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Abstract: This paper provides a review of various machine learning approaches that have appeared
in the literature aimed at individualizing or personalizing the amplification settings of hearing
aids. After stating the limitations associated with the current one-size-fits-all settings of hearing aid
prescriptions, a spectrum of studies in engineering and hearing science are discussed. These studies
involve making adjustments to prescriptive values in order to enable preferred and individualized
settings for a hearing aid user in an audio environment of interest to that user. This review gathers,
in one place, a comprehensive collection of works that have been conducted thus far with respect
to achieving the personalization or individualization of the amplification function of hearing aids.
Furthermore, it underscores the impact that machine learning can have on enabling an improved and
personalized hearing experience for hearing aid users. This paper concludes by stating the challenges
and future research directions in this area.

Keywords: personalization of amplification in hearing aids; machine learning approaches to the
personalization of hearing aids; personalized hearing aid fitting

1. Introduction

Hearing impairment poses a significant challenge for individuals, affecting not only
their ability to communicate effectively but also impacting their overall quality of life.
Despite the widespread use of hearing aids, nearly one half of hearing aid users report not
being satisfied with their hearing aid fittings [1]. A major reason for this lack of satisfaction
stems from the generic aspect of these fittings, which do not fully incorporate an individual
user’s hearing preferences in audio environments in which the user finds it challenging
to communicate. The consequences of suboptimal hearing aid fittings extend beyond
communication difficulties and can result in overall reductions in overall quality of life [2,3].
These consequences are particularly pronounced among the elderly, for whom hearing loss
is not only prevalent but also correlated with a higher risk of developing or exacerbating
dementia [4].

This paper provides a review of published articles that use machine learning ap-
proaches for the personalization of the amplification function of hearing aids. These
approaches employ various machine learning methodologies, including hierarchical pref-
erence learning, expectation–maximization, linear regression, Bayesian learning, neural
networks, transfer learning, deep reinforcement learning, maximum likelihood inverse re-
inforcement learning, Gaussian processes, dueling multi-armed bandit, and active learning.
The use of these machine learning methods for personalizing the amplification function
of hearing aids has enabled the enhancement of the hearing experience of their users. In
addition, this review also includes articles that do not explicitly mention machine learning
but discuss the importance of personalization in hearing aid healthcare as analyzed in
studies conducted either in a laboratory or real-world audio environments.
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The focus of this paper is on the approaches that address user preferences in different
audio environments. This review examines the current landscape of machine learning
approaches for hearing aid personalization and the promising strategies that can potentially
alter the way the hearing aid fitting process is currently conducted.

2. Overview of Hearing Aids and Their Amplification Function

Sensorineural hearing loss is characterized by specific auditory challenges, such as
increased difficulty in perceiving low-intensity, high-frequency speech sounds and hearing
in an environment with competing noise [5]. Mild hearing loss is typically characterized
by difficulty hearing softer sounds, especially with background noise, whereas profound
hearing loss may result in an inability to hear even loud sounds regardless of whether
background noise is present. Figure 1 depicts the dynamic range of hearing of a person
with (i) no hearing loss, (ii) sensorineural hearing loss, and (iii) sensorineural hearing loss
with amplification achieved via compression. As illustrated in Figure 1, the reduction
in dynamic range presents a major problem because soft and intermediate sounds may
be inaudible but loud sounds are still perceived as loud. The net result is that the range
between barely audible and intolerably loud is significantly reduced. As such, there is
a reduction in the operating space in which to fit sounds that range from soft to loud.
Moreover, hearing-impaired individuals differ in their preferences as to where the optimal
amplification setting is within the residual dynamic range.
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Figure 1. Dynamic range of hearing: (i) no hearing loss, (ii) sensorineural hearing loss, and
(iii) sensorineural hearing loss with amplification achieved via compression.

