
 
 

 

 
Sensors 2024, 24, 1559. https://doi.org/10.3390/s24051559 www.mdpi.com/journal/sensors 

Article 

Enhanced Knowledge Distillation for Advanced Recognition of 
Chinese Herbal Medicine 
Lu Zheng 1,2, Wenhan Long 1, Junchao Yi 1,3, Lu Liu 4 and Ke Xu 1,3,* 

1 College of Computer Science, South-Central Minzu University, Wuhan 430074, China 
2 Key Laboratory of Information Physics Integration and Intelligent Computing of National Ethnic Affairs 

Commission, Wuhan 430074, China 
3 Hubei Provincial Engineering Research Center of Agricultural Blockchain and Intelligent Management, 

Wuhan 430074, China 
4 School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK 
* Correspondence: xuke@scuec.edu.cn 

Abstract: The identification and classification of traditional Chinese herbal medicines demand sig-
nificant time and expertise. We propose the dual-teacher supervised decay (DTSD) approach, an 
enhancement for Chinese herbal medicine recognition utilizing a refined knowledge distillation 
model. The DTSD method refines output soft labels, adapts attenuation parameters, and employs a 
dynamic combination loss in the teacher model. Implemented on the lightweight MobileNet_v3 net-
work, the methodology is deployed successfully in a mobile application. Experimental results reveal 
that incorporating the exponential warmup learning rate reduction strategy during training opti-
mizes the knowledge distillation model, achieving an average classification accuracy of 98.60% for 
10 types of Chinese herbal medicine images. The model boasts an average detection time of 0.0172 
s per image, with a compressed size of 10 MB. Comparative experiments demonstrate the superior 
performance of our refined model over DenseNet121, ResNet50_vd, Xception65, and EfficientNetB1. 
This refined model not only introduces an approach to Chinese herbal medicine image recognition 
but also provides a practical solution for lightweight models in mobile applications. 

Keywords: Chinese herbal medicine; knowledge distillation; dual-teacher supervision; adaptive  
attenuation; portable application 
 

1. Introduction 
Chinese herbal medicine stands as a distinctive therapeutic approach within tradi-

tional Chinese medicine (TCM), offering a diverse range of remedies for various ailments. 
However, the expansive array of Chinese herbal medicines used across different regions 
has given rise to a concerning trend: the proliferation of counterfeit and substandard sub-
stitutes on the market. This poses significant risks as ordinary consumers, lacking in-
depth knowledge, often inadvertently consume these falsified products. The complexity 
of Chinese herbal medicine compounds this issue, making it challenging for laypersons 
to accurately identify genuine herbs. As a consequence, mistaken ingestion remains a fre-
quent occurrence among consumers. Presently, the identification and classification of 
these herbs heavily rely on individuals with specialized expertise in this field. To address 
these challenges, the integration of deep learning technology into the recognition and clas-
sification of Chinese herbal medicine becomes imperative. The remarkable advancements 
in image recognition offered by deep learning present a promising solution. This integra-
tion holds immense potential in revolutionizing traditional Chinese medicine (TCM) by 
providing a systematic approach to identifying and authenticating herbal medicines. The 
application of deep learning in research aimed at recognizing and categorizing Chinese 
herbal medicine marks a crucial step forward in preserving and advancing the legacy of 
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TCM. Its incorporation promises to empower both practitioners and consumers by en-
hancing the authentication and classification of these invaluable remedies. 

In recent studies, deep learning technologies have been harnessed for advancing Chi-
nese herbal medicine identification. Huang et al. [1] proposed a Chinese herb image clas-
sification method based on AlexNet. Through meticulous data augmentation and param-
eter fine-tuning, they achieved an impressive classification accuracy of 87.5% after 300 
epochs. Gao et al. [2] introduced a recognition approach for natural grassland plant spe-
cies using Inception_V3 with Tensorflow, achieving a peak accuracy of 89.41% in the 
model’s validation dataset’s Top1 error. Zhang et al. [3] contributed by classifying 17 types 
of Chinese herbs through a VGG network, attaining an outstanding average recognition 
accuracy of 96% in the validation dataset. Their model was further deployed on mobile 
devices, demonstrating practical application. Wang et al. [4] proposed an image recogni-
tion method for Chinese herbal plants based on the AlexNet network. Utilizing a deep 
coding and decoding network, they successfully trained the model to classify 15 types of 
Chinese herbal images, achieving an impressive average classification accuracy of 99.38%, 
but the large model parameter amount led to large training and inference computation, 
requiring more memory and computing resources, which was not suitable for mobile de-
ployment. Hu et al. [5] introduced a dual-channel U-shaped convolutional neural network 
with feature calibration. They generated a training model for single-view fritillaria image 
data, surpassing the classification results of traditional machine learning methods. More-
over, by incorporating multi-view fritillaria images and employing a three-dimensional 
convolutional neural network, they developed a more precise fritillaria classification 
model. While these scholars have conducted profound research in Chinese herbal medi-
cine image recognition, there is still room for improvement in model accuracy. An im-
proved model has to not only maintain high classification accuracy but also focus on re-
ducing the model parameter amount to improve performance. Moreover, concerns arise 
regarding the redundancy of model parameters, hindering deployment on mobile devices 
due to inadequate detection speed. 

