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Abstract: It is of great interest to develop advanced sensory technologies allowing non-invasive
monitoring of neural correlates of cognitive processing in people performing everyday tasks. A lot of
progress has been reported in recent years in this research area using scalp EEG arrays, but the high
level of noise in the electrode signals poses a lot of challenges. This study presents results of detailed
statistical analysis of experimental data on the cycle of creation of knowledge and meaning in human
brains under multiple cognitive modalities. We measure brain dynamics using a HydroCel Geodesic
Sensor Net, 128-electrode dense-array electroencephalography (EEG). We compute a pragmatic
information (PI) index derived from analytic amplitude and phase, by Hilbert transforming the EEG
signals of 20 participants in six modalities, which combine various audiovisual stimuli, leading to
different mental states, including relaxed and cognitively engaged conditions. We derive several
relevant measures to classify different brain states based on the PI indices. We demonstrate significant
differences between engaged brain states that require sensory information processing to create
meaning and knowledge for intentional action, and relaxed-meditative brain states with less demand
on psychophysiological resources. We also point out that different kinds of meanings may lead to
different brain dynamics and behavioral responses.

Keywords: EEG; cognition; meaning; knowledge; intentional action; pragmatic information;
meditation; awareness

1. Introduction

Intensive research has been conducted in recent years to develop advanced sensory
technologies allowing non-invasive monitoring and classification of neural correlates
of cognitive processing in human brains via EEG with the aid of convolutional neural
networks [1], for example. Some interesting studies have focused on exploring neural
correlates of learning and working memory tasks, for example, with the use of EEG to
compare several classifiers [2]. As indicated by [3], EEG technologies have some advantages
and good applications for Developmental Cognitive Neuroscience, while new trends in
quantitative analysis are emerging in a broad spectrum of applications, including medical
applications [4]. One important area of research is the study of brain dynamics in relation
to motor tasks and rehabilitation [5].

Significant progress has been made using scalp EEG arrays for cognitive state identifi-
cation of people performing everyday tasks, some of them in sport [6] and meditation [7],
and for mental state detection for pilots and accident prevention [8]. Studies have also
involved participants tested with closed vs. open eyes in visual and auditory recognition
tasks, as well as motor tasks [9,10] including emotion recognition in human computer
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interaction [11]. Several challenges in different areas are reviewed in [12] that included
safety and health, for example, via measuring physiological signals such as EEG. Other
authors have explored the challenges associated with brain computer interface for emotion
recognition [13,14] associated with machine learning and other models [15], as for example,
in planning and rational decision making [16], something that requires robust classification
methods for EEG signals in emotion recognition, as discussed by [17]. Another relevant
field of study concerning various physiological signals concerns the characterization of
mental stress and fatigue, as described in studies like [18] where electrodermal activity is
measured to classify calm from distress conditions. This has also been discussed with the
use of EEG in cooperative game theory and fatigue [19], as well as mental stress and its
influence on neural coordination [20].

Intentional action and values-based decision making necessitate meaningful mental
frameworks [21,22]. Therefore, in considering meaning and values, we must take into
consideration the interaction of the brain and the mind in creating semantic, visual, aes-
thetic, scientific, musical, and spiritual meanings, for example. When we value someone
or something, this person or thing becomes meaningful to us. It is of great importance to
study the neural processes underlying the creation of meaning in the human cortex.

Intentional neurodynamics is a key component of the emergence of meaning in human
brains, as described by Freeman [23]. An important aspect of intentionality is the unity of
brain, mind, and body, which has been described in the early works of Thomas Aquinas [24].
The traditions of Aquinas were followed by Brentano [25], describing the creation of
meaning in spiritual experiences; see also [26,27]. Considering the unity of brain, mind,
and body, the energy consumption of the brain during the creation of meaning becomes
an important research area [28,29]. Freeman’s pioneering experimental studies on spatio-
temporal oscillations in brains produced several key findings, including the identification
of sequences of metastable amplitude-modulated activity patterns (wave packets), which
are associated with the meaning of the sensory experiences and produce consecutive
meaningful decisions and actions [30–32]. The formation of the sequence of such brain
activity patterns impacts the energy utilization of the brain, which in turn provides a
potential tool to monitor cognitive processing.

Modern brain imaging techniques allow monitoring the role of various brain areas
during cognitive processing. Depending on the nature of the cognitive activities, the
measured patterns of brain oscillations would change. For example, it is expected to
observe markedly different patterns during relaxed states, as compared with more active
states, such as solving mathematical tasks, identifying visual clues. It is expected that more
engaged cognitive states likely require more metabolic energy than relaxed ones. From our
perspective, the cognitive activities using various sensory stimuli and leading to intentional
actions are especially important, as they are related to the meaning of the stimuli in the
context of the actual physical and mental state of the individual.

It is important to extend the results of previous studies, which used invasive electrocor-
ticogram (ECoG) arrays in animal brains [33], to the domain of non-invasive scalp monitoring
with humans. Successes of those efforts would produce crucial progress in human brain studies
by providing powerful tools to quantify the creation of meaning and knowledge in human
brains, using statistical and information-theoretical indices. The challenges are daunting, as the
extraction of meaning from scalp EEG signals appears to be intractable due to, for example, the
drastic deterioration of the brain electric signals after passing through the skull, amongst other
challenges. Nonetheless, a breakthrough in this problem is possible, based on advanced signal
processing and information-theoretical analysis [34–36].

In this paper, we introduce the action perception cycle, by which a stimulus becomes mean-
ingful and is selected by the subject’s cerebral cortex, which creates the network structures and
dynamics required for decision making, intentional action, and behavior [23,24]. We expand the
preliminary analysis of EEG measurements reported in [37]. We employ the Hilbert transform to
obtain the analytic amplitude (AA), analytic phase (AP), and instantaneous frequency (IF) of the
highly nonlinear, nonstationary EEG signals, and derive pragmatic information (PI) indices, which
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were originally introduced for lasers [38,39], and extended to brain dynamics [33,34,40,41]. Next,
we present EEG experiments based on human participants in different modalities, collected in Ian
J. Kirk’s Lab, Centre for Brain Research at The University of Auckland in New Zealand [42,43].
Previously, we reported results of EEG measurements with two modalities, meditation and video
watching [36], which are now extended to six modalities [37], including meditation, scrambled
words, video watching, ambiguous images, math mind, and sentences, for a comprehensive and
robust analysis. We apply mathematical and statistical analysis using pragmatic information indices
to evaluate the EEG experimental data. The obtained results demonstrate that the behavior of such
indices correlates with the formation of meaning in neural structures and energy consumption levels
in the brain. Finally, we outline perspectives and directions for future research.