Currently, the prescriptive approaches are largely based on population data and
rely on auditory thresholds assessed using an audiogram and the average or individual
loudness discomfort level. These two values set the dynamic range. With respect to
thresholds, an audiogram, a graphical representation of the softest sounds (threshold) a
person can hear at different frequencies, plays a crucial role in documenting, assessing, and
categorizing hearing loss [6,7]. The horizontal axis of an audiogram represents a subset of
sound frequencies audible to humans, ranging from low to high frequencies measured in
Hertz (Hz), and the vertical axis represents the intensity or loudness of sounds measured in
decibels (dB). An audiogram is a visual representation of an individual’s hearing thresholds
in different frequency bands essential for speech comprehension. Figure 2 shows typical
audiograms for a person considered to have hearing within normal limits (top curve) and
for an individual with mild to moderate sensorineural hearing loss (bottom curve).

Hearing aids are the primary and most effective interventions used to address the
needs of individuals with hearing loss and work by amplifying sounds that are inaudible
or barely audible in order to enhance hearing and thus allow speech comprehension [8].
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Hearing aids are normally prescribed by a hearing healthcare professional. However,
more recently, the US Food and Drug Administration (FDA) approved over-the-counter
(OTC) hearing aids. Traditional prescribed hearing aids involve a standardized fitting
process performed by a hearing care professional aimed at providing audibility based on
the normative and well-documented amplification needs of individuals with similar forms
of hearing loss.
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Figure 2. Audiogram for a normal hearing case and for a hearing loss case.

Aggregate data from individuals with hearing loss have led to a number of hearing aid
prescriptions, some of which are universal, whereas others are manufacturer-specific [9].
Examples of widely used universal prescriptions include NAL-NL1 [10], NAL-NL2 [11,12],
and DSL [13–15]. Another widely used prescription that is currently available is Adaptive
Dynamic Range Optimization (ADRO). A differentiating feature of ADRO is that it adjusts
the amplification level in an adaptive manner [16–19]. When fitting hearing aids, the
overall goal of the prescriptive approach is to make soft sounds audible, moderate sounds
comfortable, and loud sounds tolerable in order to maintain speech at a comfortable and
optimal listening level. Amplification is generally achieved through the use of sound
compression across frequencies, which allows adapting the world of sound such that it
can be compressed into the smaller dynamic range of hearing of individuals with hearing
loss [20–22]. This is illustrated in Figure 1. Hearing care professionals fine-tune settings to
cater to individual needs due to the diversity of user preferences and audio environments.
However, there is no widely accepted or standardized method for making these fine
adjustments.

The pilot study outlined in [23] demonstrated individual preferences by allowing
users to choose from various settings while listening to Bluetooth-connected hearing
aids. The cited study assessed individual preferences related to program and volume
adjustments. The participants exhibited different ways of adjusting volume, with some
preferring program changes, whereas others actively used volume adjustments to fine-tune
their experiences. The findings showed significant variability in user behavior, reinforcing
the need for personalized settings.

Figure 3 illustrates how the prescription frequency–response curve is adjusted in a
personalization process to obtain an individualized frequency–response curve. The range of
personalized gains around prescribed gains includes the limits of loudness discomfort and
hearing threshold. In [24], a review is presented covering various approaches for tailoring
audio experiences. Three aspects of personalization were considered: spatial separation,
the speech-to-noise ratio, and redundancy. It was reported that the speech-to-noise ratio
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played a dominant role, with spatial separation and redundancy playing comparatively
lesser roles.
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3. Methods: Personalization of Amplification in Hearing Aids

Previous works on the personalization of amplification in hearing aids can be catego-
rized into two main groups according to their training procedures: (i) offline and (ii) online.
In most studies, the paired comparison method was used to conduct training due to its
simplicity and low cognitive load on users. In this section, the paired comparison method
is presented first, followed by personalization studies categorized according to their of-
fline and online training procedures. Then, the studies that have considered the effects of
different audio environments on personalization are discussed.

3.1. Paired Comparison Method

Paired comparison has been a stalwart method used in hearing aid studies for nearly
half a century [25]. The popularity of this method is due to its simplicity and the fact that it
involves minimal auditory memory engagement [26]. While there are alternative methods
such as round-robin tournaments, single-elimination tournaments, double-elimination tour-
naments, simple up–down procedures, and modified simplex procedures, these methods
lack the inherent simplicity and straightforwardness of the paired comparison method.