To address the aforementioned challenges, this paper proposes an approach called 
dual-teacher supervised decay (DTSD) for adaptive-decay knowledge distillation, which 
aims to enhance the performance of the standard model. By enhancing the output soft 
label, adapting decay parameters, and dynamically combining loss functions from the 
teacher model, DTSD is employed in the MobileNet_v3_Small network to enable accurate 
predictions despite its smaller size. Consequently, the accuracy of the Mo-
bileNet_v3_Small network is elevated to match that of more complex networks. The pro-
posed model is then integrated into an intelligent Chinese herbal medicine recognition 
system for mobile devices, facilitating the efficient recognition and classification of Chi-
nese herbal medicine. 

The main contributions of our work include: 
1. Proposing a dual-teacher supervised model to reorganize the predictive distribution 

of dual teachers to achieve more accurate and robust soft labeling, which improves 
the performance of the model. 

2. Dynamically adjusting the temperature parameter T and the weight distribution 
value λ between the teacher model and the real label to gradually reduce the influ-
ence of the teacher model in the training process, so that the student model can more 
flexibly balance the complexity and the model’s generalization ability in the training 
process. 

3. Adopting JS scatter with symmetry to replace the cross-entropy loss of the predicted 
values of the soft label and the student model to better capture the similarity between 
the distributions and prompt the student model to better inherit the knowledge of 
the tutor model. 
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4. A lightweight MobileNet_v3 network-based herbal medicine recognition system is 
implemented, and by applying our proposed DTSD method to the Mo-
bileNet_v3_Small network, we improve the accuracy and robustness of herbal med-
icine recognition while maintaining a small model size. 
The rest of this paper is organized as follows: The preliminaries and dataset collection 

are presented in the first half of Section 2. Also in that section, the dataset augmentation 
strategies are described. Then, we introduce the knowledge distillation model with dual-
teacher supervised decay in the second half of Section 2. Comparative experiment results 
and analysis are given in Section 3 to verify the effectiveness of the proposed methods, 
followed by a short conclusion in Section 4. 

2. Materials and Methods 
2.1. Dataset Collection 

The dataset utilized in this study consists of images depicting 10 distinct types of 
Chinese herbal medicine. These images were gathered from the Internet using a Web 
crawling technique and subsequently underwent a meticulous process of curation and 
filtration. A Web crawler first needs to determine the initial URL to be crawled and then 
builds a queue of URLs by parsing links on the page. The crawler accesses the web pages 
one by one according to the URLs in the queue. The page is requested from the server via 
an HTTP request, and then the HTML data returned by the server are downloaded locally. 
The downloaded pages are usually in HTML format, and the crawler needs to parse the 
HTML to extract useful information. The parsed data were the herbal images. This process 
resulted in a total of 1000 images of Chinese herbal medicines being compiled. The dataset, 
as illustrated in Figure 1, encompassed 10 specific types of Chinese herbal medicines, 
namely Radix paeoniaealba, Radix stemoonae, Fructus aurantia tablets, Polygon atum, turmeric, 
Pollen typhae, Cnidium monnieri, motherwort, Chinese wolfberry, and curcuma. By cropping 
and compression, each category comprised 100 images, all of which sized at 320 pixels by 
320 pixels and possessing a resolution of 96 dots per inch. During the training of the 
teacher network, the dataset was partitioned into a 7:2:1 ratio, with 700 images (70%) al-
located to the training dataset, 200 images (20%) to the validation dataset, and 100 images 
(10%) to the test dataset. The dataset was divided into datasets according to the 7:2:1 ratio 
for each category. The authors labeled various types of herbs. 

(a)
(c) (d)(b)

(g) (h)

(e)

(i)(f) (j)  
Figure 1. Sample of the Chinese herbal medicine dataset: (a) Radix paeoniae; (b) Radix stemonae; 
(c) Fructus aurantia tablets; (d) Polygonatum; (e) turmeric; (f) Pollen typhae; (g) Cnidium monnieri; 
(h) motherwort; (i) Chinese wolfberry; (j) curcuma. 
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2.2. Data Enhancement 
The performance and recognition ability of the model during training are influenced 

by the generalization and quantity of data. When the available data are limited, overfitting 
becomes a more prominent issue in deep learning models. To address this challenge and 
improve the model’s generalization capabilities, data augmentation techniques are em-
ployed prior to training. These techniques enable the generation of more diverse data rep-
resentations, as depicted in Figure 2. In order to preserve the original data features, the 
dataset was expanded to a size of 10,000 through generalization under simulated real con-
ditions. The augmentation strategies [6] primarily included an image transformation class 
and an image cropping class. 

(a) (b) (c) (d) (e)  
Figure 2. Data augmentation: (a) original image; (b) random augmentation strategy; (c) cutout strat-
egy; (d) random erasing strategy; (e) hide-and-seek strategy. 

