
Citation: Khan, M.; den Hartog, F.;

Hu, J. Toward Verification of

DAG-Based Distributed Ledger

Technologies through Discrete-Event

Simulation. Sensors 2024, 24, 1583.

https://doi.org/10.3390/s24051583

Academic Editor: Allel Hadjali

Received: 15 January 2024

Revised: 20 February 2024

Accepted: 27 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Toward Verification of DAG-Based Distributed Ledger
Technologies through Discrete-Event Simulation
Misbah Khan , Frank den Hartog and Jiankun Hu *

Canbbera Campus, University of New South Wales Canberra at the Australian Defence Force Academy,
Campbell, ACT 2612, Australia; misbah.khan@unsw.edu.au (M.K.); frank.den.hartog@unsw.edu.au (F.d.H.)
* Correspondence: j.hu@adfa.edu.au

Abstract: As the potential of directed acyclic graph (DAG)-based distributed ledgers in IoT systems
unfolds, a need arises to understand their intricate dynamics in real-world scenarios. It is well known
that discrete event simulations can provide high-fidelity evaluations of protocols. However, there
is a lack of public discrete event simulators capable of assessing DAG-based distributed ledgers.
In this paper, a discrete-event-based distributed ledger simulator is introduced, with which we
investigate a custom Python-based implementation of IOTA’s Tangle DAG protocol. The study
reveals the dynamics of Tangle (particularly Poisson processes in transaction dynamics), the efficiency
and intricacies of the random walk in Tangle, and the quantitative assessment of node convergence.
Furthermore, the research underscores the significance of weight updates without depth limitations
and provides insights into the role, challenges, and implications of the coordinator/validator in DAG
architectures. The results are striking, and although the findings are reported only for Tangle, they
demonstrate the need for adaptable and versatile discrete event simulators for DAG architectures
and tip selection methodologies in general.

Keywords: blockchain; coordinator; decentralization; directed acyclic graph; distributed ledger
technology; IOTA; micro-transactions; scalability; Tangle

1. Introduction

The Internet of Things (IoT) is ushering in a new era characterized by the interconnec-
tivity of billions of devices. With this vast network comes the critical challenge of ensuring
data integrity and decentralization. While blockchain technology has been lauded for its
unparalleled characteristics of integrity, decentralization, and auditability, its linear data
structure has shown potential limitations in meeting the high transactional demands of
IoT systems.

DAG-based distributed ledgers represent a significant evolution from traditional
blockchain technology. Unlike blockchains, which operate on a linear sequence of blocks
starting from a genesis block, DAGs expand in a non-linear, multi-dimensional manner.
This structure allows multiple blocks to be added to the network simultaneously, leveraging
the DAG data structure, where each node can represent a block or a single transaction,
depending on the specific architecture of the blockchain in question. This capability for
parallel transaction processing markedly enhances the scalability and makes DAG-based
systems particularly well suited for high-volume transaction environments, such as those
found in the Internet of Things.

DAG-based ledgers like Phantom, IOTA [1], Nano [2], and Hashgraph [3] have show-
cased the vast potential of this technology by facilitating faster transaction speeds and
lower operational costs, thereby addressing some of the scalability and efficiency challenges
faced by conventional blockchains. However, it is crucial to acknowledge the limitations
and challenges that DAG-based systems encounter, including network security, consensus

Sensors 2024, 24, 1583. https://doi.org/10.3390/s24051583 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24051583
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2081-3063
https://orcid.org/0000-0001-5293-6140
https://orcid.org/0000-0003-0230-1432
https://doi.org/10.3390/s24051583
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24051583?type=check_update&version=1

Sensors 2024, 24, 1583 2 of 20

mechanism complexities, and the trade-offs between decentralization and scalability. Un-
derstanding these aspects is essential in utilizing the full potential of DAG-based distributed
ledgers to create more efficient, scalable, and secure decentralized systems.

This paper presents a discrete-event-based evaluation of the Tangle protocol, following
its description in [1] as closely as possible. We focus on Tangle’s initial version to grasp its
core principles, setting a solid foundation before exploring the complexities of its recent
(but significantly less well described) evolution toward a validator committee [4]. This
approach ensures a thorough understanding of the fundamental design before delving
into advanced developments. The discrete event simulator is developed such that it is
both flexible and extensible, to support future research across other DAG-based ledger
systems. For instance, the simulator in its current form incorporates Tangle’s random
walk strategy; however, its architecture is designed to be adaptable, allowing for the
straightforward integration of other methodologies, such as Virtual Block [5]. Unlike
the asynchronous, continuous-time model used in the DAGsim multi-agent simulation
framework for DAG-based cryptocurrencies [6], our simulator operates on the principle
of discrete events, providing a distinct and precise method of evaluating system behavior
and performance. In contrast to another work [7] that introduces an agent-based simulator
focusing primarily on evaluating the performance of the Tangle protocol under diverse
network conditions and attack scenarios, our proposed simulator offers a more comprehen-
sive approach. Our work not only features an agent-based model with individual agents
representing network nodes, each exhibiting distinct behaviors like transaction issuance,
validation, and decision-making based on predefined rules, but also extends to model-
based simulations. In the latter, we leverage a quantitative model to depict the continuous
dynamics of the DAG-based blockchain. These equations capture critical aspects such as
the accumulative weight, Poisson distribution, node convergence over time, and network
propagation dynamics. The only known discrete event simulator in the literature designed
for DAG-based distributed ledgers is DAG-Sword [8], which builds upon a previous Bitcoin
mining simulator [9] to verify miner block rewards. While DAG-Sword primarily focuses
on DAG-based consensus protocols and the impact of malicious miners on the transaction
processing throughput in protocols like Phantom and GhostDAG, it leans more toward
transaction fees and a mempool data structure due to the linear behavior of its underlying
Bitcoin mining simulator. In contrast, our work presents a discrete event simulator that
offers a more comprehensive perspective on DAG-based ledgers. Our study encompasses
discrete event evaluation, meticulously simulating discrete events within the DAG-based
blockchain and encompassing timestamped actions like transaction creation, transaction
propagation, transaction validation (by new tips), transaction approval (by milestones),
tip selection, milestone creation, and double spending. This meticulous approach ensures
that these events are processed in precise chronological order. Our multifaceted research
methodology provides a robust and comprehensive foundation for the in-depth analysis
and potential enhancement of DAG-based distributed ledger systems.

Our contribution is twofold: (1) providing a comprehensive understanding of Tangle
and (2) establishing a benchmark for the evaluation and improvement other DAG-based
distributed ledger technologies.

The remainder of the paper is organized as follows. Section 2 reviews related work.
Section 3 elaborates on our methodology and the specifics of our discrete event distributed
ledger simulator. Section 4 presents the results coupled with a comprehensive analysis.
Section 5 presents a discussion and outlines potential future work. Section 6 provides
the concluding remarks and our contributions to the field of DAG-based distributed
ledger systems.

2. Related Work

Recent research has seen the development of various simulators, like Blocksim [10,11]
and Blockperf [12], along with subsequent enhancements, such as those to Blocksim [13],
providing valuable tools for the in-depth investigation of blockchain solutions. However,

Sensors 2024, 24, 1583 3 of 20

when it comes to DAG-based blockchain systems, such efforts are notably scarce in the liter-
ature, highlighting a gap in research and development for these types of distributed ledgers.

The article [6] presents a simulation framework for the study of DAG-based cryptocur-
rencies, specifically focusing on IOTA. This framework models how transactions occur and
are accepted in such systems by simulating the behavior of both honest and semi-honest
actors. The study finds that agents (or nodes) in the network with low latency and high
connectivity have a better chance of having their transactions accepted. The framework has
been designed with extensibility in mind, allowing for the inclusion of other DAG-based
protocols and the potential addition of malicious agents in the future. However, while this
is a commendable effort, the approach emphasizes solely thread-based implementation.
As outlined in Section 3.1, it is limited to utilizing eight threads due to system constraints.
In contrast, the methodology presented in our work encompasses not only thread-based im-
plementation, but also asynchronous tasks. Therefore, if researchers have access to advanced
supercomputers like NCI Gadi, our approach can be effortlessly expanded to multi-CPU
configurations, enabling the generation of more realistic and comprehensive results.

