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Abstract: The torque is a significant indicator reflecting the comprehensive operational characteristics
of a power system. Thus, accurate torque measurement plays a pivotal role in ensuring the safety
and stability of the system. However, conventional torque measurement systems predominantly
rely on strain gauges adhered to the shaft, often leading to reduced accuracy, poor repeatability,
and non-traceability due to the influence of strain gauge adhesion. To tackle the challenge, this
paper introduces a photoelectric torque measurement system. Quadrants of photoelectric sensors
are employed to capture minute deformations induced by torque on the rotational axis, converting
them into measurable voltage. Subsequently, the system employs the radial basis function neural
network optimized by simulated annealing combined with particle swarm algorithm (SAPSO-RBF) to
establish a correlation between measured torque values and standard references, thereby calibrating
the measured values. Experimental results affirm the system’s capability to accurately determine
torque measurements and execute calibration, minimizing measurement errors to 0.92%.

Keywords: photoelectric torque measurement; quadrant photoelectric sensor; measurement of
minute signals; torque calibration; SAPSO-RBF algorithm

1. Introduction

Torque is one of the fundamental parameters in rotational mechanical systems, playing
a pivotal role in various engineering activities which involve the use of rotating machin-
ery [1–3]. Its significance spans across industries such as mechanical manufacturing [4],
automotive manufacturing [5], aerospace engineering [6], maritime sectors [7], and other
related fields. Within shaft-driven systems, the torque value is intricately linked to mechan-
ical power performance, energy consumption, lifespan, and safety measures [8,9]. Hence,
the accurate, timely, and reliable measurement of torque holds significant importance in
ensuring the overall safety and stability of mechanical devices and systems [1].

Currently, torque sensors are classified into 12 types based on different physical
principles. These include resistive strain gauge types, click types, magneto-elastic types,
distributed fiber grating types, surface acoustic wave types, magneto strictive types, mag-
neto Backhausen noise types, magnetoelectric types, photo elastic types, photoelectric
effects, laser Doppler-based types, and laser speckle torque sensors. Based on the prin-
ciples of these sensors, researchers worldwide have investigated various measurement
systems to achieve high-precision torque measurements. Among them, the most prevalent
is the strain-based torque measurement system. In [10,11], extensive studies have been
conducted on this method, employing Wheatstone bridge configurations to counteract axial
and bending strains while compensating for temperature variations. Despite its simple
installation process, this method exhibits limitations in measurement precision, susceptibil-
ity to external interferences, and relatively slow response speed. Apart from this method,
in [12], the relationship between the deflection angle of the magnetization vector and torque
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is established based on the principle of electromagnetic effects and a non-contact torque
measurement system utilizing Hall sensors is proposed. In [13], a torque measurement
device based on the Hall effect is also introduced. It involves placing a pair of magnets on
a rotating shaft, where torque-induced deformation causes relative movement between
the magnets, altering the magnetic field intensity. The torque is measured by assessing
the changes in the magnetic field intensity. In [14], improvements to the Surface Acoustic
Wave (SAW)-based torque sensor are introduced, and a torque measurement system based
on Surface Transverse Wave (STW) resonators is proposed. This enhancement is aimed
at addressing drawbacks such as complex signal demodulation and limited operational
range. And in [15], a novel non-contact vertical induction torque measurement system is
proposed. The system consists of a stator and a rotor, with the stator comprising excitation
coils and two receiving coils. When torque generates a torsional angle, different induced
voltages occur between the two receiving coils. The variation in induced voltage is uti-
lized to measure the rotor’s angular change, thereby quantifying the torque. While these
measurement systems have undergone improvements, they still rely on electromagnetic
principles, rendering them susceptible to environmental electromagnetic interference that
can impact measurement precision.

Compared to the methods discussed earlier, torque measurement methods based on
optical principles inherently offer advantages, allowing for higher precision and sensitiv-
ity [1]. For instance, in [16], a non-contact torque measurement system is designed based
on zebra-tapes and optical sensors. This system involved connecting a pair of zebra-tapes
with relative angular phases of zero to the end of a shaft. Additionally, two optical sensors
were mounted on a non-rotating bracket. Torque was measured by quantifying the relative
torsional angle of the shaft through the phase difference between the two pulse signals.
In [17], a photoelectric torque sensor is designed based on the principle of phase differ-
ence to measure the torque of a ship’s shaft. Two photoelectric discs are installed on the
shaft, each equipped with two photoelectric sensors. When the shaft rotates and the light-
blocking gear in the photoelectric disc obstructs the laser, the sensor outputs a high signal;
conversely, when the light-blocking gear does not obstruct the laser and it illuminates the
photodiode, the sensor outputs a low signal. The phase difference between the high and
low signal levels is used to measure the torque. Subsequently, a sliding window algorithm
is employed to reduce measurement errors and improve accuracy. In [18], a high-sensitivity,
compact torque sensor based on Fiber Bragg Grating (FBG) technology is also presented.
This sensor comprises a torque-sensitive bending structure and two diagonally arranged
optical fibers, incorporating an embedded fiber Bragg grating sensor. It can achieve high
resolution and good linearity characteristics. And in [19], a novel non-contact sensor based
on the principle of Optical Coherence Displacement Measurement (OCDM) is proposed for
measuring micro-torque on a rotating shaft. Optical sensors are employed to measure the
linear displacement of the shaft surface relative to the measuring arm, obtaining the optical
coherence displacement. Subsequently, a unique mapping relationship between OCDM
and torque is established. This relationship involves designing a laser engraving system
to process scales on the shaft surface, representing the torsional angle. This approach can
resist the influence of negative torque radial vibrations, achieving a high-precision torque
measurement. However, these methods require specialized circuit design and complex
computational formulas to derive the final torque value, making the process intricate
and cumbersome.