2.2.1. Image Transformation Class 
For the rand augmentation strategy, specific probability distributions were set for 

each sub-strategy. The transformations included rotation (±30 degrees), flipping (50% 
probability of a horizontal flip), cropping (up to 20% crop of the original image size), con-
trast adjustment (±10%), and other sub-strategies. Each sub-strategy was randomly ap-
plied with a uniform probability distribution, reducing the need for manual selection. 
Moreover, all sub-strategies were also applied with equal probabilities, resulting in mul-
tiple augmentation sub-strategies being concurrently applied to a single image through 
probability combination. This approach allowed for the adjustment of image brightness, 
contrast, saturation, and hue simultaneously, simulating variations in shooting angles and 
actual lighting conditions. The probability of applying each sub-strategy was set at 10%, 
ensuring a balanced augmentation without overpowering the original image characteris-
tics. By incorporating random factors to mimic real-world lighting differences, the param-
eters aligned more closely with reality, reducing the impact of image angle and lighting 
variations, and enhancing the model’s robustness. 

2.2.2. Image Cropping 
In the cropping class, cut out, random erasing, and hide-and-seek strategies were 

employed, each with a distinct probability of application: 15% for cut out, 10% for random 
erasing, and 5% for hide and seek. The main objective of these strategies is to imitate clas-
sification scenarios where the subject is partially occluded in real-world situations. The 
size of the cropped area ranged from 10% to 20% of the original image, randomly chosen 
for each application. This helped prevent the model from becoming overly sensitive to 
salient regions of the image, thus avoiding overfitting. 

2.3. Teacher Model: ResNet_vd 
ResNet, introduced by Kaiming [7], aimed primarily to reduce the computational ex-

pense during network training and address issues related to diminishing or amplifying 
gradients leading to performance degradation with increasing network depth. This archi-
tecture employs stacked nonlinear layers to accommodate skip connections, thereby es-
tablishing an identity mapping. This ensures that deeper layers perform as effectively as 
shallower networks [8]. 
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The ResNet_vd model, an enhancement of ResNet by Tong et al., introduces various 
versions of residual modules [9]. Experiments conducted by He et al. demonstrate that 
ResNet_vd achieves significantly higher accuracy compared to other structural variations, 
leading to an approximate 0.85% increase in the top-1 accuracy on ImageNet. The net-
work’s structure is illustrated in Figure 3. 

 
Figure 3. Resnet_vd model structure diagram. 

2.4. Teacher Model: DenseNet 
DenseNet, proposed by Gao [10] et al., emerged subsequent to an analysis of ResNets, 

highway networks, FractalNets, and other models. These authors highlighted a crucial 
attribute shared by these models: the construction of shortcuts between preceding and 
succeeding network layers, ensuring an identity mapping between them. Leveraging this 
characteristic, they developed an enhanced connection mode: each layer receives the fea-
ture maps from all preceding layers as input, as depicted in Figure 4. Research indicates 
that this connection method notably enhances the transfer of features and gradients within 
the network. 
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Figure 4. Densenet121 model structure diagram. 

Compared to the residual network (ResNet), DenseNet achieves equivalent accuracy 
on the ImageNet dataset while utilizing less than half the number of parameters and com-
putational resources [11]. Simultaneously, it demonstrates robust resistance to overfit-ting 
and displays strong generalization performance [12]. 

2.5. Student Model: MobileNet_v3_Small 
In the realm of deep convolutional network models, achieving high accuracy often 

comes at the cost of increased model size and slower prediction speeds due to the incor-
poration of various techniques. The choice of MobileNet_v3 as the student model in our 
study over other lightweight models was motivated by its unique balance of efficiency 
and performance. Compared to other lightweight architectures, MobileNet_v3 offers an 
optimal trade-off between accuracy and speed, crucial for real-time applications on em-
bedded devices. This balance is achieved through its advanced architectural innovations 
that reduce computational demand without significant loss in accuracy [13,14]. 

MobileNet_v3 represents the next evolutionary step: a lightweight network that 
amalgamates the essence of MobileNet_v1 and MobileNet_v2 while introducing enhance-
ments. It was selected for its superior efficiency in processing speed and reduced param-
eter count, critical for deployment in resource-constrained environments. This iteration 
revolves around four core blocks: (1) a depthwise-separable convolution; (2) an inverted 
residual structure with linear bottleneck; (3) a lightweight attention block; (4) the utiliza-
tion of h-swish as an activation function, replacing the conventional swish [15–18]. The 
architecture of MobileNet_v3, depicted in Figure 5, demonstrates these key components. 
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Figure 5. MobileNet_v3 model structure diagram. 

2.6. Knowledge Distillation Model with Dual-Teacher Supervised Decay 
In deep neural networks, the presence of a large number of parameters leads to re-

dundancy. Knowledge distillation, as proposed by Hinton et al. [19], emerges as a tech-
nique to address this issue by compressing the model and reducing the parameter count 
([20–24]). The fundamental idea behind knowledge distillation involves incorporating soft 
labels associated with the teacher network into the total loss. This integration guides the 
training of the student network, facilitating knowledge transfer. The improvement in the 
performance of the student network is achieved while keeping the number of parameters 
constant. The resulting performance metrics closely align with those of the larger model. 
The detailed process is illustrated in Figure 6, and it unfolds as follows: 
1. The teacher network initially trains on hard targets. Once the model is trained, just 

before the network performs softmax normalization on the output, each term is di-
vided by a fixed temperature, T. This process yields the soft targets used to guide the 
learning of the student network. 