Another study [14] investigates the performance and scalability of IOTA. Using an
extended version of the DAGsim simulator [6], the study delves into factors such as the
transaction arrival rate, tip selection algorithms, and network delay to provide insights
into IOTA’s performance. Further, another DAG-based simulator, TangleSimulator, has
been proposed [15], focusing on the stability of tip counts against various tip selection
methods. An additional study [16], builds upon the TangleSimulator, offering enhanced
configuration options and a larger number of transactions. This work illustrates and
examines the fundamental components of Tangle. However, similar to the study in [6],
it also demonstrates smaller configuration parameters. Another study [7] introduces
an agent-based simulator focusing on the performance of the Tangle 2.0 protocol under
various network environments and attack scenarios. This study provides a comprehensive
understanding of Tangle, yet it focuses exclusively on IOTA. Furthermore, MAIOTASim [17]
also proposes a multi-agent IOTA simulator, providing the security verification of consensus
under double spending attack scenarios. However, this work also only focuses on the IOTA
protocol, unlike our proposed simulator, designed with generic components for overall
DAG-based distributed ledgers.

A notable work by [18,19] provides a comprehensive empirical analysis of IOTA’s
Tangle using real transaction data officially released by the IOTA Foundation. Their study
showcases Tangle’s topological features and observed performance, contrasting it with the
prevailing literature’s conclusions. Specifically, they shed light on the actual transaction
confirmation time and the topological characteristics of real IOTA tangles, which differs
from commonly held beliefs about IOTA’s efficiency compared to traditional blockchains.
Guo et al.’s [18] analysis illuminates certain latency issues with Tangle, highlighting that
the actual transaction confirmation time may not be as efficient as once assumed. This
work is instrumental in presenting an empirical perspective on Tangle, emphasizing the
importance of real-world data in evaluating decentralized platforms. However, while their
work offers profound insights into Tangle’s empirical analysis, our study delves deeper
into the practicality of the IOTA protocol. Our research focuses on the finest discrete events
occurring in Tangle, providing a more holistic view of the IOTA protocol’s behavior in
high-fidelity simulation environments, which can serve as a robust baseline for future
investigations into DAG-based distributed ledgers.

In summary, the research landscape on IOTA’s Tangle and DAG-based distributed
ledgers has seen a spectrum of investigations, ranging from empirical analyses to simulation-
based studies. While these studies have provided invaluable insights into the workings and
challenges of the IOTA protocol, there remains substantial scope for enhanced methodolo-
gies that transcend traditional approaches. This research endeavors to fill this gap, offering
a novel perspective and approach that further elevates the understanding of the Tangle
protocol. A comparison of the DAG-based simulators is presented in Table 1.

Sensors 2024, 24, 1583 4 of 20

Table 1. Comparison of DAG-based simulators in related work.

Work Year Focus and Key Features Model DE

Tangle Simulator 2018 Tangle, stability of tip counts against various tip selection
methods with limited configuration options. Continuous-time ×

CIDDS 2018
Extension of Tangle Simulator with enhanced configuration
options and a larger number of transactions, investigates
throughput and networking layer.

Continuous-time ×

BlockSim 2019 Linear blockchain, aims to mimic and analyze linear
blockchains. Software tool ×

DagSim 2019 Tangle, asynchronous for DAG-based cryptocurrencies by
introducing honest and semi-honest agents. Continuous-time ×

Ext. Blocksim 2021/22 Linear blockchains, extension of Blocksim for hybrid
blockchains and segwit extension. Software tool ×

TangleSim 2023 Tangle 2.0, explores attack scenarios under diverse network
topologies, packet losses, and a gossip protocol. Agent-based ×

DAGSword 2023
Phantom miner and block rewards, built on existing linear
Bitcoin simulator with focus on miners, block rewards, and
mempool optimization.

Discrete-event ✓

MAIOTSim 2024 IOTA, providing the security verification of consensus under
double spending attack scenarios. Multi-agent ×

Our Work 2024

Generic DAG, proposed generic implementation of DAG data
structure can easily be extended to multiple DAG-based
distributed ledgers; analyzes two tip selection methods,
accumulative weight and Poisson distribution.

Agent-based and
discrete-event ✓

3. Simulator Implementation with Tangle Protocol

The following section delineates the step-by-step process followed to develop the
simulator curated with the Tangle protocol, as presented in its white paper [1]. This hands-
on approach aimed to replicate the theoretical underpinnings in a real-world environment
to ensure the practical applicability and operability of Tangle.

3.1. Environmental Setup

The implementation of the simulator and Tangle protocol was constructed using
Python, chosen for its ease of use, clear syntax, and comprehensive libraries that align with
the specific needs of distributed ledger technology. By leveraging Python’s asyncio [20]
and Threading libraries [21], asynchronous network communication between nodes was
effectively handled, ensuring smooth and concurrent node connections.

Python’s (3.10) hashlib and RSA [22] libraries, renowned for their robust cryptographic
hash functions, were utilized to create unique and secure transaction identifiers. For manage-
ment and operating on the DAG structure, data handling libraries like pandas and NumPy [23]
were employed, simplifying the intricate tasks of data manipulation and processing.

For the visual analysis and debugging of the DAG, NetworkX [24] , a Python package
for the creation, manipulation, and study of the structure, dynamics, and functions of
complex networks, was used. In conjunction, matplotlib [25] and Graphviz [26] provided
a flexible method for the visualization of the data, offering insights into the state of the
network at any point and aiding in the debugging and optimization processes.

3.2. Tangle’s Core Structure

Tangle is the foundational data structure for IOTA. Unlike traditional blockchains that
operate in linear chains of blocks, Tangle is built on a DAG data structure. Each vertex in
this DAG represents a transaction, as presented in Figure 1. The structure allows multiple
transactions to be added simultaneously; there is no need for miners as the transactions are

Sensors 2024, 24, 1583 5 of 20

initially confirmed by the new incoming transaction, ensuring zero transaction fees. This
setup is vital for the scalability and micro-transactions on the IOTA network, especially per-
tinent for IoT applications. Implementing Tangle required the creation of a representation
of a DAG in the system. Each transaction or vertex in Tangle contained essential data such
as its ID, the IDs of the two transactions that it confirmed (previous vertices), and other
transaction-related information. To represent Tangle in this study, a model was developed
with the following components.

Figure 1. A visual representation of Tangle’s directed acyclic graph. Each transaction is denoted
by a rectangle containing its unique ID and its accumulative weight (AW). Transactions reference
two preceding transactions, as indicated by the connecting edges. Green rectangles represent transac-
tions that have been approved by milestones. Blue rectangles highlight transactions that, while not
approved by a milestone, are referenced by other transactions. Lastly, the grey rectangles symbolize
tips, which are transactions that have not yet been referenced by any subsequent transaction.

3.2.1. DAG Representation

The DAG configuration of the network was developed utilizing the NetworkX library.
Individual graph representations were generated for each node in the network, offering a
localized view of Tangle from different nodes’ perspectives.

3.2.2. Transaction Management

The transaction class handled transactions within the network, encapsulating the
characteristics and behaviors of individual transactions. Each transaction had unique
identifiers, parent references, an associated node, an accumulated weight, and a timestamp.
The class ensured the authenticity and integrity of transaction data through signature
mechanisms using the RSA algorithm. An important part of the process was checking
that each transaction had performed a certain amount of computational work, known as
proof of work. Furthermore, every transaction was assigned its own weight (OW) and
accumulative weight. Moreover, a confirmation status flag was also initiated to indicate the
transaction’s confirmation status, which would later be used in coordinator validation.