As an example showing the utilization of paired comparisons in hearing aid studies,
in [27], an investigation was conducted to compare two gain settings, labeled A and B.
The laboratory environment in the study involved 20 participants, all with symmetrical
hearing loss. This study incorporated two programs: a prescription made by a hearing
aid manufacturer and an alternative prescription with a reduction in gain in a region
around 1 kHz. Paired comparisons were used to examine attributes such as preference,
speech intelligibility, comfort, and loudness for various sound stimuli played through
loudspeakers. The results, derived from all the sound stimuli, revealed an equal preference
for settings A and B. However, a more nuanced analysis showcased specific preferences:
setting A was preferred for speech intelligibility, whereas setting B was favored for comfort.
Notably, the participants preferred setting A in the context of soft speech and setting B in
the context of cafeteria noise.
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3.2. Categorization According to Training Procedure
3.2.1. Offline Training

In this subsection, personalized hearing aid fitting studies are surveyed based on their
offline training. In [28], multi-task learning was carried out based on hearing preferences.
The goal was to leverage the similarities between the tasks. This study demonstrated the
effectiveness of using a hierarchical semiparametric model based on Gaussian processes
to achieve learning preferences. The experimental evaluation validated the preference
learning approach using an audiological dataset. The experiments evaluated sound quality
from normal-hearing and hearing-impaired participants through 576 pairwise comparisons.
Preferences were collected based on the overall evaluation of the sound stimuli processed
with different hearing aid settings. The objective was to assess whether the preferences of a
new participant could be learned more accurately using the preferences of other participants.
The hierarchical model used the Expectation Maximization (EM) algorithm [23] to gather
data from a group of participants into a probability distribution serving as the prior for the
test participant. The introduced model outperformed the two other examined models.

The study discussed in [29] formulated personalization as a linear regression problem.
To address the challenges of low sample sizes and high feature numbers, the Bayesian
approach of backfitting was employed to handle such features. The cited study compared
this Bayesian approach to a heuristic feature selection approach. Synthetic data experiments
with irrelevant and redundant features showed that the Bayesian backfitting approach
achieved accuracies comparable to those of the heuristic approach for moderate sample
sizes but required significantly longer training times. The authors then applied this Bayesian
approach to hearing aid preference data to determine personalized features for hearing
aid customization. Six individuals with normal hearing participated in a lab trial and
were exposed to a stimulus combining speech and noise signals at various ratios. The
participants adjusted the processing parameter while listening to a stimulus multiple times.
The acoustic input and the processing parameters were stored to form input–output pairs
for the offline training of a regression model. The results showed that four out of six
participants indicated preferences based on two types of features.

The study reported in [30] addressed improving hearing aid fitting beyond the initial
prescription-based fitting for individuals with hearing loss. It introduced a combination
of a neural network and transfer learning to develop a fitting algorithm. The algorithm
was trained offline on a dataset generated by hearing aid fitting softwares (NAL-NL1 and
NAL-NL2). The effectiveness of the proposed fitting algorithm was assessed for three input
sound levels (50 dB, 65 dB, and 80 dB) using the NAL-NL1 and NAL-NL2 prescriptions.
The study provided performance comparisons across six different frequencies for each
input sound level. The study also investigated the minimum number of fitting sessions
required for effective training.

The study covered in [31] built upon the previous work by the same research group.
It involved the evaluation of a neural-network-based personalized hearing-aid-fitting
algorithm. The authors used 900 clinical samples for training and 78 for testing, with
a dataset split ratio of 23 to 2. The dataset contained data on hearing loss at different
frequencies as well as features such as age, sex, and ear type. The experimental results
showed the performance of the algorithm for three input sound levels. It compared the
proposed neural network fitting approach with and without the additional features. It was
shown that the neural network algorithm with the additional features outperformed other
approaches and was closely aligned with the original fitting sessions.