2. During the training of the student network, the loss value employed for updating 
parameter weights during backpropagation is divided into two components. One 
part represents the cross-entropy loss computed on the true labels of the training da-
taset. The other part corresponds to the loss calculated on the soft output of the teacher 
network. Ultimately, these two losses are weighted and combined to generate the over-
all loss, which is then applied to the training of the student network model [25–28]. 
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Figure 6. Flow chart of knowledge distillation. 

The standard knowledge distillation process has shown its innovative aspects, but it 
still faces the following issues, leading to a decrease in the accuracy of the student model 
compared to the general model in certain training scenarios: 
1. Quality of guidance from the teacher model: Sometimes, the complex model might not 

predict perfectly. This is like a chef giving slightly incorrect cooking instructions to an 
apprentice. When these predictions, or guidance, are enhanced to make them more de-
tailed for the student model (akin to increasing the “temperature” to make the lessons 
more intense), it can introduce errors or “noise”. This may lead the student model to 
learn incorrectly, like an apprentice learning flawed cooking techniques. 

2. Adjusting the intensity of teaching (temperature): In past research, the intensity or 
detail in the teacher’s guidance was often set at a fixed level, usually moderate. But it 
is now understood that this should vary throughout the training, much like adjusting 
teaching methods for students as they progress. The “temperature”, or level of detail 
and complexity in the teacher’s guidance, needs to be adaptable, increasing or de-
creasing at different stages of the student model’s learning. 

3. Balancing real data vs. teacher’s predictions (loss weighting λ): In traditional teaching 
methods, the balance between real-world data (hard labels) and the teacher’s predic-
tions (soft labels) is constant. However, it is more effective if this balance changes over 
time. As the student model learns, the emphasis should gradually shift from what the 
teacher model predicts to what is actually observed in real-world data, allowing the 
student model to become more adept at handling real situations independently. 
Based on these issues, an improved model of adaptive-decay knowledge distillation 

with dual-teacher supervision is proposed, with specific improvements as follows: 
1. The combination of soft labels: In standard knowledge distillation, we expand the 

teacher model from a single teacher to dual teachers to obtain multiple prediction 
distributions. To maintain the accuracy of the prediction distributions while acquir-
ing more dark knowledge, we recombine the prediction distributions of the two 
teacher models. This is done by taking the maximum value of the predictions from 
the two teacher models in each dimension as the category classification result for that 
dimension, thereby obtaining a soft label with greater accuracy and richer dark 
knowledge. The formula is shown as Formula (1). Here, p and q represent the pre-
dicted labels given by the two teacher models, respectively. Through this formula, 
we generate a new probability distribution composed of the maximum values from 
two different probability distributions in each dimension. 
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𝑀𝑎𝑥_𝑜𝑢𝑡(𝑝, 𝑞) =  ሾ𝑀𝑎𝑥(𝑝_1, 𝑞_1), 𝑀𝑎𝑥(𝑝_2, 𝑞_2), … 𝑀𝑎𝑥(𝑝_𝑛, 𝑞_𝑛)ሿ (1) 

2. Selection of T: By analyzing the distillation distribution of the model output proba-
bility for different T cases, as shown in Figure 7, the different types are 10 classifica-
tions for herbal recognition, and the standard output is the blue solid line. When the 
value of T is smaller than 1 (the red dotted line), the gap between the true prediction 
value and the dark knowledge is enlarged, that is, the proportion of the true predic-
tion increases. When the value of T is greater than 1 (green dotted line), the total pre-
diction distribution is smoother, which means the proportion of dark knowledge is 
increased. Therefore, in the early stage of training, T is set to a value smaller than 1, 
so that the student model can quickly find the basic proper parameters in the early 
stage. With the deepening of training and the expansion of the proportion of dark 
knowledge, the student model with high accuracy further learns the dark knowledge 
part of the correct prediction distribution given by the teacher model, so as to im-
prove its accuracy. Thus, the value of T is set to the value of the function that grows 
with the training epochs. As illustrated in Formula (2) x is the training metric; 
through this function, the temperature T changes with the x in an S-shaped curve and 
is defined as the deepening of the experiment (step/epochs), increasing in an S-
shaped curve, and the main value range is [0–3], so that the student model can learn 
different degrees of dark knowledge in different epochs. This is shown in Figure 8. 
The student model in the early stage as a low weight; as the model training process 
continues to rise, the relationship is well reflected as a sigmoid function, that is, an 
“S” curve. We have adjusted the parameters of the sigmoid function so as to be more 
in line with the whole training process of the model. 𝑇_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥) = 3 × 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(10 × (𝑥 − 0.5)) (2) 

 
Figure 7. Distillation distribution of model output probabilities for different T cases. 