3.2.3. Accumulative Weight

In Tangle’s architecture, the accumulative weight is a very important metric. This
weight is the sum of the transaction’s OW (which is set to 1 for simplicity) and the OW
of all transactions that directly or indirectly reference it. The system adopted a topo-
logical sequence for transaction processing by prioritizing parent transactions over their
respective descendants.

The accumulative weight of a transaction was dynamically updated during its process-
ing. Let Wx be the own weight of transaction x, Cx be its set of child transactions, and AWx
be its accumulative weight. The relationship between these parameters is given by

Sensors 2024, 24, 1583 6 of 20

AWx = Wx + ∑
y∈Cx

AWy (1)

This equation signifies that the accumulative weight of a transaction is the sum of
its own weight and the accumulative weights of its child transactions [1] (Section 2).
Transactions without children have their AW equal to their OW, while, for those with
children, their children’s accumulative weights contribute to the parent’s overall weight.
This meticulous approach to computing the accumulative weight ensures that the metric
authentically reflects a transaction’s relative importance and influence within Tangle.

3.2.4. Asynchronous Simulation

In the simulation, we mimicked how a node works in the network, especially how it
continuously adds transactions following a Poisson distribution. We used an asynchronous
model for this, which captured the network’s nature of handling many operations at once.

3.2.5. Coordinator

In Tangle, the coordinator emerges as a central figure, ensuring transactional integrity.
In the simulation, the coordinator was initiated with specific parameters, such as the ‘mile-
stones_interval’ and ID, which was configured with all nodes so that they could verify
that the milestone was issued by a legitimate coordinator. The coordinator’s primary re-
sponsibility was to create the foundational ‘genesis_milestone’, a unique transaction without
predecessors that acts as a root transaction of the DAG. Moreover, the coordinator efficiently
broadcast this milestone across the network. The coordinator guaranteed that milestones
were consistently generated at regular intervals.

3.3. Random Walk

In Tangle, every new transaction was tasked with referencing two previous transac-
tions. This reference protocol was directed by the tip selection algorithm (TSA). The TSA
employed the random walk technique to ascertain consensus on transaction confirmations.
Given this algorithm, the most recent transactions, labeled as ’tips’, inherently had an
augmented likelihood of attaining approval from forthcoming transactions. This imple-
mentation aligns with the principles outlined in Section 4 of the Tangle white paper [1].
The random walk serves as the central mechanism for the tip selection process in Tangle. It
comprises two primary walks: the unbiased random walk (URW) and the biased random
walk (BRW). The choice between URW and BRW relied on the parameter α, with the URW
being chosen when α = 0; otherwise, the BRW was initiated. This α value determined the
degree of bias toward transactions with a higher AW.

The BRW used the Markov Chain Monte Carlo (MCMC) approach, and the transition
probability from one transaction to the subsequent one, progressing toward the tips, was
given by

Pxy =
exp(−α(Hx − Hy))

∑z:z→x exp(−α(Hx − Hz))−1 (2)

where

• Pxy represents the transition probability;
• Hx stands for the cumulative weight of the current transaction;
• Hy stands for the cumulative weight of the transaction toward which the random

walker intends to move;
• α is a bias parameter that determines the degree to which the random walk is biased

toward transactions with a particular cumulative weight.

3.3.1. Randomwalker Configuration

The ‘RandomWalker’ class was responsible for performing the random walk. Its config-
uration parameters included the following.

Sensors 2024, 24, 1583 7 of 20

• ‘W’: defines the time interval, emphasizing the importance of recent transactions;
• ‘N’: determines the number of walkers to be deployed for the consensus process;
• α: a bias parameter to influence the walker’s decision in favoring transactions with

specific cumulative weights;
• ‘node’: identifies the specific node in the network initiating the random walk.

3.3.2. Interval Determination

The system checked how old the DAG was compared to a set time interval. If it was
newer, the period was changed. Then, transactions that happened during a specific time
(from W to 2W s) were collected and used in the random walk.

3.3.3. Random Walk Execution

1. Transaction Selection : A random subset of transactions, sized ‘N’ (random walkers),
from the chosen interval, initiated the random walk.

2. Dispatching Walkers: Each transaction underwent an independent walk toward the
tips. This process was based on asynchronous programming and allowed all tasks
(random walkers) to happen at the same time.

3. Walk Type Determination: The URW was chosen if ‘alpha_low’ equaled 0, signifying a
uniform transaction transition. Otherwise, the BRW was employed, and the transition
probability was calculated based on Equation (2).

4. Tip Selection: Post-walk, if fewer than two unique tips were reached, additional
ones were randomly picked. The tips were subsequently sorted, and the first two
were selected.

This implementation presented a robust random walk mechanism for Tangle, based
on firm theoretical underpinnings.

3.4. Network Formation and Dynamics

In our designed simulator, we developed a network with a versatile framework that
integrated functions such as create_peer, latency management, transaction spread, solidi-
fication, and methods to prevent redundancy. These functionalities were wide-ranging
and adaptable, suitable for a variety of DAG-based distributed ledgers. Although this
adaptability was a significant attribute, the current configuration was specifically opti-
mized for IOTA’s Tangle network. Our system effectively mirrored the key features of
Tangle, including its decentralized structure, ability to scale, and distinctive transaction
validation process.

3.4.1. Node Connectivity

The create_peers method was responsible for crafting the network’s structure. In this
setting, the nodes were not fully connected. Instead, each one interacted with an ad-
justable probability of its counterparts, providing an optimal combination of efficiency
and resilience. However, to guarantee the integrity of the network and provide reference
milestones, the coordinator was connected to all nodes (adjustable).

3.4.2. Latency Modeling

Real-world network communication involves unpredictable and varied delays. This
behavior was replicated in our framework through the generate_delay_matrix method. It
assigned probabilistic delay values to potential interactions between nodes, based on a
predefined range.

3.4.3. Gossip Transaction Mechanism

Transactions were propagated through a gossip mechanism, as illustrated by the gos-
sip_transaction method. A node initiated a transaction, sending it to a subset of its peers. This
broadcast strategy, dictated by the subset_factor, ensured strategic and controlled propagation.

Sensors 2024, 24, 1583 8 of 20

3.4.4. Latency Consideration

Transaction propagation delays were controlled by the latency values derived from the
delay matrix. Each transaction endured a unique delay, based on its source and destination
nodes defined in the delay_matrix.

3.4.5. Recursion and Network Penetration

The gossip transaction mechanism employed a recursive strategy. When a node
received a transaction, it became a sender, propagating the transaction to its peers. This
iterative approach guaranteed the transaction’s penetration throughout the network.

3.4.6. Avoidance of Redundancy

To prevent redundant transactions for a single node, we implemented conditional
checks that were activated when the node received a transaction. This ensured that nodes
did not re-process transactions that they had already encountered.

In summary, this approach, integrating node connectivity, latency modeling, and a
gossip-based transaction mechanism, lays a foundation for future research in DAG-based
distributed ledgers.

3.5. Node Functionality

In DAG-based distributed ledgers, nodes are crucial in creating, validating, and broad-
casting transactions. These nodes support the network’s expansion, maintaining the
network’s continuity and integrity. Their functions are defined by the details of their
algorithmic processes. The system described in this study, although based on the Tan-
gle protocol, also shares similarities with other DAG-based distributed ledgers. In this
study, we developed a node class encompassing the essential operations of a node, includ-
ing create_and_sign_transaction, receive_transaction, broadcast_transaction; these functions
leverage the network class for transaction propagation mechanisms like create_peers and
gossip_transaction, etc. The methods outlined are not only applicable to the Tangle system
under study but also extendable to other DAG-based systems.