2. Materials and Methods
2.1. Data Acquisition

Experiments were conducted using Electrical Geodesics Inc (EGI, Eugene, OR, USA)
128-channel scalp EEG electrode arrays [44], following the basic methodology for exper-
imental design and data acquisition described in [36] with 20 participants. Expanding
on the previous results using only 2 modalities (meditation and video watching) with
20 participants, here we describe the outcomes corresponding to 6 modalities:

Meditation (MED): Participants were requested to conduct meditation of their choice
for 7 min. In the case of participants with little or no meditation experience, they were
asked to relax with their eyes closed for 7 min.

Scrambled Words (WORDS): Participants were presented twenty (20) scrambled
words that pertained to one (1) of the two (2) categories, either a value, such as Love or
Truth, for example, or an object from nature, such as Sand or Pebble. The participants were
requested to try to identify the original word (unscramble it). Once they had established
the category of the word, they were asked to press number 1 on the numerical keypad
when they identified the word describing a “Value” or to press number 2 on the numerical
keypad when the word was describing an “Object”.

Ambiguous Images (IMG): We presented twelve (12) images with ambiguous content
to the participants and asked them to specify how many individual images they could find
by pressing a number between 1 and 9 on the numerical keypad to identify the number of
images found; see Figure 1 with two (2) different images in it, for an example.

Figure 1. An example of the ambiguous images shown to the participants. (My Wife and
My Mother-In-Law, W. E. Hill, 1915).

Math Mind (MM): For this modality, we recorded a pleasant female voice presenting
twenty-eight (28) simple arithmetic operations that the participants were asked to resolve in
their mind by applying some rules, until they would reach a solution with a single digit between
one (1) and nine (9), for each arithmetic operation. For example, the participant would hear
“7 times 7”. This equates to 49, a two-digit result. Now the participant would add these two
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digits together (i.e., 4 + 9 = 13) and repeat this step until they reach a single digit result, in this
case the answer would be “4”, after the final computation of “1 + 3” was performed.

Sentences (SENT): Twenty (20) sentences were recorded with the same female voice as for
the MM modality. The sentence was comprised of either a positive statement, such as: “You are
caring and kind” or a gibberish sentence such as “briggy tublish tuchty”. The participants were
asked to categorize the sentence they heard either as meaningless, meaningful, or meaningful
and pleasant, and press the corresponding number 1, 2. or 3 on the numerical keypad.

Video (VDO): In this sensory modality, ambiguous images were displayed sequen-
tially (see example as illustrated in Figure 1), while the song “Imagine” by John Lennon
was played in the background. Like meditation, this was a passive task that required no
active response from the participants.

The experiments were conducted inside a Faraday chamber, while the participants
were sitting comfortably on a chair, in front of a computer with a keyboard. To minimize
artifacts while answering the experimental questions via the space bar and the numerical
keypad, participants were asked to attenuate eye, head, and body movements. Three (3)
checks were conducted by the experimenters as follows:

• An impedance check prior to the beginning of the experiment.
• A second impedance check after the first two modalities, MED and WORDS (block 1).
• A third and final impedance check after modalities IMG and MM (block 2).
• The experiment concluded with the modalities SENT and VDO (block 3).

We measured twenty (20) healthy participants, eleven (11) males and nine (9) females,
between twenty-three (23) and sixty-four (64) years of age. Amongst the participants were
eleven (11) meditators varying in expertise and nine (9) non-meditators. The present work
excludes the analysis of the significance of meditation experience among the participants;
for meditation-related results, see [36]. Here we group meditation and relaxation in the
modality MED as described above.

2.2. Preprocessing

Data were collected at a sampling frequency of 1000 Hz, using the 128-channel EEG array.
The vector of 128 data points at a given time was converted into a 12 × 12 square matrix,
corresponding to cortical areas. In order to fill in the open positions in the matrix, some of the
data channels were duplicated. Two locations on the prefrontal cortex, A(12,3) and A(12,10),
were used as reference positions and left open; see [36] for experimental details.

We used standard preprocessing techniques, including a notch filter at a frequency of 50 Hz,
and a detrending filter to reduce movement artefacts [34]. These approaches produced data over
the frequency band of 2 Hz to 48 Hz, which served as a starting point for future detailed analysis.

Finally, we mention that a 22 ms adjustment was introduced to align the EEG record-
ings with the time instances of the recorded events and actions, e.g., pressing a key by the
participants. The 22 ms adjustment was required in part due to the delay in the anti-aliasing
filter (8 ms), and also due to the screen refreshing rate (14 ms).

2.3. Hilbert Analysis

In this section, we briefly summarize the signal-processing methodology using the
Hilbert transform, which allows studying the characteristics of rapidly changing signals.

The Hilbert transform methodology has the advantage that it allows for targeting
significantly nonstationary signals, with possible nonlinear characteristics in the time
domain. Brain signals exhibit strongly nonstationary and nonlinear properties, and Hilbert
transform-based methods have been successfully applied to analyze spatio-temporal brain
dynamics in the past decades [40]. The Hilbert transform significantly relies on band-
passed filtering of the measured data, and the proper design of the filters is an essential
component of the approach. Clearly, Hilbert analysis ought to be complemented with
additional approaches and information-theoretic measures, based on Fourier analysis and
spectral densities, e.g., [36].
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By applying the Hilbert transform, each EEG electrode signal s(t) is transformed to S(t) as follows:

S(t) = s(t) + i s(t)* (1)

S(t) = AA(t)ei AP(t) (2)

where s(t)* = 1
π p.v.

∫ +∞
−∞

s(t′)
(t−t′)dt′ and where p.v. is the Cauchy Principal value.