 
Figure 8. The distribution of T/λ. 
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3. Selection of λ: In knowledge distillation, when the student model is at distinct train-
ing phases, the combined weights of the teacher model and the true label are likewise 
diverse. In the early stage of training, transfer learning and real labels are mainly 
mixed for learning and fitting, which guarantees that the high accuracy based on the 
pretrained model can be acquired in the whole model training. Nevertheless, with 
the deepening of the training epochs, since the student model has reached a success-
ful convergence situation through self-study, the accuracy cannot be further im-
proved. Therefore, by increasing the proportion of the teacher model on and on, the 
student model learns the dark knowledge distribution from the teacher model pre-
diction distribution, thereby improving the model performance. The change in λ is 
shown in Figure 8 and Formula (3), where x indicates the training times. By this func-
tion, λ decreases in an S-curve with the deepening of the training process. 𝜆_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥) = 1 − 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(10 × (𝑥 − 0.5)) (3) 

4. Calculation of the loss: 
(a) In the loss calculation of the soft label and the student model, the Jensen–Shan-

non divergence with symmetry is utilized to replace the cross-entropy loss as 
the similarity measure metrics of two prediction distributions, as shown in For-
mula (5). 

(b) In view of the one-hot characteristic of the hard label, the loss between the hard 
label and the student model is still computed via the cross-entropy loss, as 
shown in Formula (6). 

(c) The total loss is derived from Formulas (7)–(12). 

𝐾𝐿(𝑃, 𝑄) = ෍ 𝑝(𝑥) log 𝑝(𝑥)𝑞(𝑥) (4) 

𝐽𝑆(𝑃ଵ, 𝑃ଶ) = 12 𝐾𝐿(𝑃ଵ, 𝑃ଵ + 𝑃ଶ2 ) + 12 𝐾𝐿(𝑃ଶ, 𝑃ଵ + 𝑃ଶ2 ) (5) 

𝐶𝐸(𝐿𝑎𝑏𝑙𝑒, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡) = − ෍ 𝐿𝑎𝑏𝑒𝑙௝ · 𝑙𝑜𝑔(𝑃𝑟𝑒𝑑𝑖𝑐𝑡௝)ே
௝ୀଵ  (6) 

𝑇 = 𝑇_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠𝑡𝑒𝑝/𝑒𝑝𝑜𝑐ℎ𝑠) (7) 

𝜆 = 𝜆_𝑓𝑢𝑛𝑐𝑖𝑡𝑜𝑛(𝑠𝑡𝑒𝑝/𝑒𝑝𝑜𝑐ℎ𝑠) (8) 

𝑂𝑢𝑡௧௘௔௖௛௘௥ = 𝑀𝑎𝑥_𝑜𝑢𝑡(𝑂𝑢𝑡௧௘௔௖௛௘௥ଵ, 𝑂𝑢𝑡௧௘௔௖௛௘௥ଶ) (9) 

𝐿௦௢௙௧ = 𝐽𝑆(𝑂𝑢𝑡௧௘௔௖௛௘௥/𝑇, 𝑂𝑢𝑡௦௧௨ௗ௘௡௧/𝑇) (10) 

𝐿௛௔௥ௗ = 𝐶𝐸(𝐻𝑎𝑟𝑑௟௔௕௘௟, 𝑂𝑢𝑡௦௧௨ௗ௘௡௧) (11) 

𝐿𝑜𝑠𝑠 = (1 − 𝜆) ∗ 𝐿௦௢௙௧ + 𝜆 ∗ 𝐿௛௔௥ௗ (12) 

In Formula (4), KL represents the relative entropy formula, P and Q represent two 
probability distributions, respectively, and p(x) and q(x) are the specific probabilities in a 
certain dimension. In Formula (5), JS is the loss function for calculating the two probability 
distributions, P1 and P2 are two distinct probability distributions, and the function returns 
the JS divergence loss between these two distributions. In Formula (6), CE is the cross-
entropy function of two probability distributions, Label and Predict are usually the pre-
diction probability distributions given by the true label and the student model, respec-
tively. In Formulas (7)–(12), the above formulae are called. T represents the temperature 
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metric during distillation, λ represents the combination weight between two different 
losses, where the quotient of step (current training number) and epochs (total training 
number) is used as the training progress index. Outx reflects the probability distribution 
given by model x. L represents the two losses computed by different calculation methods, 
and eventually they are merged by the λ weight to synthesize the final loss. 

The improved dual-teacher supervised decay (DTSD) has two teacher models se-
lected as the complicated and high-accuracy models ResNet50_vd and DenseNet121, re-
spectively. The student model chosen for this paper was MobileNet_v3_Small, which is 
known for its lightweight design. The model’s structure is depicted in Figure 9. 

 
Figure 9. Flow chart of DTSD distillation. 