The study reported in [32] involved introducing a personalized compression approach
based on deep reinforcement learning (DRL) that incorporates user feedback to optimize
hearing aid settings based on individual preferences. In this approach, human feedback
was used to model hearing preferences by considering a reward function that compared
instances of two different compressed audio signals. Human preferences were collected
through a hearing preference interface and a reward predictor that combined a convolu-
tional neural network and a bidirectional long short-term memory network to conduct
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offline training based on the user’s feedback. This approach provided an active learning
strategy for achieving personalized compression. In this study, two sets of experiments
were conducted to assess the performance of the personalized DRL compression; the first
set involved simulations of human-in-the-loop deep reinforcement learning, and the second
set tested five participants with bilateral mild to moderate hearing loss. The DSLv5 prescrip-
tive gains were mapped to five frequency bands to reduce computational complexity. The
audiograms of the participants were acquired through a web-based hearing test forming
the basis of the subsequent personalized compression training. A dataset of 210 pairs of
sound files and human feedback was considered for this purpose. A comparative analysis
was conducted between the personalized compression settings and the conventional or
reference DSLv5 settings in paired comparisons of 60 sentences. The results demonstrated
that participants with mild to moderate hearing loss preferred the personalized DSLv5
settings over the reference DSLv5 settings.

3.2.2. Online Training

In this subsection, the studies that allowed online training for the personalization of
hearing aid fitting are presented. Online training means that training can be conducted in
an on-the-fly manner, and unlike offline training, it does not require the collection of data
first. With regard to obtaining a practically deployable solution in the field or real-world
audio environments, only online training approaches are of interest.

The study reported in [33] introduced an online personalization approach for setting
compression ratios (CRs) in hearing aids. Initially, the hearing-aid-fitting process was
conducted by setting gains across a number of frequency bands according to the DSLv5
prescription. This study focused on personalizing amplification by adjusting the CRs
in each frequency band via the Maximum Likelihood Inverse Reinforcement Learning
(MLIRL) machine learning technique. Paired comparisons of audio signals were carried
out to gather preference feedback of an individual user, and then MLIRL was applied to
find the most preferred combination of CRs across all the frequency bands for that user.
The process involved defining a reward function through user feedback and updating
it through paired comparison iterations. The developed MLIRL framework integrated
user preferences in setting the optimum gain values across the frequency bands. This
study reported the outcome for ten participants with mild to moderately severe hearing
loss. The results showed a statistically significant preference for the personalized settings
compared to the reference or conventional settings. Furthermore, a word recognition test
was conducted, which showed the personalized settings did not compromise audibility or
negatively impact word recognition in noisy conditions.

In [34], a study on Adaptive Dynamic Range Optimization (ADRO), it was demon-
strated that the training could be conducted in an adaptive manner via the MLIRL method
based on the incoming sound-level percentiles and a user’s hearing comfort level. The
experimental setup involved ten participants with mild to moderately severe hearing loss.
The results showed a statistically significant preference for the personalized ADRO over
the standard ADRO. Additionally, the word recognition scores in noisy conditions revealed
that there was no adverse impact of the personalized ADRO on speech comprehension.

The papers that follow do not explicitly clarify whether the training methodologies
used were conducted in an offline or online manner. Nevertheless, it appears that the con-
ceptual frameworks or mechanisms presented could be implemented in an online manner.

In [35], an interactive hearing aid personalization approach was introduced to achieve
optimal individual settings through perceptual user feedback. This approach optimized the
hearing aid settings or parameters by assuming that a user’s perception was encoded by an
unobserved internal response function modeled by a non-parametric Bayesian regression
model. The learning process was conducted in an iterative manner. Two studies, one
involving two settings or parameters and the other involving four settings or parameters,
were performed to demonstrate the personalization ability of this approach in a music
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scenario. This personalization work appeared in a patent addressing the topic of how to
optimize the parameters of a hearing aid system [36].

A machine learning self-adjustment method was covered in [37]. This method allows
users to optimize hearing aid settings based on personal preferences in various sound sce-
narios. In a lab study involving 20 participants with hearing loss, the method demonstrated
a subjective benefit in audio quality. The study used a test protocol with two lab visits
where participants adjusted hearing aid settings through a self-adjustment method named
SSL (SoundSense Learn) in 12 different sound scenarios categorized by the three attributes
of audio quality, listening comfort, and speech clarity. The results showed a significant
improvement in audio quality with SSL adjustments. However, listening comfort improve-
ments varied across scenarios, and no significant improvement was observed in speech
clarity. This study, again, highlighted the need for an individualized approach to creating
and optimizing hearing aid fittings.