Here, AA(t), AP(t), and IF(t) stands for analytic amplitude, analytic phase, and instan-
taneous frequency, respectively. They are defined as:

AA(t) =
√

s(t)2 + s(t)*2; AP(t) = atan
(

s(t)*
s(t)

)
(3)

IF(t) =
(

1
2π

)(
∆AP(t)

∆t

)
=

(
1

2π

)(
AP(t)− AP(t − ∆t

∆t

)
(4)

Figure 2 illustrates the applied Hilbert transform-based signal-processing algorithm [40,45]. As
an example, let us define s(t) = sin(ωt), then s(t)*= sin

(
ωt− π

2
)
∀ω < 0 and sin

(
ωt− π

2
)
∀ω > 0,

and we can visualize AA(t) and AP(t) as shown in Figure 2b,c. We used the MATLAB “Hilbert”
function to compute the imaginary part s(t)* from the real valued signal s(t). In Figure 2d–g we
show an example for one of the 144 channels, channel 2, measured via the EEG net.
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Figure 2. (a) Schematics of the Hilbert transform-based methodology when a narrow frequency
band is applied to the EEG signal (Xt), producing the filtered signal Yt, followed by a Hilbert trans-
formation. This leads to signal Zt, which is complex valued. Considering polar coordinates, the
signal is described by its amplitude and phase. The modulus of Zt gives the analytic amplitude
(AA), while the angle produces the analytic phase (AP). (b) Resulting signals after Hilbert trans-
form is applied to a sinus time series, showing the real and imaginary parts of the complex signal.
(c) Analytic amplitude (AA) and phase (AP) derived from the resulting signals after Hilbert transform
is applied. Examples of the different indices that were computed after Hilbert transforming the signal
amplitude for EEG Channel 2: (d) AA(t), (e) IF(t), (f) AP(t), (g) SA(t).
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2.4. Computation of the Pragmatic Information Index

Pragmatic information (PI) was introduced originally to describe collective oscillations
in laser systems [38]. It is a fundamental extension of the Shannon information, and it
has been applied to brain dynamics [39]. Freeman observed that pragmatic information
is applicable to describe the sequences of brain amplitude modulation patterns, as order
parameters [45]. Pragmatic information, as applied to brain oscillatory patterns, can serve
as a biomarker of intentionality and the creation of meaning, and it can be interpreted in
terms of many-body field dynamics [41]. In practical terms, the pragmatic information
index is given as the ratio of the dissipation of free energy and the rate of change in the
indicated order parameter [45]. Let He(t) denote the pragmatic information index, which is
expressed as follows:

He(t) =
〈

AA2(t)
〉

/De(t) (5)

Here, De(t) is the distance between consecutive AA(t) patterns, while ⟨ ⟩ is the ensemble
average across space. Instead of using the distance between AA(t) patterns to derive He(t), we
can use AP(t) to arrive at an alternative version of the pragmatic information index.

In the case of the EEG experiments, the AA(t) vector has 128 components, and the distance
between consecutive patterns can be simply calculated using the Euclidean measure as follows:

De(t) = |AA2(t) − AA2(t − 1)|2 (6)

In an alternative definition of De(t), the distance between consecutive analytic phase
patterns AP(t) can be employed, as it is described in Equations (7)–(11). Here, the time
index runs through t = 1, 2, . . ., t*, . . ., T, while the index for the spatial location of the
electrodes will be i = 1, 2, . . ., 128:

∆ AP(t *)i = AP(t*)i − AP(t*)i−1 (7)

∀i = 2, Nch, for t = t*

∆ AP(t *) = (∆ AP(t *)1, ∆ AP(t *)2, . . . ∆ AP(t *)Nch (8)

De(t*) = |∆ AP(t *)|2∀i = 2, Nch (9)

De(t*) =
√

∑Nch
i=2 [∆ AP(t *)i]

2 (10)

De(t) = (De(1), De(2), . . . ., De(t*), . . . De(T))∀t = 1, T (11)

where i is a particular channel, t* is a particular point in time, Nch is the total number of
channels (electrodes), and T is the time length of the signal or last temporal point.

The concept of pragmatic information has been applied to general complex sys-
tems [46]. Pragmatic information has a unique potential to characterize meaning and
provide a measure to describe brain dynamics [47]. This is especially remarkable as the
very foundation of pragmatic information goes back to the work by von Weizsäcker, mak-
ing a distinction between the Shannonian syntactic information, and the general semantic
and pragmatic information [48,49].

Using the pragmatic information index to describe brain dynamics based on measur-
ing EEG signals, we may gain insight into the electrical and metabolic processes underlying
the creation of meaning in brains. This view is supported by results obtained by ECoG
experiments with rabbits trained by the classical conditioning paradigm [21,23]. Detailed
re-evaluation of the experiments conducted in the 1990s showed that the pragmatic infor-
mation index exhibited distinct peaks following an approximately 1 s post-stimulus period.
This is illustrated in Figure 3, previously published in [37], where the stimulus happens at
time instant 3 s.
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Figure 3. Illustration on the cycle of creation of knowledge and meaning. A visual stimulus is
presented to the animal at time instant 3 s. The stimulus is processed and resolved in the 1 s window
following stimulus presentation [37].

During the 1 s post-stimulus period, the following distinct cognitive processing steps
are indicated: Awe, Chaotic Exploration, Aha (also called the Eureka moment of sudden
insight), Chaotic Exploration, and returning to Background Activity. These steps are
hypothesized as parts of the cycle of the creation of knowledge and meaning (CCKM) [50].

In the next section, we present our findings and analysis of human brain dynamics,
which show greater complexity than animal brain dynamics. In humans, meaning creation
has several levels, which manifest more complexity than the case of perceiving a single
salient stimulus in a time window of 1 s, which has been illustrated based on the rabbit
ECoG studies outlined in Figure 3.

3. Results
3.1. Overview of the Multimodal Experiments

This section provides a comprehensive description of the experimental results ob-
tained with six modalities, using the 128-eletrode EEG array placed over the scalp of the
participants. Details of measured EEG signals, their analytic amplitudes and phases, as
well as the derived pragmatic information, are given.

Figure 4 illustrates the analytic amplitude (AA(t)), signal amplitude (SA(t)), and analytic
frequency (IF(t)) over a 3.5 s observation period, for frequency band (Theta), for Participant
7. Specifically, Figure 4a,b display the AA(t) and SA(t) signals for all 128 electrodes, while
Figure 4c,d show the average ⟨AA(t)⟩ and ⟨SA(t)⟩ signals calculated across the EEG array,
together with the shaded upper and lower limits, respectively. Over the ~2000 ms to 2300 ms
time window, we observe significant peaks in AA(t) and ⟨AA(t)⟩, indicating that the power of
the signal, and therefore its energy, have increased in that time window.