3. Results and Discussion 
3.1. Experimental Setting 

The primary experimental setup for this paper consisted of: (1) A desktop computer 
operating on Windows 10, equipped with an Intel Xeon E5-2630 v4 processor at 2.2 GHz, 
64 GB of RAM, a 1.5 TB mechanical hard drive, and an NVIDIA Tesla P4 graphics card 
with 32 GB of video memory. This setup leveraged GPU acceleration for computations 
and was configured with the Paddle deep learning framework within a programming lan-
guage environment. (2) Baidu’s open platform, Ai Studio, featuring an NVIDIA Tesla 
V100 graphics card, utilizing GPU computing power and acceleration, with the Paddle 
deep learning framework also implemented in a programming language environment. 

3.2. Experimental Design 
First, we pretrained the ResNet50_vd, DenseNet121, and MobileNet_v3_Small net-

work models on the public dataset ImageNet2012 [29], mainly fine-tuning the models to 
verify that pretraining could improve the model performance. Subsequently, we trained 
the student model MobileNet_v3_Small under the guidance of the dual teacher models 
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ResNet50_vd and DenseNet121, to validate the DTSD model and perform optimal param-
eter tuning. Furthermore, to verify the trained MobileNet_v3_Small_DTSD, we compared 
it with the similar MobileNet_v3_Small and other classic models in comparative experi-
ments. To minimize the randomness of training, the data presented in the table are aver-
age values obtained from multiple measurements. Moreover, the dataset used was an aug-
mented dataset of 10 types of Chinese herbal medicines. 

3.3. Experiments on Boosting Training with Pretrained Models 
To verify the impact of the pretrained models on the training process and the final 

model performance, comparative experiments were conducted for the two teacher mod-
els, ResNet50_vd and DenseNet121, as well as the student model MobileNet_v3_Small, 
using pretrained models. All the mentioned models were first pretrained on the public 
dataset ImageNet2012, followed by transfer learning on a Chinese herbal medicine da-
taset. 

Taking MobileNet_v3_Small as an example, the comparison of pretrained models is 
illustrated in Figure 10. The loss values of the models using pretraining converged more 
quickly than those of the normally trained models (as shown in Figure 10a), reaching a 
desirable convergence state in the early stages of training. Consequently, under the same 
number of training epochs, models trained with pretraining exhibited higher perfor-
mance. Furthermore, the accuracy (Acc) of the models using pretrained models main-
tained a higher precision compared to those without pretraining, achieving high perfor-
mance from the early stages of training (as depicted in Figure 10b). 

 
Figure 10. Comparison of the effects of pretrained models on model training: (a) loss value figure; 
(b) accurate figure. 

As shown in Table 1, the final accuracies of the three models that underwent pretrain-
ing through transfer learning all showed improvements, with increases of 12.40%, 7.35%, 
and 9.5%, respectively. Therefore, it can be concluded that pretrained models played a 
significant role in enhancing the performance of the models. Moreover, with the demon-
stration of the superiority of the DTSD technique, all subsequent experiments utilized 
transfer learning for pretraining. 
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Table 1. Accuracy of the models with of pretraining. 

Network Pretraining Model Accuracy (%) 

ResNet50_vd 
× 86.10 
√ 98.50 

DenseNet121 
× 91.05 
√ 98.40 

MobileNet_v3_Small 
× 88.35 
√ 97.85 

“×” indicates that the model has not been pre-trained. “√ “ indicates that the model has been pre-
trained. 

3.4. Improved Model Verification 
The above experiments provide evidence that the use of a pretrained model contrib-

utes to an improvement in the performance of the model. To further verify the effect of 
the DTSD model on MobileNet_v3_Small, the high-precision teacher models Res-
Net50_vd (98.9%) and DenseNet121 (98.7%) were trained on the 10 Chinese herbal medi-
cine augmented datasets in advance. 

In order to obtain optimal performance for MobileNet_v3_Small_DTSD, three learn-
ing rate decline strategies were implemented while applying the improved knowledge 
distillation DTSD. These strategies were exponential warmup, piecewise and cosine. 
When the other experimental parameters were the same, the DTSD distillation model us-
ing the exponential warmup learning rate decline strategy had the highest accuracy of 
98.60%. Consequently, as shown in Table 2, it can be inferred that the learning rate decline 
strategy of exponential warmup conferred advantages to the DTSD training model. 

Table 2. Comparison of parameter combination results of MobileNet_v3_Small_DTSD. 

Student Model 
Teacher 
Model 

Acc Of Teacher 
Model (%) 

Learning Rate De-
cline Strategy 

Accuracy 
(%) 