A similar study discussed in [38] explored a machine learning approach for adjusting
hearing aid gain settings based on user preferences obtained through an iterative paired
comparison procedure. This study used 20 hearing-impaired participants who underwent
hearing aid adjustments using the three settings of REF (Reference), UNI (Universal), and
SSL. Twelve sound scenarios were used, and the participants rated each setting in terms of
audio quality, listening comfort, and speech clarity. The SSL setting involved adjustments
based on the SSL technology. The results revealed notable improvements in audio quality.
Individual participants showed diverse preferences, emphasizing the subjective nature of
hearing aid experiences. Overall, this study highlighted the importance of individualized
hearing aid settings and the potential benefits of SSL technology.

The authors of the study reported in [39] used Bayesian learning to optimize sound
settings in hearing aids. SSL technology was utilized to personalize sound signals based
on user preferences gathered via A–B comparisons in a smartphone app. This study
highlighted how SSL led to improved sound quality in various listening environments. The
significance of the SSL data in enhancing hearing was emphasized in this study.

In [40], over-the-counter hearing aids, intended to make hearing healthcare more
affordable and accessible, were evaluated by allowing end-users to configure such hearing
aids themselves. An approach involving the division of a 24-dimensional configuration
space into presets was considered to meet the needs of a significant portion of individ-
uals with mild-to-moderate hearing loss. An online agent then learned the best preset
through a series of pairwise comparisons. This study identified a relationship between
user preferences and presets, leading to the development of a Two-Phase Personalizing
(TPP) algorithm that refined an existing dueling multi-armed bandit (MAB) algorithm. The
24-dimensional configuration space was divided into 15 presets based on audiograms from
the National Health and Nutrition Examination Survey (NHANES). The Borda score was
used to indicate preferences, and the users typically had one or a few highly preferred
presets. It was shown that TPP outperformed two other algorithms (Active Ranking and
SAVAGE) in simulations.

The study reported in [41] explored a self-fitting interface for fitting hearing aids by
allowing users to choose their own signal-processing parameters through a two-wheel
interface. In a month-long field trial, the participants with hearing loss either self-selected
parameters using the new interface or relied on the parameters that were set by a clinician.
The participants in the self-group selected gain settings that correlated with the severity
of hearing loss. The self-selected gains were slightly lower than the audiologist-selected
gains. The audiologist-selected gains had a slightly steeper correlation with hearing loss
severity than the self-selected gains. Essentially, the participants in the self-group reported
higher satisfaction ratings than those in the other group. Both groups preferred their self-
selected settings over the clinical fit, with the self-group showing a stronger preference. It
is important to note, however, that users of hearing aids often prefer initial settings that are
lower than optimal, but their tolerance of amplification changes over time as they adjust.
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Thus, users may underfit themselves without guidance from a clinician, underscoring a
major limitation in the self-fit approach.

3.3. Overview Comparison of Personalization Studies

The methodology employed in the training process is crucial in hearing aid person-
alization. Key factors such as the online nature of training, real-time implementation,
and subject testing are often sought after. If the methodology is tested on participants,
it essentially establishes the usability of the personalization process. The distinction be-
tween laboratory audio environment studies and those conducted in real-world audio
environments is also pivotal. Generally speaking, settings customized in a laboratory audio
environment may not work well when users are situated in real-world audio environments.
Hence, when a study tests its methodology in a real-world audio environment, the ro-
bustness of the study is examined in terms of individual preferences in different audio
environments. Table 1 provides an overview comparison of whether the training occurred
online (or even if that is a possibility), whether a real-time implementation was conducted,
in what audio environment the study was conducted, the machine learning methodology
used (if used at all), the source of data, personalized variables, and the personalization
approach studied.

Table 1. Overview comparison of machine learning-based personalization approaches for hearing
aid amplification.