Figure 4e displays the analytic frequency IF(t) for the 128 EEG electrodes. The curves
show many spikes, which indicate rapid changes in the analytic frequency at various time
instances. For our future discussions, it is important to point out that the IF(t) values are
consistently low during time interval ~2000 ms and 2300 ms, showing that the signals
maintain a rather constant phase during this period, leading to only small variations in
the analytic frequency. This means that the signals are highly synchronized during this
time window, exactly where AA(t) had a significant peak, indicating that the power of
the signal, and therefore the energy, increased at that time of high synchronization. This
observation has important implications for the behavior of the pragmatic information index,
as elaborated later in Figure 5.
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Figure 5. Pragmatic information illustration; (e) He(t) is the result of the ratio
〈

A2(t)
〉

/De(t) where

De(t) and AA2(t) are shown in plot (a,b,c), respectively. (d) displays He(t)1 and (e) He(t)2; these are
pragmatic information indices where De(t) is based on amplitude and phase, respectively.
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Figure 5 provides a graphical illustration of the evaluation of the pragmatic informa-
tion index, He(t), as described above. In order to characterize where and when knowledge
and meanings are created to conduct an intentional action, the pragmatic information
index, He(t), was evaluated during the 3.5 s response period depicted in Figure 5. We can
appreciate the significant changes in pragmatic information, He(t), as a result of computing
the ratio

〈
AA2(t)

〉
/De(t), where De(t) and AA2(t) show relevant features shaping He(t)

dynamics. We display two versions of PI, namely He(t)1 and He(t)2, where De(t) is based
on amplitude and phase, respectively [33].

We produced similar plots for all participants, for all modalities, for all stimuli, in every
frequency band of interest, as shown in Table 1. From this first qualitative analysis and
based on Freeman’s findings [45], we expect that the most relevant frequency bands with
potential impact on the creation of knowledge and meaning are High Gamma (35–48 Hz),
and Alpha (8–12 Hz), which is proposed to be acting as a gating band. This is in line
with the proposal of Freeman and Kozma and others, suggesting a Gamma–Alpha and
Gamma–Theta link [51–54].

Table 1. Relevant frequency ranges and bands studied.

Frequency Range Frequency Band

4–7 Hz Theta

8–12 Hz Alpha

13–17 Hz Low Beta

18–25 Hz High Beta

26–34 Hz Low Gamma

35–48 Hz High Gamma

Figure 6 illustrates the EEG in subplots (a)–(b), and an example of the distribution of
the pragmatic information index across various brain areas, during a 3.5 s experimental
period. The PI plot corresponds to participant 7 (P7), in the modality WORDS, on stimulus
9 (S9), in the Theta band. This example illustrates that the creation of knowledge and
meaning is manifested in different combinations of brain areas and frequency bands. These
computations for He(t) use a specific implementation of the PI evaluation, where we have
performed the evaluation in time windows of length ∆t as He(t − ∆t).

3.2. Evaluation of Pragmatic Information Variables and Parameters

Next, we introduce a set of variables to characterize the dynamics of He(t) during the
time period necessary to process a particular stimulus [37], which are given as follows:

• NPS: the total number of peaks per unit time (s);
• TBP: the time spent between peaks, describing the quiet periods;
• TOP: the time describing the duration of peaks, measuring intensive periods;
• QPT: the total quiet processing time;
• IPT: the total intensive processing time.

The number of peaks will be described by the following aggregate quantity γ
p,m,s
b,e ,

where the indices stand for stimulus (s), participant (p), modality (m), frequency band
(b), and electrode or channel (e), where p, m, b, e, and s can take values as shown in
Table 2. Table 2 shows that there are different numbers of stimuli in different experiments,
as specified by Nsm in Table 3.
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Figure 6. (a) Example of the positioning of the EGI EEG array (128 electrodes) on participant’s scalp.
(b) Brain areas color coded and represented in a matrix. (c) Contour plot of the pragmatic information
index He(t) during the 3.5 s response time across pre-frontal, frontal, central, and occipital brain areas,
as displayed on subplot (b); see also [37]; (d) shows the He(t) signals for the same brain areas and
time windows ∆t. (e) Both graphs (c,d) display results for participant P7, stimulus S9, in modality
WORDS, for the Theta band, where the stimuli presentation (LVEO) coincides with start time 0, and
the pressing of the button to provide an answer takes place at the end of the processing of the stimuli,
which coincides with time 3.5 s.

Table 2. Values for p, m, b, e, and s as used in the computations.

Participants: P1, P2, . . ., P20 pmax = 20

Modalities: MED, WORDS, . . ., VDO mmax = 6

Frequency Bands: Theta, . . ., H-Gamma bmax = 6

Electrodes/Channels: 1, 2, 3, . . ., 128 emax = 128

Stimuli per modality: 1, 2, 3, . . . , Nsm smax = Nsm

Table 3. Number of stimuli per modality, Nsm.

Modality MED WORDS IMG MM SENT VDO

Nsm 20 20 12 28 20 10

Integrating over all channels, Nch = 128, we obtain the total number of peaks in an
experiment with the following parameters: stimulus (s), participant (p), modality (m), and
frequency band (b):

∼
γ

p,m,s
b =

Nch=128

∑
e=1

γ
p,m,s
b,e (12)
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From
∼
γ

p,m,s
b , NPS can be derived as the number of peaks per second, for given stimulus

(s), participant (p), modality (m), and frequency band (b), based on the total duration:

.
γ

p,m,s
b =

∼
γ

p,m,s
b

tp,m
s

(13)

Considering all the combinations of frequency bands (b) and modalities (m), there are
36 possibilities; we can evaluate the mean values over all stimuli,

.
γ

p,m
b as follows:

.
γ

p,m
b =

Nsm

∑
s=1

.
γ

p,m,s
b /Nsm (14)

From
.
γ

p,m
b we can derive (a) the number of peaks/second for participant p, in modality

m for all frequency bands as
.
γ

p,m
, and (b) the number of peaks/second for participant p, in

frequency band b for all modalities as,
.
γ

p
b as follows:

.
γ

p,m
=

6

∑
b=1

.
γ

p,m
b /6 (15)

.
γ

p
b =

6

∑
m=1

.
γ

p,m
b /6 (16)

Similarly, we compute intervals of confidence based on the standard deviation, S
.
γ

p,m

for the values of
.
γ

p,m
, as well as intervals of confidence based on the standard deviation,

S
.
γ

p
b for the values of

.
γ

p
b , as follows:

.
γ

p,m
± t∝=0.05,6 ∗ S

.
γ

p,m/
√

6 (17)

.
γ

p
b ± t∝=0.05,6 ∗ S

.
γ

p
b /

√
6 (18)

Similar formulas can be derived over brain areas, when the number of electrodes
over the specific area are used. For example, the following expressions are valid for the
prefrontal region PF:

∼
γ

p,m,s
b,Fp = γ

p,m,s
b,1 +γ

p,m,s
b,2 + γ

p,m,s
b,8 + . . . ∀ e ∈ Fp (19)

Considering all areas, we write:

∼
γ

p,m,s
b,Ba

= γ
p,m,s
b,n1 +γ

p,m,s
b,n2 + . . . + γ

p,m,s
b,nn (20)

∀e = n1, n2, . . . nn ∈ Ba where

Ba = Fp, F, T, C, P, O, Facial

Following the approach described above, formulas can be derived for the other sta-
tistical quantities described earlier, such as TBP, TOP, QPT, and IPT. When needed, the
corresponding formulas will be provided in the section of analysis.