MobileNet_v3_Small 
ResNet50_vd 98.90 

Piecewise 97.80 
DensNet121 98.70 

MobileNet_v3_Small 
ReNet50_vd 98.90 

Cosine 98.15 
DenseNet121 98.70 

MobileNet_v3_Small 
ResNet50_vd 98.90 

Exponential warmup 98.60 
DenseNet121 98.70 

The parameter and metric changes of the whole training process of Mo-
bileNet_v3_Small_DTSD are shown in Figure 11, where variables 11a, 11b, and 11c denote 
the changes in total loss, soft loss and hard loss, respectively. The total loss is the overall 
loss of the model during the training process, which is usually a combination of multiple 
loss functions. When training a neural network, there are usually multiple tasks or multi-
ple loss metrics, and each loss function corresponds to one task or one metric. The total 
loss is the weighted sum or average of these loss functions and is used to measure the 
performance of the entire model. Soft loss is a technique used in training, mainly to help 
the model learn better. Soft loss is usually achieved by introducing some extra penalty or 
regularization terms in the loss function, which can help the model generalize better to 
new data and avoid overfitting. The introduction of a soft loss can help to adjust the learn-
ing direction of the model to better fit the training data. Hard loss usually refers to the loss 
calculated in the inference stage of the model, which is the performance of the model on 
the test data. Hard loss is the difference between the true label and the predicted label of 
the model, which is used to measure the prediction accuracy or performance of the model. 
During training, the model usually adjusts its own parameters by optimizing the total loss 
to minimize the hard loss. It is evident from the figure that the model achieved satisfactory 
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convergence during the initial phase of training. In Figure 11e, the λ value (lambda) is 
usually used in regularization terms (e.g., L1 regularization, L2 regularization) to balance 
the model’s fitting effect with the effect of the regularization terms. The λ-value change 
curve shows the effect of different λ values on the model’s performance during the train-
ing process. λ decays in an inverted S-shape, which means that the student model mainly 
performs distribution fitting with the hard label through transfer learning in the early 
stage, and gradually shifts the learning center to the soft label of the teacher model with 
the deepening of the experiment. The T value (temperature) is usually used in tempera-
ture-regulated soft label methods to smooth the label distribution to improve the training 
of the model. The T-value variation curve shows the effect of different T values on the 
performance of the model during the training process. However, the temperature T de-
picted in Figure 11f exhibits a contrasting situation. During the initial phase, the correct 
label part of the teacher model is mainly enlarged, so that the student model can quickly 
fit. In the subsequent phase, the proportion of dark knowledge is gradually expanded, 
because the accuracy of the student model can be further enhanced. The accuracy change 
curve shows how the accuracy of the model changes during the training process. The accu-
racy on the training set and the validation set are usually treated as two separate parts of the 
curve. This curve can be used to observe whether the model is overfitting or underfitting. 
Figure 11g reflects the evaluation accuracy of MobileNet_v3_Small_DTSD. Once the model 
quickly reaches good performance in the early stage, it mainly focuses on acquiring the dark 
knowledge from the teacher model to achieve higher accuracy in the subsequent stage. 

 
Figure 11. Metrics of mobileNet_v3_Small_DTSD changes in training process: (a) total loss; (b) soft 
loss; (c) hard loss; (d) λ value change; (e) T value change; (f) accuracy change curve. 

3.5. Comparative Experiments with Similar Models 
To prove the superiority of the best MobileNet_v3_Small_DTSD model, which was 

achieved by the adjustment of the learning rate decline strategy, a comparative analysis 
was conducted with MobileNet_v3_Small using various techniques. The comparison mod-
els were mainly as follows: (1) MobileNet_v3_Small without a transfer learning pretrained 
model; (2) MobileNet_v3_Small_Pre with pretrained models; (3) Mo-
bileNet_v3_Small_SSLD trained with SSLD (semi-supervised label knowledge distillation) 
technique. 

According to the data presented in Table 3, it can be observed that the improved 
DTSD technique achieved an accuracy of 98.60% under identical training parameters. This 
accuracy was notably 11.15% higher than that of the original training model. Furthermore, 
the improved DTSD technique outperformed the SSLD technique, which also incorporates 
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knowledge distillation, by 1.50%. Furthermore, the DTSD technique surpasses the PRE 
model, which uses transfer learning, by 1.35%. 

Table 3. Comparison results with MobileNet_v3_Small. 

Learning Rate Decline Strategy Batch Size Accuracy 
MobileNet_v3_Small 16 86.45 

MobileNet_v3_Small_PRE 16 97.25 
MobileNet_v3_Small_SSLD 16 97.10 
MobileNet_v3_Small_DTSD 16 98.60 

As shown in Figure 12, the normally trained model in Figure 12a performed poorly 
in terms of both aspects (loss and accuracy), while the improved DTSD model maintained 
the same convergence state as the other two models PRE and SSLD in terms of loss. In 
Figure 12b, the circular green line (using the DTSD technique) is compared with the square 
red line (using transfer learning). During the initial stage of training, the performance of 
the DTSD model is inferior to that of the transfer learning model. The ongoing decay of λ 
causes the student model to shift the training focus to the soft label of the teacher model, 
and the constant growth of temperature T expands the proportion of dark knowledge, 
which makes the student model learn more parameters. These two factors make an obvi-
ous intersection point appear in the two graphs. Furthermore, DTSD successfully 
achieved a leadership position after coming from behind. The confusion matrix diagram 
in Figure 12c is the performance of MobileNet_v3_Small_DTSD on the test dataset under 
the training parameters. Eventually, the model performed well. Therefore, the utilization 
of the DTSD technique inside the same model should help to break through the limitation 
of the model accuracy. 