In addition to enhancing measurement devices, researchers have proposed various
calibration algorithms aimed at optimizing measurement outcomes and minimizing errors.
For instance, in [20], a Deep Neural Network (DNN) algorithm was utilized to calibrate
sensors’ multi-axis output signals, effectively reducing errors. Meanwhile, in [21], a Fusion
Decoupling Algorithm based on Least Squares Support Vector Machine Regression (LSSVR)
was introduced to refine the measurement values derived from sensors. Although these
algorithms can significantly enhance measurement outcomes, their downside lies in their
complexity and relatively slow computational speed.
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In this paper, the system addresses torque measurement through advancements in
both torque sensors and calibration algorithms, presenting a novel photoelectric torque
measurement system. Concerning the sensor technology, this system integrates quad-
rant photoelectric sensors as the primary measuring devices. These sensors, constituted
by an array of photodiodes, offer distinct advantages including fundamental simplicity,
high-precision, and rapid response characteristics. Positioned on the rotating shaft, these
sensors feature LED light sources that centrally illuminate the four quadrants, resulting
in equivalent current outputs from each quadrant in a static state [22]. Once the shaft
undergoes torque-induced deformation, causing a corresponding shift in the light spot
vertically, the currents from the four quadrants alter accordingly. Subsequently, the process-
ing circuit converts these varying currents into voltage values for output. Concerning the
calibration algorithm, this system employs a Particle Swarm Optimization (PSO) algorithm,
incorporating simulated annealing (SA), to optimize a Radial Basis Function (RBF) neural
network, forming the SAPSO-RBF algorithm. Compared with deep learning networks
such as CNN [23], RBF networks, characterized by their uncomplicated structure, robust
approximation capabilities, and computational efficiency, find widespread applications in
fuzzy recognition and nonlinear fitting [24]. Within this paper, the RBF neural network
is utilized for the calibration of torque measurement values. Simultaneously, the SAPSO
algorithm fine-tunes the parameters of the RBF network. This innovative approach ad-
dresses the RBF network’s dependency on parameters, thereby enhancing the algorithm’s
optimization efficacy.

This paper is structured as follows: Section 2 introduces the measurement principle
of the system as well as the algorithm principle, while Section 3 explains the overall
architecture of the system including the hardware and software design. Section 4 focuses
on the construction of the whole calibration algorithm model and process, and Section 5
verifies the system experimentally, derives the measurement results and compares the
measurement errors under different conditions. Lastly, Section 6 provides the conclusions
of the entire system.

2. The Principle of the System
2.1. The Principle of Measurement

The measurement system employs four-quadrant photoelectric sensors to convert
torque-induced deformations into voltage signals, requiring sensor modules characterized
by high sensitivity and precision. Specifically, the chosen sensors are TE Connectivity’s
QP50-6-42u SD2 products (TE Connectivity, Shanghai, China). These sensors feature a
transimpedance amplifier circuit capable of converting current to voltage, facilitating
differential signal Vx (obtained by subtracting the bottom signal from the top) and Vy
(calculated by subtracting the left signal from the right). Moreover, the QP50-6-42u SD2
also generates a voltage signal, Vz, representing the cumulative output of all four-quadrant
diode signals.

The sensor modules and LED light source are affixed onto four measuring arms,
uniformly and symmetrically positioned along the circumference of the shaft to eliminate
the bending effect of the shaft. Under static conditions, the LED light source emits light,
forming a centralized light spot within the four quadrants. When torque impacts the shaft,
it induces tangential deformation, causing displacement of both the LED light source and its
corresponding spot. This displacement generates current signals from the four quadrants,
which, subsequently, undergo processing by the processing circuit. These current signals
are transformed into three distinct voltage outputs, namely Vx, Vy, and Vz, and then relayed
to the signal acquisition board. The schematic illustrating the installation of LED light
source and photoelectric sensors on the measuring arms is shown in Figure 1.
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The three voltage signals’ values can be calculated in the following formulas:

Vx = (V1 + V4)− (V2 + V3) (1)

Vy = (V1 + V2)− (V3 + V4) (2)

Vz = V1 + V2 + V3 + V4 (3)

where Vx represents the disparity between the voltage signals produced by the right and
left quadrants of the photodiode; Vy denotes the difference between the signals from the
top and bottom quadrants of the photodiode; Vz signifies the cumulative signal generated
by all four quadrants of the photodiode; V1 to V4 represent the voltage values obtained
by processing the current from each quadrant through the circuit. Measurement of the
aforementioned output voltages facilitates the deduction of the relative movement of light
spot across the four-quadrant sensor. This deduction is achieved through the application of
the following formulas:

X =
(V1 + V4)− (V2 + V3)

V1 + V2 + V3 + V4
=

Vx

Vz
(4)

Y =
(V1 + V2)− (V3 + V4)

V1 + V2 + V3 + V4
=

Vy

Vz
(5)

where Y represents the relative displacement along the vertical axis, essential for deriving
the applied torque. Additionally, it captures the relative displacement in the horizontal
direction, denoted as X, used for subsequent analysis of the coupling effect of the thrust on
the torque applied to the axis. The calculation of torque is expressed as:

T =
G · Y · IP

r
(6)

where G represents the shear modulus of the shaft material; r stands for the radius of the
shaft section; IP denotes the polar moment of inertia, a crucial physical quantity solely
contingent upon the shape and dimensions of the cross-section. IP plays a pivotal role
as one of the essential coefficients in computing the resistance against torsion, and is
expressed by:

IP =
∫
A

r2dA =
πd4

32
≈ 0.1d4 (7)

where d represents the diameter of the shaft section.

2.2. SAPSO-RBF Calibration Algorithm
2.2.1. RBF Neural Network

The RBF (Radial Basis Function) neural network, characterized by a straightforward
three-layer architecture, possesses the capability to approximate any continuous function
with arbitrary precision. Within this structure, the intermediate layer functions as the
hidden layer, employing the RBF function as its activation mechanism. Defined as a
monotonically increasing function of the Euclidean distance in space between a given point
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x and a specific center c, the RBF function embodies various forms, with the Gaussian
function being the most prevalent [24]. This function’s representation is shown as follows:

pj =
1√
2π

exp

(
−
(
x − cj

)2

2σj
2

)
j = 1, 2, . . . , n (8)

where x represents the input sample; cj denotes the center of the j-th node in the hidden
layer; σj stands for the width of the j-th node in the hidden layer.

While the standard RBF neural network model boasts a simple structure, fast computa-
tion, and robust nonlinear processing capabilities, its efficacy heavily relies on determining
essential parameters during the learning phase. Consequently, identifying the optimal
parameters for the network becomes paramount. This paper employs the Simulated An-
nealing Particle Swarm Optimization (SAPSO) algorithm to fine-tune and optimize the
network parameters.

2.2.2. SAPSO Optimization Algorithm

The Particle Swarm Optimization (PSO) algorithm originated from observations of bird
foraging behaviors and has since found widespread applications in parameter optimization
and other areas. Within the framework of the PSO algorithm, each particle’s position
represents a potential solution in the computational process. Following each iteration,
the particles within the swarm progressively converge towards individual historical best
solutions, culminating in the pursuit of the overall optimal solution for the collective [25].
The iterative nature of the PSO algorithm involves continual adjustments to the particles’
positions and velocities, updated as follows:

vk+1
id = ω × vk

id + c1 × r1 ×
(

pk
id − xk

id

)
+ c2 × r2 ×

(
gk

d − xk
id

)
(9)

xk+1
id = xk

id + vk+1
id (10)

The PSO algorithm is an evolutionary algorithm based on a global search strategy,
renowned for its fast convergence. However, its drawback emerges when exploring so-
lution spaces, especially in high-dimensional spaces, where the initialization of particles
significantly affects the optimization outcome. Sometimes, particles exhibit oscillations
near the optimal solution, which may be a local optimum. This occurrence impacts the
accuracy of the algorithm [26].

In addressing this issue, this paper introduces the Simulated Annealing (SA) algorithm
and combines it with the PSO algorithm to form the SAPSO algorithm. The Simulated
Annealing algorithm possesses the capability to accept poorer solutions with a certain prob-
ability, enabling it to escape local optima. Under conditions where the initial temperature
is adequately high and the temperature decreases slowly enough, it can converge to the
global optimum with a probability of 100% [27].