3.5.1. Transaction Creation and Signing

In our implementation, a node initiates a transaction by generating unique data. This
process involved creating a random data string of N bytes, which was then decoded using
the ‘latin1’ encoding. The transaction, represented by a ‘Transaction’ object, was identified
by its transaction ID (‘txid’) and included references to two-parent transactions, forming
the DAG structure. Furthermore, security was enforced through a cryptographic proof
of work (PoW), and the node signed the transaction with its private key using RSA and
SHA-256 hashing, ensuring data integrity. The transaction was then added to the node’s
list of transactions and unconfirmed transactions and was also considered a new ‘tip’ in
the network. Moreover, the node performed a check to remove any referenced parent
transactions from its list of tips. This action ensured that only new tips were retained in the
network. The code implementation effectively captured the intricate process of transaction
creation, signing, and management within the network.

3.5.2. Transaction Broadcasting and Reception

Once a transaction was created and signed, the node broadcast it to its peers in the
network. This propagation ensured the decentralization and redundancy of transactional
data across the network. While broadcasting, a delay might have been imposed to simulate
network latency, as established by the network’s delay_matrix. When a node received a
new transaction, it performed a series of checks to ascertain its validity. These checks
included examining whether the received transaction or its parent transactions had been
previously seen or were part of the node’s transaction list. Furthermore, if the parent
transactions were missing, the node requested them, ensuring a holistic understanding of
the transaction’s ancestry in the network. It is worth noting that these processes represented

Sensors 2024, 24, 1583 9 of 20

more of an operational or implementation detail rather than a core theoretical concept,
as presented in the Tangle white paper. This approach of retrieving missing pieces for
holistic data understanding is also seen in other peer-to-peer systems, showcasing its utility
and pragmatic nature [27].

3.5.3. Milestone Receipt and Validation

Nodes in the implemented Tangle occasionally received milestones (critical markers
signifying the consensus state of the network). These milestones could be genesis_milestones
or issued after a particular interval. When a node received a milestone, it underwent
rigorous validation. It checked the milestone’s signature using the coordinator’s public
key to confirm its legitimacy. If the milestone passed this cryptographic scrutiny, the node
integrated it into its local view of Tangle.

3.5.4. Transaction Confirmation

Tangle’s consensus mechanism revolved around the confirmation status of a transac-
tion. Transactions encapsulated within milestones and passing the network’s consensus
rules were deemed ‘confirmed’, ensuring their permanent inclusion within Tangle and
testing their validity.

3.5.5. Double Spending Detection

To ensure the security of the network, nodes implemented specific mechanisms to
identify and prevent double spending attempts. The is_double_spent function played a
crucial role in this process. It operated by examining each incoming transaction against the
node’s existing list of transactions. The function checked if the transaction attempted to
use funds from an address that had already been spent or if the transaction ID matched
any existing transaction in the node’s transaction list. Furthermore, the function extended
its verification to the order of the transaction. It inspected not only the parents of the
transaction but also their preceding transactions. By iterating through this chain of parent
transactions, the function determined if the transaction’s ID appeared at any point in this
order. If a match was found, indicating the reuse of the same transaction ID, the function
identified a double spending attempt. This comprehensive check ensured both direct and
ancestral transaction comparisons and effectively safeguarded the integrity of the ledger
state, ensuring that each transaction was unique and funds were not illicitly reused.

3.5.6. Pending Transaction Management

To effectively handle the missing transactions and the dynamic nature of the network,
nodes maintained a queue of pending transactions. The process_pending_transactions method
allowed nodes to continuously assess and process these transactions. Transactions were
routinely checked, and those successfully processed were removed from the queue, ensur-
ing that the system remained responsive and efficient. In addition, nodes were equipped
with a method, request_parent_transaction, to retrieve missing parent transactions, essential
in maintaining Tangle’s continuity. If a node encountered a transaction with a missing
parent, it requested the missing transaction from its sender or peers. The corresponding
method, provide_missing_transaction, enabled a node to locate a requested transaction in its
list of transactions and forward it to the requester, ensuring the network’s integrity and
flow of information.

4. Tangle Evaluation Results and Analysis

This section presents the outcomes of the simulations conducted on the specified com-
ponents, emphasizing the significance of Poisson processes in the transaction dynamics,
the analysis of random walks, node convergence, and the development of accumula-
tive weights over time. These findings demonstrate the effectiveness of the simulator
in analyzing the Tangle protocol, which was the primary protocol evaluated using our
proposed simulator.

Sensors 2024, 24, 1583 10 of 20

4.1. Network Analysis of Poisson Processes in Transaction Dynamics

In a decentralized network based on a DAG, nodes independently create and process
transactions, primarily influenced by Poisson processes [14]. It is important to note that
this analysis underscores the significance of discrete event simulators in such environ-
ments. While the studies referenced in Section 2 contribute to a collective understanding,
they typically presume the network’s adherence to a Poisson distribution without em-
pirical analysis. Our proposed simulator, however, allows for a meticulous, quantitative
examination of this distribution, moving beyond mere assumptions to a more definitive
analysis. For a given node i, the transaction generation rate can be denoted as λi. This
leads to each node potentially generating transactions at a rate of λ transactions per second.
Mathematically, the number of transactions Xi generated by node i in time t conforms to
Xi ∼ Poisson(λit). Summatively, the aggregate number of transactions by all nodes in the
network during time t is X = ∑N

i=1 Xi. This summation upholds the Poisson principle,
making X Poisson-distributed with the parameter λ = ∑N

i=1 λi. The reception dynamics en-
compass network delays and peer-to-peer structures, yielding the effective reception rate at
node j as

λje f f ective =
N

∑
i=1,i ̸=j

λi × P(i → j). (3)

where P(i → j) signifies the likelihood of a transaction from node i reaching node j. With Yj
denoting the transaction counts for node j, it is described as Yj ∼ Poisson(λje f f ective t).
Network delay complexities might warrant a representation like

λjdelayed = λje f f ective × (1 − D(j)). (4)

with D(j) being the mean delay for node j. The simulation approach relies on progressive
state updates across nodes and involves iterating over each node to refresh the transaction
state, symbolized by

S(t + 1) = f (S(t), λ, N). (5)

After the simulation, the mean transaction count per node can be computed as
µ = 1

N ∑N
j=1 Yj and the observed count compared against a standard Poisson distribu-

tion using

P(Yj = k) =
µke−µ

k!
. (6)

for k = 0, 1, 2, ... up to the maximum observed transaction count. This provides a com-
prehensive picture of the simulation approach. It not only models the dynamic behavior
of the network but also statistically evaluates the observed results against the expected
Poisson distribution and underscores its utility in understanding decentralized transaction
dynamics. Figure 2 illustrates this comparison, showcasing histograms of inter-arrival
times against fitted exponential distributions for three different nodes. While the results
may not align perfectly with a pure Poisson distribution, they closely resemble a thinned
version of the Poisson distribution, as described by Equation (6).

Figure 2. Inter-arrival times for different nodes over a specified simulation interval, demonstrating
adherence to the Poisson distribution.

Sensors 2024, 24, 1583 11 of 20

The parameter settings utilized in this analysis are summarized in Table 2. The inter-
play between these parameters and their influence on the network dynamics offer a richer
insight into the decentralized transaction processes. Specifically, the range of delay values
was chosen based on empirical evidence from IoT systems. According to [28], the delays in
such systems predominantly range from 0.20 ms to <50 ms under typical circumstances.
This analysis also accounted for extreme scenarios, pushing the upper limit to 90 ms to
ensure a thorough evaluation of the system under potential edge conditions. Such gran-
ularity in the parameter choices ensured that the simulation captured a wide spectrum
of real-world scenarios, enhancing the robustness and validity of our findings. In prior
studies [29], λ has been traditionally considered as an upper bound, with values spanning
between 100 and 10,000 transactions per unit of time, thereby deriving the transactions per
node based on this aggregate upper limit. This methodology predominantly emphasizes a
more holistic and macroscopic analysis. Contrarily, our implementation pivots toward a
granular and discrete-level examination of individual entities within the network. Conse-
quently, we tailored our analytical framework to scrutinize λ on an individual node level,
with the transactions per second being categorized into two distinct ranges: 0.001–0.01 and
0.01–0.1. This nuanced approach offers a more microscopic perspective, shedding light on
the intricate dynamics at play on a per-node basis.

