi
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and Gi is integrated by an 1 × 1 convolution with batch normalization (BN) and rectified
linear units (ReLU) activation. In contrast, the proposed fusion type has improved the
mIoU and mF1 by 1.17% and 0.80%, respectively, which demonstrates the effectiveness of
AIF module.

Ci

Pi

Gi

Concat

1×1 Conv + BN + ReLU

Ci

Pi

Gi

AIF

AIF

Figure 11. Different fusion types between Gi and Pi. The upper type denotes the concatenation
operation, and the lower type refers to our proposed method.

Table 7. Performance comparison of different input data and different fusion types of Pi and Gi.

U-Net
Encoder Data Fusion

Type mIoU Acc mRec mPre mF1

Improved

Depth – 72.35 98.19 85.02 81.84 83.40

Image – 77.73 98.64 87.60 86.13 86.86

ResNet34 Depth AIF
(ours) 79.73 98.85 87.38 88.86 88.11

& Image 1 Concat 78.56 98.76 86.75 87.88 87.31
1 The Concat in above table denotes the fusion type of concatenation shown in Figure 11. Note: Under the current
evaluation index, the bold text indicates that the corresponding model has the best effect.

5.6. Comparisons of Different Methods

To demonstrate the effectiveness of the proposed multi-source data fusion detection
method, the experiments of various segmentation methods based on single image data
were carried out for comparison, including U-Net [9], PSPNet [41], DeepLabv3 [42], and
SegFormer [43]. To achieve a fair comparison, all the methods, including the proposed
method, adopted the pre-trained model to initialize the parameters of the network and were
retrained on the wood dataset. The experimental results are shown in Table 8. Obviously,
the proposed method has achieved the best mIoU and mF1 of 79.73% and 88.11%. Especially
for the mean precision, the proposed method has achieved 88.86%, which means that a
lower false drop rate for the interference. For the U-Net with VGG16, which has achieved
the best mean precision of 89.57%, the mean recall is 2.56% lower than the proposed method.

In addition, to highlight the advantages of the proposed multi-source data fusion
detection method for distinguishing the broken defects with the interference, the detection
results of the crack, dead knot, and interference are visualized in Figure 12. For the
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interference shown in the first, second, and last rows, the other methods with single image
had difficulty distinguishing the interference with the broken defects, resulting in false
detections. In contrast, the proposed method has effectively eliminated the interference.
For the crack defects shown in third and forth rows, false detections occurred with the other
methods, while the proposed method achieved more accurate and complete segmentation
results. For the SegFormer, which has achieved complete segmentation results with the
defective regions of dead knot defects shown in the fifth and sixth rows; however, it almost
failed to distinguish the interference in the images in the first and second rows.

Table 8. Performance comparison of different segmentation methods.

Methods Backbone mIoU (%) Acc (%) mRec (%) mPre (%) mF1 (%)

U-Net ResNet50 77.70 98.64 87.14 86.89 86.70
U-Net VGG16 77.84 98.74 84.82 89.57 86.79

PSPNet ResNet50 76.44 98.59 86.56 85.12 85.78
PSPNet MobileNetv2 73.61 98.36 84.62 82.78 83.68

DeepLabv3 MobileNetv2 75.86 98.59 84.87 85.87 85.36
DeepLabv3 Xception 71.04 98.44 76.99 88.22 76.99
Segformer MiT-B0 78.91 98.71 89.02 86.38 87.55
Segformer MiT-B1 77.13 98.48 90.81 82.79 86.28
Segformer MiT-B2 76.98 98.52 88.66 84.27 86.17

Ours Improve
ResNet34 79.73 98.85 87.38 88.86 88.11

Note: Under the current evaluation index, the bold text indicates that the corresponding model has the best effect.

(a) (b) (c) (d) (e) (f) (g) (m)(h) (j)(i) (l)(k)

Figure 12. Comparison of segmentation results. (a) Original image. (b) Original depth data.
(c) Ground-truth. (d) U-Net with ResNet50. (e) U-Net with VGG16. (f) PSPNet with ResNet50.
(g) PSPNet with MobileNetv2. (h) DeepLabv3 with MobileNetv2. (i) DeepLabv3 with Xception.
(j) SegFormer with MiT-B0. (k) SegFormer with MiT-B1. (l) SegFormer with MiT-B2. (m) Ours.



Sensors 2024, 24, 1635 15 of 18

In summary, the multi-source data fusion detection model based on U-Net proposed in
this paper can effectively overcome the influence of wood surface interference, and achieve
accurate classification and location of wood defects.

6. Discussion
6.1. Discussion on The Potential Improvement

The experimental results show that the proposed method outperforms the detection
methods with single data. However, some issues still remain in our method. As shown in
Figure 13, it can be seen that the proposed method has a lack of integrity in segmenting
the defect area of partial defects. Due to the various sizes and shapes of the wood defects,
the insufficient dataset makes it difficult to help the detection model learn the complete
characteristics of the defects, leading to poor detection results with partial defects. In
addition, the difficulty present in making accurate annotations of multi-source data poses a
challenge when training the detection model; therefore, the improvements which focus on
the dataset is our work in the future.

(a) (b) (c) (d)
Figure 13. Analysis of failure cases. (a) Original image. (b) Original depth data. (c) Ground-truth.
(d) Detection result.

6.2. Discussion on The Practical Application

In this article, the multi-source data fusion network is proposed to accurately rec-
ognize wood broken defect and suppress the influence of various interferences on the
surface, improving the robustness of the detection model under a complicated industrial
environment. The method that combines the depth data and image data is conducive
to control the quality of industrial products, such as the classification task for 3D objects
and the defect detection task for mechanical workpieces with various shapes. In addition,
through the depth data and image data, the engineers in the industrial site can obtain a
more intuitive understanding of complex industrial scenes.

7. Conclusions

In this paper, a multi-source data fusion network is proposed for the wood surface
broken defect detection based on U-Net, by combining image and depth data to suppress the
influence of interferences, such as stains and mineral lines, on the wood surface and achieve
an accurate segmentation of broken defects. Firstly, an improved ResNet34 is designed
to efficiently extract the multi-level features of wood image and depth data. Specifically,
the depthwise separable convolution (DSC) and dilated convolution (DC) are added into
the backbone to decrease the computational expense and feature redundancy. To achieve
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an accurate feature representation of wood broken defects, the adaptive interacting fusion
(AIF) module is designed to integrate two types of data by calculating the weights of them
in the channel dimension; thus, obtaining the integrated features. The experiments show
that the proposed method can achieve accurate segmentation results with less parameters
and effectively reduce the false detection of the interference.
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