The Simulated Annealing algorithm employs the Metropolis criterion. At each step
of the algorithm, a perturbation generates a new candidate solution, S2, randomly. If this
new solution causes a decrease in the objective function from the current solution, S1, it is
acceptable. However, if the new solution leads to an increase in the objective function, its
acceptance is determined by an exponential probability. The probability of accepting the
new solution, denoted by P, is defined as:

P =

{
exp(−∆ f /T) ∆ f > 0

1 ∆ f ≤ 0
(11)

where T represents the current temperature value; ∆ f stands for the increment in the
objective function between the new solution and the current solution. If ∆ f ≤ 0, then S2
is accepted as the new current solution. Otherwise, the acceptance probability P for S2 is
calculated. Subsequently, a uniformly distributed random number, r, is generated in the



Sensors 2024, 24, 1576 6 of 15

(0, 1) interval. If P > r, S2 is accepted as the new current solution; otherwise, the current
solution S1 is retained [27]. Upon accepting the new solution, the annealing operation as
shown below is executed to decrease the temperature value:

T(t + 1) = βT(t) (12)

where β represents the annealing factor, which ranges between (0, 1).
After integrating the simulated annealing algorithm, the SAPSO algorithm not only

exhibits strong global search capabilities, but also incorporates the probability of accepting
inferior solutions when generating new ones. This ensures population diversity, aiding in
escaping local optima and enhancing both convergence speed and optimization precision.

3. System Architecture
3.1. System Hardware Design Overview

The optoelectronic torque measurement system proposed in this paper can be broadly
divided into two main components: the rotor and the stator. The rotor section comprises
four sets of quadrant photoelectric sensors, measurement arms with their fixed apparatus,
precise LED light sources, wireless power reception coils, a power supply board, two
signal acquisition boards, and a signal transmission board. All modules are mounted
on the shaft. The stator section consists of a wireless power transmission coil, a signal
reception board, and a host computer. The rotor section employs four four-quadrant
photoelectric sensors, strategically positioned along the shaft to detect torque-induced
deformation. This deformation is then converted into voltage signals, subsequently routed
to the signal acquisition board. Comprising two distinct boards, each managing signals
from two sensors, the acquisition board meticulously samples and processes the signals.
The processed signals are then transmitted through RS232 to the signal transmission board.
Following this, the transmission board relays the signals via Wi-Fi to the signal reception
board located at the stator end. The signal reception board seamlessly communicates with
the upper computer using the RS485 physical bus and the Modbus-RTU communication
protocol. The entire system is powered by the wireless power transmission coil at the stator
end. Upon induction of current by the wireless reception coil at the rotor end, it is rectified
and stabilized by the power supply board before being distributed individually to each
module at the rotor end. A schematic diagram depicting the overall hardware design is
shown in Figure 2.

3.2. Software Design

The software components primarily encompass sampling programs for the two signal
acquisition boards in the rotor section, the wireless communication protocol for the signal
transmission board, and the validation program for the signal reception board in the stator
section, along with the host computer program.

Figure 3 shows the software workflow of the entire measurement system. Upon the
initialization of all processors, corresponding peripherals such as ADCs, Wi-Fi modules,
etc., are initialized first. Following this initialization phase, the signal transmission board
initiates a synchronized signal transmission to both signal acquisition boards at one-second
intervals. This action enables the simultaneous commencement of sampling operations
on the two signal acquisition boards. Once the two boards receive the synchronization
signal, they activate timers to conduct AD sampling at the specified sampling frequency.
Simultaneously during sampling, a sliding average filter is applied to the data to mitigate
the impact of external random errors. After the 1 s sampling period elapses, each signal
acquisition board simultaneously sends the sampled data to the signal transmission board
in sequential order. To ensure data integrity, a validation byte is appended to each data
stream. Upon receiving the data, the transmission board verifies the correctness of each
acquisition board’s data by checking these validation bytes. If no errors are detected, the
transmission board arranges all channels of sensor data in sequence, combines them with a
frame header, forming a data frame. This data frame is transmitted via Wi-Fi to the signal
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reception board at the stator end. Upon receiving the data, the signal reception board first
verifies the frame header for accuracy. Once confirmed, it extracts voltage data from each
sensor channel, converts it back into torque measurement values, and then sends these
torque values to the host computer via the Modbus protocol and the RS485 bus for data
processing and display.
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4. Construction of the SAPSO-RBF Calibration Algorithm Model

Due to inherent errors in the torque values acquired by the system, it becomes neces-
sary to construct an SAPSO-RBF calibration algorithm model to rectify these measurements.
Within the model, the parameter settings of the Radial Basis Function (RBF) neural network
play a critical role in its overall performance. The determination of the network’s hidden
layer center vectors (cj) and standardization constants (σj) poses a complex and challenging
problem in this context. Therefore, this paper employs the SAPSO algorithm to optimize
the aforementioned parameters. The overall process is shown in Figure 4, with specific
steps outlined as follows:

1. To initialize the positions and velocities of each particle within the population, assum-
ing an RBF neural network with InNum input layer nodes, HiddenNum hidden layer
nodes, and OutNum output layer nodes, the particle’s dimensionality is defined as
d = HiddenNum. This means that all center vectors of the hidden layer nodes are
regarded as values for the particles;