When characterizing He(t), the following specifications are used:

• A threshold signal value is determined heuristically; a specific threshold is set at 0.1 in
these studies.

• Time of peak (TOP) for each significant peak is defined as the duration of the signal
continuously above such threshold.

• Time between peaks (TBP) is defined as the duration of the signal continuously below
the threshold.
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• The selection of a minimum TBP, in this study ≤11 ms, where two consecutive peaks
should be taken and joined as one peak.

• Isolated peaks that are too short, here shorter than ≤50 ms, are rejected.

We start by setting a threshold value for the pragmatic information index [29]. Most of
the time PI has sub-threshold values, but at some moments it may cross to super-threshold
values. Such crossing events are used as markers for the postulated emergence of meaning
related to the specific sensory stimuli in the context of the participants’ physical and cognitive
state, and their intentions and desired actions. These are precisely the moments that may
be considered to consume the most energy. Details of the energy consumption during the
cognitive cycle require further studies and are outside the scope of this work; see, e.g., [29].

Figure 7 shows an example with a PI threshold set at 0.1, for frequency band (a) Alpha (b = 2)
and (b) High Gamma (b = 6); these examples correspond to the fourth stimulus (s = 4) in the WORDS
modality (m = 2). We observe by visual inspection 10 peaks in the case of the Alpha band, and 11 peaks

for the H-Gamma band. Using the compact index notation, this is expressed as
∼
γ

p=1,m=2,s=4
b=2 = 10 and

∼
γ

p=1,m=2,s=4
b=6 = 11. Several peaks may be merged when counting their numbers if they are very close to

each other, or rejected when they are individually very short. Details of the practical implementations
are given in the next section.
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bands; illustrating peaks above threshold 0.1, with selection rules considering peak duration and
time between peaks.

3.3. Results Based on NPS

An important statistical index derived from the pragmatic information index is the
number of peaks per second (NPS). In Figure 8a we display the mean NPS per modality

and frequency band for participant P1. We observe that the mean NPS,
.
γ

1,m
b , varies

across modalities and frequency bands. For example, the modality SENT shows more
peaks/second than the other modalities. In the case of MED modality, there is a general
tendency of having higher NPS over the Theta and Alpha bands, as compared to the
rest of the bands. Visual inspections indicate remarkable differences between various
participants, and also commonalities between participants over modalities and frequency
bands. Detailed statistical analysis can reveal the significance of such observations, as
described next.

In order to illustrate the difference in peaks/second for each modality,
.
γ

p,m
, we

produce a bar graph in Figure 8c, after summing up over all frequencies; see Equation (17)
for details. Figure 8b displays the mean peaks/second,

.
γ

p
b , for each frequency band, after

summing up over all modalities, according to Equation (18).
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Figure 8. (a) Comprehensive illustration of NPS
.
γ

p,m
b across six modalities and six frequency bands,

in the case of participant 1. The modalities are in the same order as introduced at the beginning, e.g.,
Meditation (M) first in dark blue and MathMind (MM) fourth in yellow. (b) Mean peaks/second

.
γ

p
b,

across modalities, for the six frequency bands; (c) mean peaks/second
.
γ

p,m
across frequencies, for

the six modalities.

The results regarding the NPS values combined over all participants are shown in
Figure 9, which shows the differences with respect to modalities, as well as frequencies.
The observations are summarized as follows:

1. In Figure 9c, the Alpha and H-Gamma frequency bands show the highest mean NPS
values for all H-Gamma and most Alpha values across participants, when we compute
the mean and confidence intervals for each modality in each frequency band. This
points to the Alpha and H-Gamma linkage established in other studies [6,55].

2. Except for Theta and Alpha frequency bands, modality MED shows the lowest mean
NPS values. This should be expected since the Theta and particularly the Alpha
frequency bands have been shown to be the dominant frequencies in meditative states
in previous studies [36]. However, this needs more investigation.

At the next level of granulation, we combine either all frequency bands together
in each modality, Figure 9b, or all modalities in each frequency band, Figure 9d. Main
observations are as follows:

1. Modalities MED and IMG show lower NPS values when compared to all other
modalities; Figure 9b.

2. H-Gamma and Alpha frequency bands show the highest NPS values, see Figure 9d.
3. The NPS measure, it seems to us, is a good candidate for the estimation of intensive

processing periods, and likely will be suitable to differentiate between high and low
energy consumption modalities.
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the six modalities; (c) mean NPS for various modalities, clustered according to the frequencies. Mean
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3.4. Results Obtained with TBP and TOP

Another set of relevant variables is described by TBP, which is the time between peaks, and
it is a measure of quiet processing. We also introduce results for TOP, which is the time of peaks,
and it corresponds to time periods with intensive processing; see Figure 10 for illustrations.
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Figure 10. Illustration of the quantities time between peaks (TBP) in green, and time or duration of a
peak (TOP), in red. The blue line shows the computed PI index He(t)2.