Author, Paper
No. (Year) Training Real-Time

Implementation Data Source Audio
Environment

Personalized
Variable

Machine
Learning

Methodology
Approach

Birlutiu et al.
[28] (2010) Offline no

Pairwise
comparison

feedback
dataset

Hearing aid
parameter

settings

Hierarchical
Preference

Learning and
Expectation

Maximization

Learning from
similar tasks

with multiple
participants

Ypma et al.
[29] (2007) Offline yes

Synthesized
data and

human test
results

dataset and
lab

Hearing aid
parameter

settings

Linear
Regression and

Bayesian
Learning

Formulating
hearing aid

personalization
as a linear
regression
problem

Mondol et al.
[30] (2019) Offline no

Prescription
fitting results

from 1100
participants

dataset Insertion gain

Neural Network
(NN) with

Transfer
Learning

Predicting
insertion gain

based on hearing
loss

characteristics
and input levels

Mondol et al.
[31] (2022) Offline no Clinical fitting

data dataset Insertion gain
NN with
Transfer
Learning

Taking age, sex,
and ear type into

consideration

Alamdari
et al. [32]

(2020)
Offline yes

Pairwise
comparison

feedback
lab Compression

ratio

Deep
Reinforcement

Learning

Providing
human-in-loop

deep
reinforcement

learning

Akbarzadeh
et al. [33]

(2022)
Online yes

Pairwise
comparison

feedback
lab Compression

ratio

Maximum
Likelihood

Inverse
Reinforcement

Learning

Online machine
learning

personalization

Ni et al. [34]
(2022) Online yes

Pairwise
comparison

feedback
lab Comfort

target

Maximum
Likelihood

Inverse
Reinforcement

Learning

Personalization
of an adaptive
prescription
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Table 1. Cont.

Author, Paper
No. (Year) Training Real-Time

Implementation Data Source Audio
Environment

Personalized
Variable

Machine
Learning

Methodology
Approach

Nielsen et al.
[35] (2014)

Possibility
for online

exists
yes

Pairwise
comparison

feedback
lab Gain set

Gaussian
Processes (GPs)

and Active
Learning

Obtaining an
individualized

setting from
direct perceptual

user feedback

Jensen et al.
[37] (2019)

Possibility
for online

exists
yes

Pairwise
comparison

feedback
lab

Hearing aid
parameter

settings

Study of a
commercialized

learning
algorithm in [35]

Performing
personalization

in 12 sound
scenarios

Søgaard et al.
[38] (2019)

Possibility
for online

exists
yes

Pairwise
comparison

feedback
lab Gain set

Study of a
commercialized

learning
algorithm in [35]

Adjusting gains
based on user

preference in an
iterative paired-

comparison
manner

Balling et al.
[39] (2021)

Possibility
for online

exists
yes

Pairwise
comparison

feedback

lab and
real-world

Sound
settings

Study of a
commercialized

learning
algorithm in [35]

Describing a
mechanism that

operates
continuously on

user inputs

Vyas et al.
[40] (2022)

Possibility
for online

exists
yes

Pairwise
comparison

feedback

dataset and
lab Gain set

Dueling
Multi-Armed
Bandit (MAB)

Learning

Reducing the
number of

comparisons to
identify a user’s
preferred preset

Sabin et al.
[41] (2020)

Possibility
for online

exists
yes

Pairwise
comparison

feedback

lab and
real-world Gain set

Not mentioned
explicitly, a
self-fitting
interface

Allowing users
to have

simultaneous
control of gain

and compression
in each frequency

band

3.4. Studies Related to Environmental Context

In the context of personalizing hearing aid algorithms, it is necessary to devise so-
lutions that seamlessly adapt to diverse audio environments. This section delves into
works that have taken into consideration environmental settings in different ways or have
considered the daily routines of hearing aid users.

The study reported in [42] introduced a real-time unsupervised background noise
classification algorithm to identify different types of background noise without prior
training. The algorithm modified the OFC (Online Frame-based Clustering) algorithm and
included feature extraction, a fading function, and classification smoothing. Feature vectors
were extracted from captured signal frames using band periodicity and band entropy
attributes. A framing step was used to buffer input samples of features, and a clustering
decision was made using the information in a frame. A fading function and classification
smoothing were incorporated to improve performance. Experiments were conducted to
evaluate the impact of the parameters of chunk size and segment length on the outcome.
Field testing demonstrated real-time performance in different noise environments, and
the algorithm successfully adapted to changing noise conditions. This work introduced a
real-time unsupervised background noise classification algorithm that holds promise for
enhancing the adaptability of hearing aids to changing audio environments.