Table 2. Parameter settings for Poisson distribution analysis.

Parameter Values

Lambda 0.001–0.01, 0.01–0.1

Number of Nodes 10, 100, 500, 1000

Delay (ms) 0.20–0.90, 0.90–4.0,4.0–50.0, 50.0–90.0

Routing Protocol Gossip Protocol

4.2. Dynamics and Efficiency of the Random Walk in IOTA’s Tangle

The second aspect of our analysis using the proposed simulator focused on the random
walk strategy within the Tangle protocol. It is important to clarify that the Tangle version
examined is not the latest iteration released by IOTA [4]. The primary objective of this
study is to establish the foundational elements of the simulator, which are designed to
be adaptable to any DAG-based system. While the simulator can be extended to newer
protocol versions, our choice to analyze this particular version is strategic. The aim is not
merely to scrutinize the current Tangle iteration but to explore the fundamental factors that
led IOTA to transition from this version to newer ones. We focus on the ‘what’ and ‘why’
of these changes, rather than the ‘how’, as the latter extends beyond the scope of this study.
With these considerations in mind, we present an in-depth analysis of the random walk
strategy employed in the Tangle protocol.

Based on the provided graphical representations in Figures 3 and 4, the behavior of
the random walk mechanism over different configurations and intervals can be observed.
The graphs illustrate the ‘duration for one node’ concerning the ‘transaction count’ under
various settings of N, α, and W.

Across both graphs, as the number of transactions increases, the duration for one
node also rises linearly, suggesting a directly proportional relationship between the two.
Furthermore, as N, the number of walkers, increases (from 2 to 6), the duration required
for a single node also rises. This might be indicative of the overhead introduced by
managing more walkers, even though more walkers would ideally mean a faster consensus.
The variations in α, the bias parameter, showcase different trends in duration. A higher
α seems to lead to a faster duration, especially evident for larger transaction counts. This
implies that a higher degree of bias expedites the random walk process by driving it toward
transactions with higher cumulative weights more quickly. Comparing the graphs, it can
be noticed that the duration for one node is generally lower for intervals of W = 120–240 s

Sensors 2024, 24, 1583 12 of 20

than for W = 60–120 s under similar conditions, suggesting that shorter intervals lead to a
quicker random walk process.

Figure 3. Random walk behavioral analysis across configurations for W = 60–120 s interval.

Figure 4. Random walk behavioral analysis across configurations for W = 120–240 s interval.

The influence of the number of walkers becomes more prominent as the bias parameter
α decreases. In the graph with W = 60–120 s, the duration difference between N = 2 and
N = 6 is more discernible for α = 0.0 compared to α = 0.01. With the longer interval of
W = 120–240 s, the increase in duration for one node is more gradual across the transaction
count, indicating that the system may have better efficiency or a smaller overhead over
this extended timeframe. As outlined in Section 3, the asynchronous nature of dispatching
walkers and determining the walk type likely contributes to the linear increase in duration.
As more transactions are initiated, more walkers are dispatched simultaneously, leading to
a consistent rise in the time taken to select tips.

The random walk mechanism, integral to Tangle’s operation, exhibits predictable
behavior across varied configurations. While the linear relationship between the transaction
count and duration underscores its scalability, the influences of N, α, and W highlight the
intricacies of its operation. By understanding these nuances, optimizations can be made to
further enhance the efficiency and responsiveness of the system in real-world applications.
The foundational challenges highlighted in this study, through the use of the proposed
simulator, offer a clear rationale for and understanding of the shift to the newer version of
the Tangle protocol.

4.3. Quantitative Assessment of Node Convergence

In heterogeneous DAG networks, comprehending the dynamics of node convergence
and synchronization and attaining a consistent state across the network are crucial in
maintaining optimal network performance. This section clarifies the methodologies utilized

Sensors 2024, 24, 1583 13 of 20

in our proposed simulator to assess this synchronization. The focus is particularly on
two key aspects: ‘tips’, which are the latest transactions that are yet to be approved,
and ‘all_transactions’, representing the sum of all transactions received and generated by
a node.

A critical initial step in this process was to clearly define the parameters for conver-
gence. Determining whether nodes have reached convergence involves evaluating whether
they have attained synchronization and a consistent state in terms of their transactional
data. This was essential in ensuring that all nodes in the network possessed a coherent
view of the ledger.

To quantitatively measure this synchronization and convergence, we introduced the
pairwise overlap and convergence metric. This metric was designed to quantify the extent
of overlap in the ‘tips’ and the convergence of ‘all_transactions’ across every pair of nodes
within the network. The degree of overlap and convergence was expressed through specific
equations, where each cell in the matrix, denoted as (i, j), represents the degree of overlap
for ’tips’ and convergence for ’all_transactions’ between node i and node j. The formulas
are given by

TipsOverlap(i, j) = |Tips of Node i ∩ Tips of Node j| (7)

NodeConvergence(i, j) =
Overlap(i, j)

TotalTransactions
(8)

Overlap(i, j):=|Bi ∩ Bj|
Bi:=AllTransactions of Node i

Bj:=AllTransactions of Node j

To evaluate the average overlap and convergence, we calculated the mean overlap
and convergence that each node had with the rest of the network. This provides insights
into the mean ‘tips’ overlap and ‘all_transactions’ convergence for individual nodes with
their peers:

AvgTipsOverlap(Nodei) =
∑ Overlap(i, j)

N
, ∀j ̸= i (9)

AvgNodeConvergence(Nodei) =
∑ Convergence(i, j)

N
, ∀j ̸= i (10)

For a normalized measure of overlap and convergence, we used the Jaccard Similarity,
which evaluated the shared elements against the total unique elements between node pairs.
This provided a more standardized approach to understanding overlap and convergence:

JaccardTipsOverlap(i, j) =
|Tips of Node i ∩ Tips of Node j|
|Tips of Node i ∪ Tips of Node j| (11)

JaccardNodeConvergence(i, j) =
Overlap(i, j)
Union(i, j)

(12)

where

Overlap(i, j) = |Ai ∩ Aj|
Union(i, j) = |Ai ∪ Aj|

Ai = AllTransactions of Node i

Aj = AllTransactions of Node j

Utilizing these methodological approaches in the proposed simulator provides a
comprehensive understanding of node overlaps and convergence, essential in evaluating
inter-node relationships in a DAG network. The precise application of these formulas is
critical for accurate and standardized analysis, forming a fundamental aspect of any study
in decentralized networks.

Table 3 presents an in-depth analysis of the convergence tendencies within a DAG,
focusing on nodes’ behavior. The heterogeneous nature of DAGs poses a significant

Sensors 2024, 24, 1583 14 of 20

challenge in achieving convergence, as each node might have a distinct view of the network.
Key parameters for this study included a gossip factor of 0.7, a probability for peers at 0.4,
varying λ values from 0.01 to 0.1, and a total simulation duration of 3600 s (1 h). The results
indicated that the ‘average overlap’ and ‘Jaccard similarity’ for all transactions generally
were around 23% and 21%, respectively. While this uniformity seems promising, it raises
concerns in the context of heterogeneous DAGs, questioning the network’s ability to reach
a fully converged state. This finding highlights the inherent challenges in achieving a
synchronized perspective on the DAG among nodes, exacerbated by the natural tendency
of DAGs to support diverse node viewpoints.

Table 3. Observations of overlap and Jaccard similarity over time.