TOP and TBP are used to describe the intensive and the quiet processing periods, respec-
tively. At this time, no systematic hypothesis tests were performed regarding TOP and TBP
values across modalities. Nonetheless, several observations are useful. For example, when
analyzing the cumulative distributions for TOP, as shown in Figure 11, for each modality, in the
Alpha (a) and H-Gamma (b) frequency band for all participants, we observe that the TOP values
for the modalities of SENT and WORDS seem to behave differently from other modalities, and
appear to be greater than the values for the modalities of MED and IMG for the Alpha band.
Regarding the H-Gamma frequency band, the values for the modalities of MED and IMG seem
to be significantly lower only in relation to the SENT modality, while the modality WORDS
behaves more similarly to the modalities of MM and VDO.
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Figure 11. Upper row shows CDF plots for TOP values in (a) the Alpha and (b) the H-Gamma
frequency band for all participants in each modality; (c) shows 3D bar graphs of mean TOP val-
ues for each participant (x-axis) and each modality (y-axis) for the Alpha frequency band and
(d) for the H-Gamma frequency band. Lower row shows CDF plots for TBP values in (e) the Alpha
and (f) the H-Gamma frequency band for all participants in each modality; (g) shows 3D bar graphs
of mean TBP values for each participant (x-axis) and each modality (y-axis) for the Alpha frequency
band and (h) for the H-Gamma frequency band. The different colors in (c,d,g,h) represent the
20 participants from P1 (dark blue) to P20 (dark red).
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The cumulative distribution of the Alpha frequency band (a) may indicate a bimodal
or possibly multimodal distribution, which could be due to the fact that some stimuli have
longer duration than others for different participants in a particular modality, meaning that
some participants may be slower to resolve a task than others. This bimodal or multimodal
behavior seems to be absent for most of the modalities in the H-Gamma frequency band.
The bimodal or multimodal behavior observed in the Alpha for TOP values is also observed
in each frequency band for most modalities, and this could also be associated with the
behavior of different brain regions. The study of the behavior of different regions will be
the objective of future studies. In general, the mean TOP for each participant shows similar
values between the Alpha (c) and the H-Gamma (d) frequency bands, with slightly more
variability in the H-Gamma frequency band.

The cumulative distributions for TBP are shown in the lower row (e–h) in Figure 11.
Qualitative observations indicate that the distributions of TBP in all modalities for all partici-
pants seem to exhibit smaller values for H-Gamma (f) than for Alpha (e), with the exception
of the modality MED. In general, several of the mean TBP values are higher for the Alpha
(g) than for the H-Gamma (h) frequency band, except for some exceptions like participants
19 and 20, for example. Note that the H-Gamma frequency band displays more variability.

Finally, in Figure 12 we summarize the above analysis by showing the mean TOP (a,b)
and TBP (c,d) for each modality, for all participants, in the Alpha (a,c) and H-Gamma (b,d)
frequency bands. We can observe that, for TOP, the values are smaller for the modalities
of MED and IMG, while SENT and WORDS display the largest values for both the Alpha
and the H-Gamma frequency bands. For TBP, we find a more diverse range of values across
modalities. IMG displays large values for both frequency bands. However, MED, and SENT
and VDO, have the lowest values for the Alpha frequency band, and it is MM and SENT that
display the smallest values for the H-Gamma frequency band. Again, these qualitative visual
observations must be evaluated using systematic hypothesis tests in the future.
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Regarding the mean NPS, some interesting observations can be made when contrasting
the Alpha and H-Gamma frequency bands, as shown in Figure 13 and Table 4. Table 4 uses
data from [37], but the modalities have been regrouped, to emphasize the significance of
the observations on low NPS values in IMG, MEG, and MM modalities.

In the Alpha frequency band, we can clearly identify the two (2) minimum mean NPS
values associated with the modalities IMG and MM, while for the H-Gamma frequency
band, the two (2) minimum values are identified for the modalities MED and IMG. The
common minimum of the two frequency bands is found in the modality IMG. In the IMG
task, the participants are less in control of the process of knowledge creation, until the
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moment of sudden insight, the “aha” moment, when they identify the meaning of the
earlier hidden image. This, it seems to us, would require less total intensive processing
time, which is a combination of the mean TOP and the mean NPS, as previously explained
in Figure 10, if we add all the TOP values (red) of each peak above the threshold.
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Figure 13. Mean NPS with error bars for all participants in each modality for the Alpha and the
H-Gamma frequency bands.

Table 4. NPS values averaged over all participants and all modalities; frequency bands Alpha and
High Gamma.

Modality Significance of Band Alpha Band H-Gamma Band
Images (IMG) Alpha, H-Gamma 1.64 +/− 0.21 2.28 +/− 0.59

Meditation (MED) H-Gamma 2.00 +/− 0.23 2.07 +/− 0.62
Math Mind (MM) Alpha 1.71 +/− 0.21 2.84 +/− 0.51
Words (WORDS) None 1.99 +/− 0.33 3.02 +/− 0.58
Sentences (SENT) None 2.11 +/− 0.20 3.03 +/− 0.54

Video (VDO) None 2.02 +/− 0.20 2.77 +/− 0.55

We expected that the TOP values for the modality MED would be smaller than for
the rest of the modalities, since meditation practices are known to reduce information
processing in the brain, and therefore the creation of knowledge and meaning would also
be reduced, more likely leading to less NPS and shorter TOP. What is interesting, however,
is that we observe a similar behavior for IMG, which suggests that between the sudden
discoveries of meaningful images, there is little processing of semantic information, which
coincides with longer periods of less intensive processing, as seen in TBP values for both
the Alpha and H-Gamma frequency bands.

Based on the parameters (mean and standard deviation) used to compute the con-
fidence intervals displayed in Table 4, we performed a set of unequal variance t-tests of
hypothesis, where H0: µ1 = µ2 was tested for means between all modalities in the Alpha
and H-Gamma bands. The results are displayed in Table 5. We also tested for means
between the Alpha and H-Gamma bands for each modality. It is important to note that we
accept H0 for p-values greater than or equal 0.05, while we reject it for values smaller than
0.05. An accept is labeled as {0} and a reject as {1}, and a {0*} indicates a just accepted with a
value marginally greater than 0.05, like, for example, 0.06.
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Table 5. Results of the hypothesis tests between modalities. A number in the set {0,1} that corresponds
to a value of the set {accept, reject} respectively, as a result of an unequal variance t-test of hypothesis,
where H0: µ1 = µ2, allowing for a comparison between a pair of modalities for the Alpha (above
matrix diagonal, color yellow) and H-Gamma bands (below matrix diagonal, color blue) based on
the NPS index. The symbol “*” indicates a value very close to α = 0.05 (0* means accepted, just).

Vs. MED MM WORDS SENT IMG VDO
MED . 0* 0 0 1 0
MM 0* . 0 1 0 1

WORDS 1 0 . 0 0 0
SENT 1 0 0 . 1 0
IMG 0 0 0 0* . 1
VDO 0* 0 0 0 0 .

From Table 5, it is clear that the modality MED shows a significant number of rejects
(1) and just accept (0*), particularly for the H-Gamma band, when compared with the rest
of the modalities. For example, we observe that the NPS means for the modality WORDS
show the same mean, statistically speaking, when compared to the rest of the modalities in
both bands, except for modality MED in the H-Gamma band.