The study covered in [43] developed a model for personalizing hearing aids by tuning
parameters that adapted to environmental conditions. It involved using a control wheel
(CW) for adjustments made by users and a learning process using explicit consent moments.
The model incorporated an environment coder (EVC) to extract features from the input
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signal, enabling the learning of environmental conditions. The goal was to maximize user
satisfaction by updating tuning parameters based on consent moments. It included both
the offline and online training of a probabilistic generative model. This approach was
evaluated in a simulated learning volume control scenario, which showed the potential
benefit of online learning for personalized hearing aid adjustment. In a field trial, the
participants used an experimental hearing instrument for six weeks, adjusting it to improve
their listening experiences. The examination of the participants’ preferences revealed a
non-linear relationship between noise reduction and signal-to-noise ratios (SNRs) and
power levels.

Notably, a noise reduction of about 1 dB was observed for high power and a high
SNR, whereas nearly 7 dB was observed for low power and a low SNR. Most participants
exhibited symmetric noise reduction preferences, but some noted asymmetry, underscoring
the need for personalization.

Internet-connected hearing aids allow the utilization of smartphone apps, permitting
users to set optimal settings based on the surrounding audio environment. The study
reported in [44] involved seven participants with binaural hearing loss using a commercial
hearing aid connected to iPhones with a custom app. The participants participated a
four-week experiment to optimize three audiological parameters (noise reduction and
directionality, brightness, and soft gain). Participants used a smartphone app to compare
parameter levels in various real-world situations, reporting preferences, environmental
context, motion state, audiological intent, and perceived usefulness. In the final week, the
participants blindly compared a personalized configuration based on their most frequently
selected preferences to a configuration determined through a standard clinical workflow.
The results showed diverse audiological preferences among the participants. Brightness
was consistently perceived as the most useful parameter, whereas noise reduction and
directionality were perceived as the least useful for five out of seven participants.

In [45], the authors introduced a Daily Routine Recognition (DRR) system that pro-
cessed inputs from Audio and Acceleration (ACC) sensors to recognize routine behaviors
and environments. The approach involved building feature representations, applying su-
pervised learning with various classifiers and evaluating their performances. The features
were derived from raw acceleration and precomputed audio features, and these were used
to distinguish classes representing routine behavior and environments. The features of
the ACC sensors included statistical measures such as mean, axes correlation, variance,
and mean crossing rate. The audio features included voice activation, auto-correlation
of samples, wind activity, maximum level, spectral centroid, and speech characteristics.
The processing scheme included concatenation, statistical evaluation, feature extraction,
and selection. The classifiers used for offline and online learning included a deep neural
network (DNN), random forest (RF), multi-layer perceptron (MLP), k-nearest neighbor
(kNN), Gaussian mixture model (GMM), Naïve Bayes (NB), and support vector machine
(SVM). The evaluation was conducted using cross-validation schemes for offline classi-
fication and online simulation to assess performance improvement with daily updates.
The results indicated that the DNN, MLP, and RF classifiers performed well for offline
classification, with the DNN and MLP classifiers significantly outperforming the other
classifiers. In online simulations, the MLP outperformed the other classifiers, and online
updates improved this performance.

In [46], daily routines were recognized using a sequence-learning model that involved
feature representation and using a Long Short-Term Memory (LSTM) network together with
a Hidden Markov Model (HMM) for sequence behavior learning. The features were derived
from two accelerometer (ACC) sensors and audio data, and a statistical representation was
developed on both activity primitive and routine levels. A sliding window was used to
extract features such as mean, axes correlation, variance, and mean crossing rate. The study
evaluated the performance of different sequence learners using a feature selection algorithm.
The evaluation included non-sequence learners (RF, MLP, and GMM) and sequence learners
(HMM and LSTM). The results obtained indicated that sequence learning, especially when
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combined with RF and MLP learning, improved classification performance. The models
were compared based on accuracy, F1-score, and confusion matrix. The findings indicated
the effectiveness of sequence learning in recognizing daily routines.