Time(s) Tips—Average
Overlap

Tips—Jaccard Sim-
ilarity

All Transactions—
Average Overlap

All Transactions—
Jaccard Similarity

252 15.5% 14.4% 23.44% 21.77%

1217 15.2% 14.2% 23.27% 21.60%

1586 15.8% 14.7% 23.31% 21.65%

2072 15.5% 14.4% 23.29% 21.63%

2437 15.6% 14.5% 23.29% 21.63%

2496 15.5% 14.4% 23.28% 21.62%

2782 15.5% 14.4% 23.28% 21.62%

3313 15.7% 14.6% 23.30% 21.64%

3369 15.5% 14.4% 23.30% 21.64%

3542 15.3% 14.2% 23.30% 21.64%

In addressing these convergence challenges, IOTA’s implementation of the coordinator
milestone is noteworthy. This mechanism serves as a reference point for nodes, aiding in
harmonizing their views of the network, as discussed in [30]. Moreover, the new version of
IOTA, which does not rely on milestones and coordinators [4], uses voting and a validator
committee. However, this structure leads to thought-provoking questions: if convergence
and a consistent network state are achieved through overarching mechanisms like the
coordinator or validator committees, why is there a need for each node to independently
engage in tip selection and perform PoW? Additionally, why is it essential for each node to
maintain its own version of the DAG, especially in a network where a synchronized state is
the objective?

4.4. Accumulative Weight Growth

The final metric that we tested using our proposed simulator was the accumulative
weight, a critical aspect of the Tangle protocol. As Tangle evolves, efficient weight cal-
culations become increasingly important. An evident observation from Figure 5 is the
exponentially increasing duration of weight updates with the increasing size of Tangle.
This progression indicates that as more transactions are added, the computational time to
update the weights correspondingly increases. The colors in the figure map to parameters
W, α, and N from Figure 3, highlighting that the weight calculation times are influenced by
these configurations. Each node updates the weights locally, tied directly to the incoming
tips, or λ. This underscores the direct proportionality of the weight computation time to λ.
The increasing duration signifies the computational challenges. Therefore, future iterations
and optimizations of Tangle might require strategies to streamline this process and ensure
rapid weight updates despite an escalating number of transactions.

Sensors 2024, 24, 1583 15 of 20

Figure 5. Weight update duration vs. transaction count: an analysis of computational overhead in
accumulative weight calculations as a function of increasing transaction count.

5. Discussion and Future Work

This section analyzes the complexities of updating weights and consensus in IOTA’s
Tangle, focusing on the implications of the queue depth, memory needs, and network
latency. We discuss the challenges of decentralizing consensus, including the system
overhead, node heterogeneity, and validator diversity. Additionally, we highlight the study
limitations and suggest future research directions, such as investigating security threats,
exploring alternative tip selection algorithms, and considering a multi-validator approach.

5.1. Weight Update without Depth Limitation

Based on Sections 3.2.3 and 4.4, the accumulative weight plays an important role in the
confirmation of a transaction. As outlined in the IOTA white paper, the accumulative weight
is designed to incrementally increase as new transactions are added to the DAG. To further
investigate the impact of accumulative weight increments, we consider T as the total number
of transactions in Tangle up to a given time and t to indicate that a new transaction is added.
Each transaction confirms two previous transactions. If we assume the worst-case scenario
without depth limitation, the weight of each transaction would need updating till genesis.
Thus, for a transaction t, the total number of weight updates, Ut, would be

Ut = 2 ×
T

∑
i=1

λi (13)

where λi represents the weight contribution of the ith transaction to t.

5.1.1. Time Complexity with Queue Depth

Transactions are not processed immediately but are placed in a queue. Let us denote
the queue depth (the number of transactions waiting to be processed) as Q.

The time to update the weights, assuming an average queue processing time of δ per
transaction, would be

τ(t) = k × Ut + Q × δ (14)

where k is the average time taken to update a single transaction’s weight.
Since Q can vary dynamically based on the network load and other factors, the time

complexity becomes a function of both T and Q:

τ(t) = k × (2 ×
T

∑
i=1

λi) + Q × δ (15)

This implies higher variability in transaction confirmation times as Tangle grows.

5.1.2. Memory Requirements with Shard Overhead

Considering the presumption that each node computes the accumulative weight
locally, the node must maintain a complete copy of the DAG up to the genesis block,

Sensors 2024, 24, 1583 16 of 20

thereby raising potential memory concerns. Nonetheless, several techniques, including
sharding [31,32], have been proposed to address these challenges. With the prospect of
sharding in distributed ledgers, let us consider the overhead introduced by sharding. s is
the base size (in memory) of a single transaction and ω is the overhead factor for each shard.

If we assume S shards,

M(T) = s × T + ω × s × S (16)

This indicates that, while sharding may distribute the load, it introduces an overhead
that could affect the memory requirements.

5.1.3. Latency Incorporating Network Effects

Network latency plays a pivotal role in the time taken to calculate and update the
accumulative weights of transactions. Let us define ϵ as the average network latency and
ρ as the proportion of nodes that need to update their local Tangle copy for consensus,
specifically to incorporate the changes in accumulative weight.

Given the importance of accumulative weight calculations, the latency L due to net-
work effects for a transaction t can be represented as

L(t) = α × τ(t) + β + ρ × ϵ (17)

where α is a proportionality constant, denoting the time taken for the internal computation
associated with accumulative weight calculations. β represents the time required for I/O
operations, specifically for the reading and updating of the accumulative weights in the system.

The accumulative weight mechanism, while fundamental in Tangle’s design, intro-
duces complexities in time, memory, and network latency. Tangle’s scalability, while
promising, encounters challenges both in time complexity and memory requirements as
the system grows. Factors such as queue depths and sharding introduce variability that
needs to be managed to maintain consistent performance. Network effects, especially in
globally distributed systems, add another layer of complexity to the overall performance of
the system. Proper protocols and optimizations are essential to ensure that Tangle remains
viable for large-scale applications.

5.2. Challenges and Implications of Consensus in DAG-Based Systems

As Section 3.2.5 discusses, the role of the coordinator/validators in Tangle is pivotal.
It serves as an interim solution to safeguard against double spending and potential vul-
nerabilities and ensure a single confirmed state of the ledger. Despite the coordinator’s
utility in ensuring the network’s security, the overarching vision for IOTA is a coordinator-
free environment, such as in ‘The Coordicide’ [33] and ‘Tangle 2.0 Leaderless’ [4]. This
aspiration is not merely aimed at embracing decentralization in its purest form, but also
at optimizing the system’s efficiency, eliminating potential bottlenecks, and ensuring a
homogenized validation process. While several approaches integrating voting and per-
mitted validator committees exist and warrant deeper investigation, this study’s focus
remains on the coordinator. The appeal of DAG-based systems lies in their scalability
and potential for genuine decentralization. However, the introduction of coordinators or
permitted validator committees introduces significant complexities, posing challenges to
their seamless implementation.

5.2.1. Potential System Overhead

If the coordinator/validator is seen as the final authority, the cumulative security
efforts at each node, as previously described (Section 5.1), could be perceived as redundant.
The original intent behind local weight calculations and validations was to democratize
security, making every participant equally responsible for the network’s security. If the
coordinator/validator’s decisions ultimately supersede all others, then the intrinsic value
of these decentralized efforts might be negated, leading to system inefficiencies.

Sensors 2024, 24, 1583 17 of 20

5.2.2. Heterogeneity in the DAG

By design, Tangle does not impose strict uniformity across its nodes. As the node
convergence Section 4.3 suggests, each node in the IOTA network possesses a distinct local
view of Tangle [34]. While this design promotes decentralization and scalability, it presents
challenges for a centralized entity like the coordinator.

5.2.3. Multiplicity of Validator and Consistency Challenges

The idea of employing multiple validators could potentially exacerbate the issue of
network consistency. A solitary coordinator, while presenting a single point of failure or
control, ensures that milestones are consistently recognized across the network. Introducing
more validators, given the intrinsic heterogeneity of Tangle, means that each validator
would likely have a disparate view of Tangle due to the asynchronous nature of transactions
and validations. As a consequence, different validators might generate varying milestones
or voting, possibly referencing diverse sets of transactions. This can lead to inconsistencies
regarding which transactions are deemed ‘confirmed’, creating potential disparities in the
perceived state of the ledger across nodes.