When taking the results of the Alpha and H-Gamma bands together, we reject H0
when comparing the mean NPS values of modality MED with the rest of the modalities,
except for the modality VDO where H0 is accepted (0) and MM is just accepted (0*) when
compared with MED. In the case of modality WORDS, H0 is accepted (0) for all but modality
MED. For modality MM, H0 is accepted (0) when compared with most modalities and only
rejected (1) for modalities SENT and VDO in the Alpha band. Additionally, H0 is rejected
when contrasting the modalities of IMG with SENT and VDO for the Alpha band.

In H-Gamma, all other combinations of means hypothesis testing return a value of 0,
accepting that means between modalities are equal, except when contrasted with modality MED.

When we test H0: µ1 = µ2 for a comparison between the Alpha and H-Gamma bands, we
accept H0 for p-values greater than or equal 0.05, otherwise H0 is rejected. It is important to
note that we rejected H0 for mean values of NPS for all modalities except for modality MED.

In order to have an idea of the percentage of time that the brain is engaged in intensive
processing, as well as the percentage of time that it is operating in quiet processing mode,
we computed a pair of variables, as follows.

Let us define (1) Tp,m,s
b as the duration of stimuli s, for modality m, for participant p, in

frequency band b; (2) IPTp,m,s
b as the total intensive processing time in stimuli s, for modality

m, for participant p, in frequency band b; and (3) NPs as the number of peaks per stimuli s,
for modality m, for participant p, for a particular frequency band b*. It follows that:

IPTp,m,s
b* =

NPs

∑
k=1

TOPp,m,s
b*,k (21)

PIPTp,m,s
b* =

IPTp,m,s
b*

Tp,m,s
b*

(22)

where PIPTp,m,s
b* is the percentage of intensive processing time in one stimulus, for modality

m, participant p in a particular frequency band b*.
We then compute a vector PIPTm

b* where each particular PIPTp,m,s
b* becomes an element of

this vector, for modality m, in a particular frequency band b*, and we use the values in this vector
to compute and plot the cumulative probability distributions of PIPTm

b* for each modality m.
Similarly, we compute the percentage of quiet processing time for each modality m,

for a particular frequency band b*, as vector PQPTm
b* to produce further statistical analysis.

In Figure 14a,b,e,f we show the empirical cumulative probability distributions for both
PIPTm

b* and PQPTm
b* for b* = [Alpha, H-Gamma], for each modality m. As expected, we
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can observe almost a mirror image of the cumulative probability distributions PIPTm
b* (a, b)

and PQPTm
b* (e, f) for all modalities in both bands.
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Figure 14. CDF for PIPT, considering all modalities, in Alpha (a), H-Gamma (b), L-Gamma (e), L-Beta
(f) and H-Beta (g), and for PQPT in Alpha (c) and H-Gamma (d) frequency bands.

We also observe that the PIPTm
b* values for modality MED and IMG are smaller than

the values for the modality of VDO and this modality in turn shows values smaller than
modalities SENT and WORDS for both bands. The modality MED behaves like MM in
the Alpha frequency band (a), while the modality of MED follows a closer behavior to
the modality of IMG in the H-Gamma (b). It is also clear that the modalities are more
clustered in Alpha than H-Gamma, making H-Gamma a better band to discriminate
between modalities.

We also observe in Figure 14c,d,g for the PIPTm
b* values for b* = [L-Beta, H-Beta,

L-Gamma] how clearly the cumulative probability distribution shows the difference between
modalities, where the values for MED < IMG < MM < WORDS < VDO < SENT are smaller, in
that order, with some small variability for L-Beta. These frequency bands meet the expecta-
tion that the modality MED would show the lowest processing times, since participants are
expected to be in a calmer and quieter information-processing state of mind.

In Figure 15, we show the mean and errors for the values of the PIPTm
b*, for all

modalities and frequency bands, and identify an order from the least to the most intensive
processing time modalities, as follows: MED, {MM, IMG}, VDO, {SENT, WORDS}.

Here we identify the smallest and largest PIPT values per modality and per band as
displayed in Table 6.

From Table 6, we observe how MED displays the lowest values of PIPT for most bands,
apart from Alpha. This could be because in MED, Alpha is the most dominant frequency
and less entropic band for most participants, as shown in [36]. Note that modalities MED,
IMG, and MM show the smallest PIPT values for all frequency bands, in contrast with the
modalities of WORDS, SENT, and VDO, presumably indicating that the first group is less
time and energy consuming out of all modalities.

Finally, we present in Figure 16 the big picture about TBP, TOP, and NPS and their
relationship to one another for all participants, for all modalities, in the Alpha and
H-Gamma frequency bands. As important as they might be in giving us a fuller picture
of brain dynamics, we leave the study of other frequency bands for future research since
(a) we have still to gain more insight into the Alpha–H-Gamma linkage and (b) because it
would make this paper exceed the acceptable length.
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Table 6. The smallest and largest PIPT values for all modalities in each frequency band.

Theta Alpha L-Beta H-Beta L-Gamma H-Gamma

Smallest MM, MED IMG, MM MED, MM MED, IMG MED, IMG MED, IMG

Largest WORDS, VDO SENT, WORDS WORDS, SENT WORDS, VDO SENT, VDO SENT, WORDS
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Figure 16. The relationships between mean TOP, NPS, and TBP: (a) mean TOP vs. NPS values for
Alpha and H-Gamma (d), TBP vs. NPS values for Alpha (b) and H-Gamma (e) and TOP vs. TBP (in
red) for Alpha (c) and H-Gamma (f).

As we can appreciate in Figure 16a,d, generally speaking, the mean values of TOP
drop in H-Gamma when compared to those in Alpha for all modalities except for VDO,
while the values for NPS increase significantly for all modalities (except for MED showing
a slight increase) in H-Gamma when compared to the Alpha frequency band.

On the other hand, when we observe the mean values of TBP (b, e) they show a diverse
behavior between modalities. Modality MED shows a significant increase and clusters
together with modality IMG for H-Gamma when compared to the Alpha frequency band.
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However, modalities SENT, MM, VDO, and WORDS show a large decrease in H-Gamma
when compared to the Alpha frequency band.

In Figure 16c,f we note an inverse relationship between the mean TOP and the mean
TBP values, with a larger variability in Alpha, where we also see three (3) clusters of
modalities as follows: {MED, IMG}, {MM, WORDS, VDO} and {SENT}.

Based on the above, we constructed Table 7 in order to have a concise picture of
the behavior of the different modalities in the Alpha and H-Gamma frequency bands in
terms of mean TOP (MTOP), mean TBP (MTBP), and NPS. This allows us to qualitatively
characterize these variables, from the smallest to the largest values, that influence the
percentage of intensive and quite processing, PIPT, and PQPT respectively.