2. Initialize the temperature for the Simulated Annealing algorithm. For each particle,
assign an initial temperature T1;

3. Utilize Mean Squared Error (MSE) as a metric to assess the performance of the RBF
network, represented by the formula as follows;

MSE =
1
k

k

∑
j=1

e2(j) =
1
k

k

∑
j=1

(
tj − yj

)2 (13)

where tj represents the expected output; yj stands for the actual output.
4. Since each particle’s position represents the parameters of the RBF network, Formula (13)

is utilized as the fitness function for particles. The fitness value for each particle is
computed by substituting the particle’s position into the RBF network. Initially, the
initial position of each particle serves as its initial individual best position (pbest0), and
the position of the particle with the minimum fitness among all particles is designated
as the initial global best position (gbest0);

5. Using the algorithm for iteration, during each iteration, the fitness value for each
particle is calculated. If this value is less than the fitness value associated with the
particle’s previous pbest, the particle’s position is updated to become its new pbest.
If the fitness value is less than the fitness value associated with gbest, the particle’s
position is updated to become the new gbest;

6. As the gbest calculated in the previous step could potentially be a local optimum,
accordingly, based on the principles of the simulated annealing algorithm, add a
random disturbance to each particle and calculate the minimum fitness value for the
perturbed particle, as well as the overall best position based on the perturbed values.
Continuing, use the following formula to calculate the fitness value increment before
and after;

∆E = f t+1(xi)− f t(xi) (14)

where f t+1(xI) represents the minimum fitness value after perturbation. f t(I) stands
for the fitness value of the gbset before perturbation;

7. If ∆E ≤ 0, the new solution is accepted as the current solution, and the temperature
value is updated according to Formula (12). Otherwise, with the probability described
in Formula (11), the fitness value is accepted. If accepted, the temperature is updated
as Formula (12); otherwise, no temperature update occurs;

8. Check for the termination condition. If not met, update the particles according to
Formulas (9) and (10) and repeat the process from step 4 to step 6. If the condition is
met, terminate the process and apply the parameters of the gbest to the network;

9. Finally, apply the RBF neural network optimized by the algorithm for torque calibration.
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5. Torque Calibration Experiment
5.1. Data Collection and Processing

In order to validate the measurement performance of this system, an experimental
setup as shown in Figure 5 was constructed.

Before utilizing the calibration algorithm for data optimization, it is essential to train
the network parameters following the procedures outlined in Section 4. Therefore, the initial
step involves collecting a training dataset for torque data. Within this dataset, the inputs
are the measured torque values, while the corresponding outputs are the standardized
torque values. To derive these standardized values, the T40 torque flange sensor from
HBM company, acclaimed for its 0.03% linear accuracy, is utilized. Employing shear stress
technology, this sensor measures the shear force applied to an object, thereby accurately
measuring torque stress. In this experiment, the torque load spans from 0 N·m to 200 N·m,
with increments of 10 N·m. At each measurement point, 20 sets of data are collected,
resulting in a total sample size of 420. Due to varying magnitudes in the collected torque
data, normalization of the samples becomes crucial to prevent computational saturation.
To achieve this, the following formula is used to confine the data within [0, 1] range:

Xout =
X − Xmin

Xmax − Xmin
(15)

where X represents the measured torque values within the training dataset; Xmin denotes
the minimum value within the sample set; Xmax signifies the maximum value present in
the sample set.
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Figure 5. Experimental configuration for validating the measurement performance of the system.

5.2. Calibration Results

After processing the data, it was input into the calibration algorithm described in Sec-
tion Four for training. Additionally, for comparison purposes, SAPSO-RBF and PSO-RBF
algorithms were trained using the same set of hyperparameters. The specific hyperpa-
rameters for the algorithms are detailed in Table 1. And the RBF network utilized the
same inputs, outputs, and number of hidden layers as listed in the table. The change in
fitness values of global extrema for the first two algorithms during training over iterations
is shown in Figure 6.

In Figure 6, it can be observed that initially, the fitness value of the SAPSO-RBF
algorithm is higher than that of the PSO-RBF. This occurs because the simulated annealing
algorithm probabilistically accepts suboptimal solutions during each iteration to prevent
the algorithm from becoming stuck in local optima, resulting in a slower decline in fitness
value. With the increase in iteration count, the PSO-RBF algorithm converges around
230 iterations, while the SAPSO-RBF algorithm continues to search for the optimal solution
until approximately 310 iterations before entering convergence, ultimately achieving a
fitness value superior to that of the PSO-RBF algorithm.

To verify the calibration effects of the algorithms, the three calibration algorithms
mentioned above are applied to calibrate the measured torque values. We selected five
sets of torque measurement values for validation, namely 0, 40, 80, 120, 160, and 200 Nm,
with each set consisting of 20 data points. The calibration results for torque are shown in
Figure 7.