5.3. Future Work and Limitations

While the current study robustly covers the foundational protocols of Tangle, there
remains substantial scope to extend this work. One primary avenue is the incorporation of
malicious node activities, enabling a deeper exploration of potential vulnerabilities, the
analysis of newer versions of Tangle, and the system’s resilience against various attacks.
Additionally, given our intention to establish a benchmark for discrete event simulation, it
would be pertinent to integrate alternative tip selection algorithms. This would allow for
a comprehensive understanding of DAG-based distributed ledger dynamics, transcend-
ing the confines of IOTA and providing insights into a broader spectrum of distributed
ledgers. Furthermore, in our current implementation, we primarily employ a single co-
ordinator for Tangle’s operation. Looking ahead, we anticipate transitioning to a model
with multiple validators. This transition will inherently introduce added complexities.
Moreover, the potential for network latency becomes more pronounced with multiple
active validators, which could impact Tangle’s optimal performance. Future studies will
also focus on conducting a comprehensive quantitative analysis of the cumulative weight
growth and network effects, employing sophisticated mathematical and computational
models to substantiate the observed phenomena. Navigating these complexities will be
essential, but, by addressing them, we aim to further our understanding and optimization
of DAG-based distributed ledger systems.

6. Conclusions

Through our detailed evaluation of the IOTA Tangle protocol, guided by its white
paper, we delved into the complexities of DAG-based distributed ledgers. Utilizing a
purpose-built discrete-event-based simulator, our analysis revealed that subtle intricacies
within DAG architectures can be uncovered.

This comprehensive analysis encompasses the observation of the scalability of the
random walk mechanism, its sensitivity to the walker count N, the impact of bias α on re-
sponsiveness, and the efficiency gains achieved with shorter time intervals W. These
findings illuminate the foundational challenges and optimization opportunities within
the protocol, providing a solid rationale for its evolution. Additionally, we have studied
the autonomous node operations, guided by Poisson processes. This analysis underscores
the crucial role of discrete event simulators in understanding the dynamics of such decen-
tralized environments. Unlike previous studies that often assume a network’s adherence
to a Poisson distribution without empirical validation, our proposed simulator enables a
quantitative examination of this distribution. We have demonstrated how individual node
transaction generation rates λi contribute to the aggregate transaction rate λ for the entire
network, offering a more granular perspective. The comparisons suggest that while the

Sensors 2024, 24, 1583 18 of 20

results may not perfectly align with a pure Poisson distribution, they closely resemble a
thinned version of it.

These mechanisms, while innovative in transaction confirmations, present challenges,
especially as Tangle grows, introducing higher time complexity and memory demands.
Potential solutions such as sharding, though promising, introduce their own overheads,
which might impact system latency. As Tangle evolves, addressing these issues becomes
crucial in ensuring seamless and consistent performance.

Moreover, our evaluation of the coordinator/validator highlights its indispensable
role while underscoring potential challenges inherent to its function. Its protective role is
undeniable, but its centralized nature poses a dichotomy in a decentralized system.

Looking ahead, we see numerous avenues for deeper exploration. Understanding
malicious node behaviors, assessing system vulnerabilities, and weighing the benefits and
disadvantages of different tip selection algorithms will be crucial.

In summary, our research underscores that DAG-based distributed ledgers hold signif-
icant potential due to their scalability, especially for IoT applications. However, addressing
the challenges outlined in this study is crucial for the widespread adoption of this technol-
ogy. Our study serves as a directional guide, elucidating the complexities of DAG-based
systems and indicating potential possibilities for subsequent research and development.
The extensive nature of our proposed simulator, with its comprehensive analysis capabili-
ties, is a valuable asset in further investigating these challenges. Its application can provide
deeper insights into the dynamics of DAG networks, aiding in the optimization of these
systems for broader, practical deployment.

Author Contributions: Conceptualization, M.K., F.d.H. and J.H.; methodology, M.K. and J.H.;
software, M.K.; validation, M.K., F.d.H. and J.H.; formal analysis, F.d.H. and J.H.; investigation, M.K.
and J.H.; resources, F.d.H. and J.H.; data curation, M.K. and J.H.; writing—original draft preparation,
M.K.; writing—review and editing, M.K., F.d.H. and J.H.; visualization, M.K.; supervision, F.d.H.
and J.H.; project administration, F.d.H. and J.H.; funding acquisition, J.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is partially supported by ARC Discovery Grants (DP190103660 and
DP200103207) and an ARC Linkage Grant (LP180100663).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The complete implementation and implementation specification docu-
ment can be accessed at the GitHub Repository (https://github.com/Misbah-khan786/DAGNetSim
(accessed on 14 January 2024)).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DAG Direct Acyclic Graph
IoT Internet of Things
DE Discrete Event
AW Accumulative Weight
OW Own Weight
BRW Biased Random Walk
URW Unbiased Random Walk
MCMC Markov Chain Monte Carlo
RW Random Walker
PoW Proof of Work

https://github.com/Misbah-khan786/DAGNetSim

Sensors 2024, 24, 1583 19 of 20

References
1. Popov, S. The tangle. In White Paper; 2018; Volume 1, p. 30. Available online: http://cryptoverze.s3.us-east-2.amazonaws.com/

wp-content/uploads/2018/11/10012054/IOTA-MIOTA-Whitepaper.pdf (accessed on 14 January 2024).
2. LeMahieu, C. Nano: A Feeless Distributed Cryptocurrency Network. Nano 2018, 16, 17. Available online: https://nano.Org/en/

whitepaper (accessed on 24 March 2018)
3. Schueffel, P. Alternative distributed ledger technologies Blockchain vs. Tangle vs. Hashgraph-A high-level overview and comparison.

Tangle vs. Hashgraph-A High-Level Overview and Comparison. 2017. Available online: https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=3144241 (accessed on 15 December 2017).

4. Müller, S.; Penzkofer, A.; Polyanskii, N.; Theis, J.; Sanders, W.; Moog, H. Tangle 2.0 leaderless nakamoto consensus on the heaviest
dag. IEEE Access 2022, 10, 105807–105842. [CrossRef]

5. Sompolinsky, Y.; Wyborski, S.; Zohar, A. PHANTOM GHOSTDAG: A scalable generalization of Nakamoto consensus: September
2, 2021. In Proceedings of the 3rd ACM Conference on Advances in Financial Technologies, Arlington, TX, USA, 26–28 September
2021; pp. 57–70.

6. Zander, M.; Waite, T.; Harz, D. DAGsim: Simulation of DAG-based distributed ledger protocols. ACM Sigmetrics Perform. Eval.
Rev. 2019, 46, 118–121. [CrossRef]

7. Lin, B.Y.; Dziubałtowska, D.; Macek, P.; Penzkofer, A.; Müller, S. TangleSim: An Agent-based, Modular Simulator for DAG-based
Distributed Ledger Technologies. In Proceedings of the 2023 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), Dubai, United Arab Emirates, 1–5 May 2023; pp. 1–5.

8. Perešíni, M.; Hladkỳ, T.; Malinka, K.; Homoliak, I. DAG-Sword: A Simulator of Large-Scale Network Topologies for DAG-
Oriented Proof-of-Work Blockchains. arXiv 2023, arXiv:2311.04638.

9. Andresen, G. Bitcoin Mining Simulator Simulator. 2015. Available online: https://github.com/gavinandresen/bitcoin_
miningsim (accessed on 14 January 2024).

10. Ma, X.; Wu, H.; Xu, D.; Wolter, K. CBlockSim: A Modular High-Performance Blockchain Simulator. In Proceedings of the 2022
IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Shanghai, China, 2–5 May 2022; pp. 1–5.