Table 7. Comparing modalities and frequencies for several indices. The index of ordering from
the smallest to the largest, based on the mean values of TOP (MTOP), the mean values of TBP
(MTBP), and NPS values as derived from Figure 16, per modality for the Alpha (A) and H-Gamma
(G) frequency bands.

MOD MED WORDS IMG MM SENT VDO
BAND A G A G A G A G A G A G
MTOP 1 2 5 5 2 1 4 4 6 6 3 3
MTBP 3 5 5 4 6 6 4 2 1 1 2 3
NPS 4 1 3 6 1 2 2 4 6 5 5 3

Taken together, the Alpha and H-Gamma frequency bands show MTOP values dis-
playing an increasing order from the modalities of MED and IMG (1st), VDO (2nd), MM
(3rd), WORDS (4th), and SENT (5th). However, when we look at the MTBP values, the
different modalities behave in a different manner when contrasting Alpha and H-Gamma,
as follows: (a) SENT (1st), VDO (2nd), MED (3rd), MM (4th), WORDS (5th), and IMG (6th)
for Alpha, and (b) SENT (1st), MM (2nd), VDO (3rd), WORDS (4th), MED (5th), and IMG
(6th) for H-Gamma.

Note that modalities MM and MED show the larger changes in mean TBP values when
contrasting their values for the Alpha and H-Gamma frequency bands.

For the NPS, the order is as follows: (a) IMG, MM, WORDS, MED, VDO, and SENT
for the Alpha frequency band; and (b) MED, IMG, VDO, MM, SENT, and WORDS for the
H-Gamma frequency band. Note that both frequency bands show very distinct orders.

We observe a general tendency of inverse correlation between the variables MTBP and
NPS, except for some exceptions in the H-Gamma band, particularly for modality WORDS.

These variables describe very particular aspects of brain dynamics related to velocity
of processing per stimulus and the mean intensive processing time per stimulus that can
be derived from IPTp,m,s

b* in Equation (21), which also can be estimated as the mean TOP
multiplied by the mean NP per stimulus for all participants, for all modalities, for each
band. This analysis could be extended to differentiate between experienced meditators
and participants with little or no meditation experience. This issue is not addressed in the
present study.

Note that this analysis is based on mean values. In the future, this study should be
complemented following the results obtained in Table 5, and further statistical analysis,
where a test is performed for H0: µ1 < µ2 or H0: µ1 > µ2, for NPS and other variables.

4. Discussion

Based on a comprehensive evaluation of EEG measurements conducted with the
participation of 20 volunteers, we explored the brain response to a range of sensory and task
modalities, following the pioneering work by Freeman on intentional neurodynamics and
the creation of meaning [23,30]. The results presented in this work help better understand
the energy aspects of brain dynamics that may lead to a healthy and meaningful life. Several
main conclusions are as follows:
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• Several statistical indices were introduced based on pragmatic information (PI) to
characterize brain dynamics over the Theta, Alpha, Low Beta, High Beta, Low Gamma,
and High Gamma bands. We defined the following variables over each band and
each modality: number of PI peaks per second (NPS), time between peaks (TBP),
time of peak (TOP), quiet processing time (QPT), and intensive processing time (IPT).
We conducted a thorough statistical analysis of these variables and found important
differences and similarities between modalities and bands.

• The analysis showed that H-Gamma and Alpha frequency bands demonstrate high
NPS across the pool of 20 participants. Brain dynamics variables, in both the Alpha
and H-Gamma frequency bands, served as classifiers for the different behaviors
observed between modalities. This result provides a novel quantitative support to
the previously established relationship between Alpha and H-Gamma bands using
alternative approaches.

• Except for Theta and Alpha frequency bands, the meditation (MED) modality shows
the lowest mean NPS values. This observation is in accordance with other studies
showing that meditative states significantly rely on processes over the Theta and
Alpha bands. This topic requires further detailed investigation and rigorous statistical
hypothesis testing, which are beyond our present work.

• A significant, novel aspect of our PI-based statistical analysis is that the derived
information-theoretical indices can be considered as promising candidates for the
estimation of intensive processing periods in brains, potentially suitable to differentiate
between high and low energy consumption modalities. To compare modalities and
characterize their behavior, we may use complementary measures such as information
and entropy indices.

• Having a robust experimental tool to non-invasively monitor the energy consumption
of brain operational modalities will be very useful for the analysis of cognitive pro-
cessing in healthy brains, with minimal interference in the person’s daily activities.
Moreover, deviations from well-established patterns of activities may help to identify
and rectify potential pathological conditions.

In recent years, the important role of rhythmic breathing on psychophysiological coher-
ence has been clearly identified [56,57], including the respiratory modulation of cognitive
functions in epileptic patients [58]. The delicate balance of various rhythms in the human
body and the relationship to general well-being [59] has been documented, including a com-
prehensive study on heart rhythm synchronization with the Earth’s time-varying magnetic
field [60]. The insights gained in our present study using EEG measurements involving
multiple cognitive modalities indicate potential applications to address various cognitive
neuroscience challenges, including brain studies associated with mental conditions and
brain diseases. Intentions and decisions can shape our dietary, exercise, and relaxation
habits, with lasting consequences on health in general. Having a clear understanding of the
effect of such intentions, decisions, and habits can help in preventing and, perhaps, even
correcting, illness and traumatic experiences.

The main focus of the present study is on meditative states and their potential positive
influence on general well-being, closely related to our values and meaningful intentional
actions. When we value someone or something, this person or thing becomes meaningful
to us. In turn, we value what is meaningful to us, like a spiritual experience, the love
of our lives, or our general well-being. Spiritual or universal values like Love, Truth,
and Unity seem to be very meaningful as abstractions and experiences that we reflect in
social relationships and contracts like marriages and constitutions. Together with inner
transformations, new insights, and higher meanings, we can refine our intentions and
continuously redefine our goals, in order to improve ourselves in many dimensions.

Meanings are veiled to brain dynamics measurements, yet they are very salient and
revealed in human experience. This forces us to consider that the creation and valuation of
our most precious meanings ought to be understood by first- and third-person perspective
science, which means the study of brain dynamics, hand-in-hand with personal reports and
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anecdotal veridical evidence based on subjective experience. We hope these studies help
to improve the conditions for enhancing human potential, well-being, and meaningful be-
havioral responses, something that could be explored both experientially and scientifically
from an early age.

We dedicate this work to the memory and the spirit of our beloved friend and collabo-
rator Walter J. Freeman.
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