Table 1. Algorithm training hyperparameters.

Hyperparameter Value

Input Layer Number 1
Hidden Layer Number 15
Output Layer Number 1

Particle Swarm Dimension (D) 15
Particle Number (N) 30

Weight (ω) (0.4, 2)
Learning factor (c1) 2.0
Learning factor (c2) 2.0

Iteration Number (M) 400
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In Figure 7, it can be observed that after processing with the SAPSO-RBF algorithm, the
fluctuation in torque values for each set is significantly smaller compared to the other two
algorithms. This indicates that the SAPSO-RBF algorithm exhibits a much better calibration
effect, notably enhancing measurement accuracy. Figure 8 shows a more intuitive compari-
son of the calibration performance of the three algorithms by showing the absolute value
of error between each data test point and the standard torque values. Table 2 provides a
summary of the root mean square error (RMSE) for each group of torque values in Figure 8,
along with the maximum error among the 20 measurement points in each group.
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Table 2. The maximum error and RMSE of the torque values for each test group.

Calibration Algorithm
Test Group

0 40 80 120 160 200

RBF 1.03 1 0.768 2 3.824 2.61 4.432 3.145 4.682 3.782 4.867 3.476 5.179 3.359
PSO-RBF 0.263 0.189 2.77 1.53 3.685 2.426 3.557 2.626 3.754 2.338 3.753 2.117

SAPSO-RBF 0.076 0.042 1.42 0.81 1.423 0.836 1.726 0.824 1.942 1.057 1.802 0.953
1 For each test group, the first data represents the maximum error among the 20 measurement points in that group.
2 The second data in the pair represents the RMSE of the torque values in that group.

The summary from Table 2 indicates that, after optimization with the SAPSO-RBF
algorithm, the maximum error and RMSE for each group of torque values are the smallest.
This suggests that, compared to the other two algorithms, the SAPSO-RBF algorithm
exhibits the optimal calibration performance.

After verifying the calibration effects of the algorithm, the data measurement range is
expanded. Torque measurement points are selected at intervals of 10 Nm within the range
of 0–200 Nm, with each group consisting of 20 measurement points. The absolute values
of relative errors for all samples (except for samples with a value of 0) under the three
scenarios are compared, as shown in Figure 9. And Table 3 summarizes the comparison of
the MAPE and the time consumption for algorithm training and running.

Table 3. Comparison of the three calibration algorithms for all samples.

Calibration Algorithm Training Time (s) Running Time (s) MAPE (%)

RBF — 0.0081 3.611
PSO-RBF 857.1 0.0076 2.364

SAPSO-RBF 863.4 0.0076 0.924
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Table 3 shows that the calibration of the PSO-RBF algorithm reduces the MAPE
by 1.247% compared to the traditional RBF network, while the SAPSO-RBF algorithm
achieves a more significant reduction of 2.687%. This indicates that the proposed SAPSO-
RBF algorithm for optimizing the RBF network has successfully achieved the intended
optimization effect, resulting in a decreased measurement error. Regarding training time,
the traditional RBF network, which uses the pseudoinverse method for parameter solving,
does not require training. However, this leads to poor calibration performance and higher
errors. Although the training time for the SAPSO-RBF algorithm is slightly longer than that
of the PSO-RBF algorithm, it results in a 1.44% reduction in calibration error. Moreover, the
three algorithms have similar running times, falling within an acceptable range.

6. Conclusions

In this paper, an optoelectronic torque measurement system that employs highly
precise and sensitive four-quadrant photoelectric sensors to measure the torque applied to
the shaft is introduced. The entire system comprises rotor and stator modules, facilitating
data transmission via Wi-Fi. The rotor module is responsible for collecting sensor outputs,
packaging them into data frames, and transmitting them via Wi-Fi. Conversely, the stator
module receives the data from the rotor module and sends it to the host computer for
monitoring. This setup accomplishes a separation between sampling and monitoring and
enables non-contact torque measurement. Additionally, the entire system employs the
SAPSO-RBF algorithm to calibrate torque measurement values, thereby further enhancing
measurement accuracy. Experimental validation confirms the system’s ability to accurately
obtain torque values and reduce errors through algorithmic calibration, providing a novel
solution for non-contact torque measurement. However, our system still has some gaps
compared to the state-of-the-art torque sensors currently available. Additionally, the
presence of both stator and rotor components makes the installation and maintenance of
the entire system more complex.

In future work, we intend to take the following measures to improve our study. Firstly,
we will optimize the hardware and mechanical structure, improving the structure and
installation of the measuring arm to enhance its static stability. Additionally, we aim to
integrate the rotor’s circuitry onto a single circuit board, reducing the complexity of instal-
lation and maintenance. Secondly, acknowledging the prevailing challenge of temperature
influence on measurement accuracy, we intend to incorporate a temperature sensor to
monitor ambient temperature in real-time. To counteract the potential impact of temper-
ature variations, a dedicated temperature compensation algorithm will be implemented.
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Lastly, we will continue researching more advanced torque calibration algorithms to further
reduce measurement errors.