11. Alharby, M.; Van Moorsel, A. Blocksim: A simulation framework for blockchain systems. ACM Sigmetrics Perform. Eval. Rev.
2019, 46, 135–138. [CrossRef]

12. Polge, J.; Ghatpande, S.; Kubler, S.; Robert, J.; Le Traon, Y. Blockperf: A hybrid blockchain emulator/simulator framework. IEEE
Access 2021, 9, 107858–107872. [CrossRef]

13. Basile, M.; Nardini, G.; Perazzo, P.; Dini, G. SegWit extension and improvement of the BlockSim Bitcoin simulator. In Proceedings
of the 2022 IEEE International Conference on Blockchain (Blockchain), Espoo, Finland, 22–25 August 2022; pp. 115–123.

14. Fan, C.; Ghaemi, S.; Khazaei, H.; Chen, Y.; Musilek, P. Performance analysis of the IOTA DAG-based distributed ledger. ACM
Trans. Model. Perform. Eval. Comput. Syst. 2021, 6, 1–20. [CrossRef]

15. Nguyen, M.N. Tanglesimulator. 2018. Available online: https://github.com/minh-nghia/TangleSimulator (accessed on 14
January 2024).

16. Lathif, M.R.A.; Nasirifard, P.; Jacobsen, H.A. Cidds: A configurable and distributed dag-based distributed ledger simulation
framework. In Proceedings of the 19th International Middleware Conference (Posters), Rennes, France, 10–14 December 2018;
pp. 7–8.

17. Li, S.; Xu, H.; Li, Q.; Han, Q. Simulation study on the security of consensus algorithms in DAG-based distributed ledger. Front.
Comput. Sci. 2024, 18, 183704. [CrossRef]

18. Guo, F.; Xiao, X.; Hecker, A.; Dustdar, S. Characterizing IOTA tangle with empirical data. In Proceedings of the GLOBECOM
2020-2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6.

19. Guo, F.; Xiao, X.; Hecker, A.; Dustdar, S. A Theoretical Model Characterizing Tangle Evolution in IOTA Blockchain Network.
IEEE Internet Things J. 2022, 10, 1259–1273. [CrossRef]

20. PS Foundation Asyncio—Asynchronous I/O. 2001–2024. Available online: https://docs.python.org/3/library/asyncio.html
(accessed on 11 January 2024).

21. PS Foundation Python Threading. 2001–2024. Available online: https://docs.python.org/3/library/threading.html#module-
threading (accessed on 10 January 2024).

22. Schönbrodt, F.D.; Humberg, S. RSA: An R Package for Response Surface Analysis; Version 0.10.6; 2023. Available online:
https://cran.r-project.org/web/packages/RSA/RSA.pdf (accessed on 26 February 2024).

23. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef] [PubMed]

24. Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function using NetworkX. In Proceedings
of the 7th Python in Science Conference, Pasadena, CA USA, 19–24 August 2008; pp. 11–15.

25. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
26. Research, A. Graphviz-Graph Visualization Software. 2008. Available online: https://www.bibsonomy.org/bibtex/2ece0ba37f3

1820f8c2bd918990ebfbef/gron (access on 31 January 2024).
27. Cohen, B. Incentives build robustness in BitTorrent. In Proceedings of the Workshop on Economics of Peer-to-Peer systems,

Berkeley, CA, USA, 5–6 June 2003; Volume 6, pp. 68–72.

http://cryptoverze.s3.us-east-2.amazonaws.com/wp-content/uploads/2018/11/10012054/IOTA-MIOTA-Whitepaper.pdf
http://cryptoverze.s3.us-east-2.amazonaws.com/wp-content/uploads/2018/11/10012054/IOTA-MIOTA-Whitepaper.pdf
https://nano. Org/en/whitepaper
https://nano. Org/en/whitepaper
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3144241
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3144241
http://doi.org/10.1109/ACCESS.2022.3211422
http://dx.doi.org/10.1145/3308897.3308951
https://github.com/gavinandresen/bitcoin_miningsim
https://github.com/gavinandresen/bitcoin_miningsim
http://dx.doi.org/10.1145/3308897.3308956
http://dx.doi.org/10.1109/ACCESS.2021.3101044
http://dx.doi.org/10.1145/3485188
https://github.com/minh-nghia/TangleSimulator
http://dx.doi.org/10.1007/s11704-023-2497-y
http://dx.doi.org/10.1109/JIOT.2022.3207513
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/threading.html#module-threading
https://cran.r-project.org/web/packages/RSA/RSA.pdf
http://dx.doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
http://dx.doi.org/10.1109/MCSE.2007.55
https://www.bibsonomy.org/bibtex/2ece0ba37f31820f8c2bd918990ebfbef/gron
https://www.bibsonomy.org/bibtex/2ece0ba37f31820f8c2bd918990ebfbef/gron

Sensors 2024, 24, 1583 20 of 20

28. Alaslani, M.; Nawab, F.; Shihada, B. Blockchain in IoT systems: End-to-end delay evaluation. IEEE Internet Things J. 2019,
6, 8332–8344. [CrossRef]

29. Kusmierz, B.; Sanders, W.; Penzkofer, A.; Capossele, A.; Gal, A. Properties of the tangle for uniform random and random walk tip
selection. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 May
2019; pp. 228–236.

30. Conti, M.; Kumar, G.; Nerurkar, P.; Saha, R.; Vigneri, L. A survey on security challenges and solutions in the IOTA. J. Netw.
Comput. Appl. 2022, 203, 103383. [CrossRef]

31. Naresh, V.S.; Allavarpu, V.D.; Reddi, S. Blockchain IOTA Sharding-Based Scalable Secure Group Communication in Large
VANETs. IEEE Internet Things J. 2022, 10, 5205–5213. [CrossRef]

32. Sealey, N.; Aijaz, A.; Holden, B. IOTA Tangle 2.0: Toward a Scalable, Decentralized, Smart, and Autonomous IoT Ecosystem.
In Proceedings of the 2022 International Conference on Smart Applications, Communications and Networking (SmartNets),
Palapye, Botswana, 29 November–1 December 2022; pp. 1–8.

33. Popov, S.; Moog, H.; Camargo, D.; Capossele, A.; Dimitrov, V.; Gal, A.; Greve, A.; Kusmierz, B.; Mueller, S.; Penzkofer, A.; et al.
The Coordicide. January 2020; pp. 1–30. Available online: http://files.iota.org/papers/20200120_Coordicide_WP.pdf (accessed
on 14 January 2024).

34. Müller, S.; Amigo, I.; Reiffers-Masson, A.; Ruano-Rincón, S. Stability of local tip pool sizes. arXiv 2023, arXiv:2302.01625.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2019.2917226
http://dx.doi.org/10.1016/j.jnca.2022.103383
http://dx.doi.org/10.1109/JIOT.2022.3222382
http://files.iota.org/papers/20200120_Coordicide_WP.pdf

	Introduction
	Related Work
	Simulator Implementation with Tangle Protocol
	Environmental Setup
	Tangle's Core Structure
	DAG Representation
	Transaction Management
	Accumulative Weight
	Asynchronous Simulation
	Coordinator

	Random Walk
	Randomwalker Configuration
	Interval Determination
	Random Walk Execution

	Network Formation and Dynamics
	Node Connectivity
	Latency Modeling
	Gossip Transaction Mechanism
	Latency Consideration
	Recursion and Network Penetration
	Avoidance of Redundancy

	Node Functionality
	Transaction Creation and Signing
	Transaction Broadcasting and Reception
	Milestone Receipt and Validation
	Transaction Confirmation
	Double Spending Detection
	Pending Transaction Management

	Tangle Evaluation Results and Analysis
	Network Analysis of Poisson Processes in Transaction Dynamics
	Dynamics and Efficiency of the Random Walk in IOTA's Tangle
	Quantitative Assessment of Node Convergence
	Accumulative Weight Growth

	Discussion and Future Work
	Weight Update without Depth Limitation
	Time Complexity with Queue Depth
	Memory Requirements with Shard Overhead
	Latency Incorporating Network Effects

	Challenges and Implications of Consensus in DAG-Based Systems
	Potential System Overhead
	Heterogeneity in the DAG
	Multiplicity of Validator and Consistency Challenges

	Future Work and Limitations

	Conclusions
	References