 
Figure 12. Performance comparison of MobileNet series: (a) loss; (b) Accuracy; (c) Confusion matrix. 

3.6. Experimental Comparisons with Other Models 
To further verify the performance of the DTSD technique, it was compared with other 

mainstream models including EfficientNetB1, Xception65, ResNet50_vd, DenseNet121, and 
others. The main evaluation criteria encompassed accuracy, model volume, and prediction 
cost, where the prediction cost was the average time of predicting 500 test herbal images. 
DenseNet121 is a model in the DenseNet family. Dense connections in DenseNet help alle-
viate gradient sparsity, making the model easier to train and improving its generalization 
ability. Dense connections allow features to be passed through shorter paths, increasing the 
efficiency of information transfer and reducing information loss. ResNet50_vd is relatively 
deep, with 50 layers, which allows the model to learn higher-level abstract features and im-
prove the ability to capture and represent complex patterns. Xception65 utilizes a structure 
of depth-separable convolution, which divides standard convolution into two steps: deep 
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convolution and point-by-point convolution. This structure helps to reduce the number of 
parameters and improve the computational efficiency of the model. 

EfficientNetB1 employs a compound coefficient (composite coefficient) approach to 
design an efficient model structure by scaling the depth, width, and resolution of the net-
work in a balanced way. This structure can achieve better performance with certain com-
putational resources. 

The training parameter values for the experiments in this paper are set as shown in 
Table 4, Batch size is 16, Basic learning rate is 0.0037, Learning rate decline strategy used 
is ExponentialWarmup, Epoches is 60, and pre-training of the model is performed. 

Table 4. Setting of training parameters. 

Parameter Batch 
Size 

Basic Learning 
Rate 

Learning Rate Decline 
Strategy 

Epochs Pretraining 
Model 

Parameter 
value 

16 0.0037 Warmup 60 √ 

“√ “ indicates that the model has been pre-trained. 

As shown in Table 5, when comparing different models horizontally, it is evident that 
MobileNet_v3_Small, which uses DTSD technology for knowledge distillation, achieved 
an accuracy of 98.60%, ranking second in terms of accuracy. However, its model size (10 
MB) and prediction cost (0.0172 s) were optimal among the five models. The feasibility of 
the DTSD technique was thus proved. 

Table 5. Comparison of results between MobileNet_v3_Small_DTSD and other mainstream models. 

Network Accuracy (%) 
Model Volume 

(MB) Prediction Time (s) 

DenseNet121 97.10 29.30 0.0186 
ResNet50_vd 97.35 90.90 0.0237 
Xception65 97.65 131 0.0198 

EfficientNetB1 98.95 27.5 0.0233 
MobileNet_v3_Small_DTSD 98.60 10 0.0172 

3.7. Application 
To validate the practical application of the model, we developed a mobile recognition 

app based on it. As shown in Figure 13, the app’s main features include an input image, a 
historical search, and text search capabilities. After selecting the image search function, 
users can upload relevant images of Chinese herbs. The app processes these images 
through cropping and utilizes the corresponding model and a backend database of Chi-
nese herbs to return information about the herb. The example result, shown in Figure 14, 
indicates that the tested image has been classified as “aiye” with a matching true label. 
The probability of correct classification is 99.76%. Practical validation confirmed that the 
MobileNet_v3_DTSD model, trained using the dual-teacher adaptive-decay approach 
based on improved knowledge distillation and data augmentation, maintained its light-
weight and rapid processing characteristics while also exhibiting robustness and high ac-
curacy. Future efforts will focus on further optimizing these improvements to enhance the 
model’s performance in real-life applications. 
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Figure 13. Process design of our Chinese herbal medicine identification system. 

 
Figure 14. The system outputs the result of the test image. 

4. Conclusions 
In this paper, to realize lightweight Chinese herbal medicine image recognition on a 

mobile terminal, a Chinese herbal medicine recognition model with dual-teacher super-
vised decay based on knowledge distillation was proposed. By improving the single-
teacher model to a dual-teacher model, the output soft label, adaptive decay parameters, 
and dynamic combination loss of the teacher model, it was applied to the lightweight 
model network MobileNet_v3, and finally deployed into a mobile application. The exper-
imental results indicated that the mean classification accuracy of a set of 10 Chinese herbal 
medicine images was 98.60%. Moreover, the average time taken to identify a single image 
was 0.0172 s, and the model size was 10 MB. Upon successful deployment of the applica-
tion, it demonstrated the capability to fulfill the speed and accuracy requirements of real-
life scenarios, hence offering valuable technical reference for mobile phone applications. 
Despite the remarkable results achieved in this paper in lightweight herbal image recog-
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nition, there are still some shortcomings that need further consideration and improve-
ment. The robustness of the model in dealing with real-world challenges such as complex 
scenes and lighting changes still needs to be improved to ensure high accuracy in a variety 
of environments. The next step is to expand and diversify the dataset to improve the 
model’s adaptability to different herbal species and environmental conditions. Secondly, 
techniques such as adversarial training should be introduced to enhance the robustness 
of the model against noise and interference. 
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