Author Contributions: Conceptualization, K.X. and Y.L.; methodology, K.X.; software, Y.L. and B.Z.;
validation, Y.L., R.L. and Y.D.; formal analysis, K.X.; investigation, Y.L. and Q.Y.; resources, K.X. and
B.Z.; data curation, Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, K.X.;
project administration, Y.L. and Q.Y.; funding acquisition, K.X. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported in part by the National Local Joint Engineering Laboratory of
High Energy Saving Motor and Control Technology Open Subject under Grant KFKT202105.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhong, S.; Chen, L.; Liang, W.; Nsengiyumva, W.; Yu, Y.; Li, T.; Zhang, Q.; Lin, J.; Zhong, J.; Li, J. Contactless torque sensors based

on optical methods: A review. Opt. Lasers Eng. 2024, 173, 107832. [CrossRef]
2. Xie, R.; Ma, T. Design and Development of Real-Time Measurement System for Dynamic Torque of Rotating Shaft. MAPAN 2022,

37, 185–193. [CrossRef]
3. Rizal, M.; Ghani, J.A.; Nuawi, M.Z.; Haron, C.H.C. An embedded multi-sensor system on the rotating dynamometer for real-time

condition monitoring in milling. Int. J. Adv. Manuf. Technol. 2018, 95, 811–823. [CrossRef]
4. Banik, A.; Roy, B.S.; Barma, J.D.; Saha, S.C. An experimental investigation of torque and force generation for varying tool tilt

angles and their effects on microstructure and mechanical properties: Friction stir welding of AA 6061-T6. J. Manuf. Process. 2018,
31, 395–404. [CrossRef]

5. Idehara, S.J.; Flach, F.L.; Lemes, D. Modeling of nonlinear torsional vibration of the automotive powertrain. J. Vib. Control 2018,
24, 1774–1786. [CrossRef]

6. Caggiano, A.; Napolitano, F.; Nele, L.; Teti, R. Study on thrust force and torque sensor signals in drilling of Al/CFRP stacks for
aeronautical applications. Procedia CIRP 2019, 79, 337–342. [CrossRef]

7. Manngård, M.; Koene, I.; Lund, W.; Haikonen, S.; Fagerholm, F.A.; Wilczek, M.; Mnich, K.; Keski-Rahkonen, J.; Viitala, R.;
Björkqvist, J. Torque estimation in marine propulsion systems. Mech. Syst. Signal Process. 2022, 172, 108969. [CrossRef]

8. Guerrero, D.P.; Jiménez-Espadafor, F.J. Torsional system dynamics of low speed diesel engines based on instantaneous torque:
Application to engine diagnosis. Mech. Syst. Signal Process. 2019, 116, 858–878. [CrossRef]

9. Kim, S.; Oh, J.J.; Choi, S.B. Driveline torque estimations for a ground vehicle with dual-clutch transmission. IEEE Trans. Veh.
Technol. 2017, 67, 1977–1989. [CrossRef]

10. Kashiri, N.; Malzahn, J.; Tsagarakis, N.G. On the sensor design of torque controlled actuators: A comparison study of strain
gauge and encoder-based principles. IEEE Robot. Autom. Lett. 2017, 2, 1186–1194. [CrossRef]

11. Zhang, H.; Ortiz de Luna, R.; Pilas, M.; Wenske, J. A study of mechanical torque measurement on the wind turbine drive
train—Ways and feasibilities. Wind. Energy 2018, 21, 1406–1422. [CrossRef]

12. Huang, Y.; Yang, Y.; Zhang, X.; Zhao, M. A novel torque sensor based on the angle of magnetization vector. EURASIP J. Wirel.
Commun. Netw. 2018, 2018, 230. [CrossRef]

13. Borges, J.C.S.; de Deus, D.B.; Lima Filho, A.C.; Belo, F.A. New contactless torque sensor based on the Hall effect. IEEE Sens. J.
2017, 17, 5060–5067. [CrossRef]

14. Ji, X.; Fan, Y.; Chen, J.; Han, T.; Cai, P. Passive wireless torque sensor based on surface transverse wave. IEEE Sens. J. 2015, 16,
888–894. [CrossRef]

15. Zhang, C.; Li, Z.; Chen, J.; Qiu, F.; Na, S. Design and research of a novel non-contact vertical inductive torque sensor. Measurement
2021, 177, 109252. [CrossRef]

16. Zappalá, D.; Bezziccheri, M.; Crabtree, C.; Paone, N. Non-intrusive torque measurement for rotating shafts using optical sensing
of zebra-tapes. Meas. Sci. Technol. 2018, 29, 065207. [CrossRef]

17. Pan, S.; Yang, X.; Zhang, Y.; Yang, K.; Zhang, H.; Li, H. Design of Torque angle based photoelectric shaft power acquisition device
and data processing method. In Proceedings of the 2023 7th International Conference on Transportation Information and Safety
(ICTIS), Xi’an, China, 4–6 August 2023; pp. 2243–2248.

18. Lai, D.; Tang, Z.; Zhao, J.; Wang, S.; Shi, C. Design and validation of a miniature fiber Bragg grating-enabled high-sensitivity
torque sensor. IEEE Sens. J. 2021, 21, 20027–20035. [CrossRef]

19. Chen, L.; Liang, W.; Zhong, S.; Zhang, Q.; Lin, J.; Nsengiyumva, W.; Zeng, Q.; Yu, Y. Novel contactless torque sensor based on
optical coherence. Opt. Lasers Eng. 2024, 174, 107983. [CrossRef]

https://doi.org/10.1016/j.optlaseng.2023.107832
https://doi.org/10.1007/s12647-021-00526-1
https://doi.org/10.1007/s00170-017-1251-8
https://doi.org/10.1016/j.jmapro.2017.11.030
https://doi.org/10.1177/1077546316668687
https://doi.org/10.1016/j.procir.2019.02.079
https://doi.org/10.1016/j.ymssp.2022.108969
https://doi.org/10.1016/j.ymssp.2018.06.051
https://doi.org/10.1109/TVT.2017.2765354
https://doi.org/10.1109/LRA.2017.2662744
https://doi.org/10.1002/we.2263
https://doi.org/10.1186/s13638-018-1247-6
https://doi.org/10.1109/JSEN.2017.2723041
https://doi.org/10.1109/JSEN.2015.2499318
https://doi.org/10.1016/j.measurement.2021.109252
https://doi.org/10.1088/1361-6501/aab74a
https://doi.org/10.1109/JSEN.2021.3095275
https://doi.org/10.1016/j.optlaseng.2023.107983


Sensors 2024, 24, 1576 15 of 15

20. Oh, H.S.; Kim, U.; Kang, G.; Seo, J.K.; Choi, H.R. Multi-axial force/torque sensor calibration method based on deep-learning.
IEEE Sens. J. 2018, 18, 5485–5496. [CrossRef]

21. Li, Y.-j.; Wang, G.-c.; Yang, X.; Zhang, H.; Han, B.-b.; Zhang, Y.-l. Research on static decoupling algorithm for piezoelectric six axis
force/torque sensor based on LSSVR fusion algorithm. Mech. Syst. Signal Process. 2018, 110, 509–520. [CrossRef]

22. Wang, Y.; Yu, X.; Wang, D.; Feng, Q.; Shi, Y. Analog Detection of PSD Sensor and Sunshine Position Tracking Performance in Four
Quadrant Arrays. Int. J. Perform. Eng. 2019, 15, 2346. [CrossRef]

23. Xia, K.; Huang, J.; Wang, H. LSTM-CNN architecture for human activity recognition. IEEE Access 2020, 8, 56855–56866. [CrossRef]
24. Jiang, Q.; Zhu, L.; Shu, C.; Sekar, V. An efficient multilayer RBF neural network and its application to regression problems. Neural

Comput. Appl. 2022, 34, 4133–4150. [CrossRef]
25. Yu, Z.; Qiu, Z.; Li, H.; Xue, J.; Hu, W.; Wang, C. Design and calibration of torque measurement system of comprehensive

performance test instrument of industrial robot reducer. Comput. Intell. Neurosci. 2022, 2022, 8155818. [CrossRef]
26. Zhang, J.; Xia, P. An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models. J. Sound Vib.

2017, 389, 153–167. [CrossRef]
27. Haznedar, B.; Arslan, M.T.; Kalinli, A. Optimizing ANFIS using simulated annealing algorithm for classification of microarray

gene expression cancer data. Med. Biol. Eng. Comput. 2021, 59, 497–509. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSEN.2018.2834727
https://doi.org/10.1016/j.ymssp.2018.03.015
https://doi.org/10.23940/ijpe.19.09.p7.23462355
https://doi.org/10.1109/ACCESS.2020.2982225
https://doi.org/10.1007/s00521-021-06373-0
https://doi.org/10.1155/2022/8155818
https://doi.org/10.1016/j.jsv.2016.11.006
https://doi.org/10.1007/s11517-021-02331-z

	Introduction 
	The Principle of the System 
	The Principle of Measurement 
	SAPSO-RBF Calibration Algorithm 
	RBF Neural Network 
	SAPSO Optimization Algorithm 


	System Architecture 
	System Hardware Design Overview 
	Software Design 

	Construction of the SAPSO-RBF Calibration Algorithm Model 
	Torque Calibration Experiment 
	Data Collection and Processing 
	Calibration Results 

	Conclusions 
	References