The study reported in [47] addressed the user experiences of deaf or hard-of-hearing
(DHH) individuals when recording sound samples for a personalized sound recognition
system. It involved 14 DHH participants in a three-part study: an initial interview, a
week-long field study of recording samples, and a follow-up interview with a design
probe activity. The participants provided information on their demographics, hearing loss,
relationship to sound, and familiarity with machine learning. The study included the use of
a Teachable Machine for sound classification, a field study using the Rev Recorder app, and
a final interview with a focus on user experience and design ideas for improving sound
recognition tools. The results revealed the challenges in recording diverse and nuanced
sound classes, the participants’ considerations for decision boundaries and sampling
difficulty, and the importance of feedback during and after the recording process.

Combining the data from hearing aids with the data from other sensors, such as those
measuring heart rate, motion, and location, further insight into the context of the sounds
hearing aid users detect in real-world audio environments can be gained. In other words,
gathering information from other sensors would make personalizing hearing aid settings
more effective.

The current usage of modern hearing aids is hindered by a perceived lack of benefit,
stemming from limitations in the fitting procedure. This procedure often overlooks two
crucial factors: (1) perceptual differences among users not solely explained by audiomet-
ric results, and (2) variations in individual context-specific preferences. The advent of
smartphone-connected hearing aids presents an opportunity to address these issues by
enabling a dynamic adaptation of settings based on users’ changing needs. The work
in [48] explored the potential of modeling user auditory intent through context collected
via mobile devices. It discussed the relevance of various types of contextual information
for learning the situation-specific intent and preferences of hearing-impaired users. This
work also provided real-life examples to illustrate these concepts.

The work in [49] focused on evaluating the ability of a Gaussian Process (GP) model
to learn the preferences of users using Bayesian optimization in a simulation environment.
The simulation compared the performance of the model with an oracle mean model. The
results showed that the GP model outperformed the oracle mean model. The discussion
emphasized the potential of using simulations for studying adaptive personalization sys-
tems and suggested that simulations could guide the development of more accurate models
in real-world applications.

The study reported in [50] utilized data from a large database reflecting the hearing
aid (HA) usage of individuals who subscribed to a hearing fitness feature through a hearing
aid manufacturer smartphone app. The participants were users of =those hearing aid who
used this feature for at least ten days. The data underwent pre-processing to estimate
hourly HA use, address temporary disconnections, and remove days with atypical patterns.
The analysis involved exploring the amount of HA use and the number of clustering users
based on their HA use patterns. This study analyzed 453,612 days of HA use corresponding
to 15,905 users. On average, HAs were used for 10.55 h per day, with significant variability.
Three user groups (full-day users, afternoon users, and sporadic evening users) were
identified based on their HA use patterns.

The studies reviewed in this section highlight the diverse ways researchers are ad-
dressing the crucial role of environmental context in enhancing hearing aid functionality.
Table 2 provides an overview or summary of these ways.
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Table 2. Environmental context in hearing aid personalization studies.

Author, Paper No. (Year) Environmental Context Studied

Saki et al. [42] (2017) Classification of environmental noise signals
Ypma et al. [43] (2008) Personalization of tuning parameters with a focus on noise reduction
Pasta et al. [44] (2019) Modeling the surrounding environment and recommending optimal settings in different contexts

Kuebert et al. [45] (2021) Daily routine recognition for personalizing hearing aid configurations
Kuebert et al. [46] (2021) Enhancing daily routine recognition using sequence learning techniques

Korzepa et al. [48] (2018) Representation of user intentions related to hearing preferences with context gathered through
mobile devices

Korzepa et al. [49] (2020) Creating a simulation-based framework for online contextual personalization of hearing aids
Pasta et al. [50] (2021) Ascertaining daily patterns and variability in hearing aid usage to gain insights into user behavior

4. Research Challenges and Future Directions

Addressing the challenges associated with real-world audio environments requires
a multifaceted approach. The dynamic and diverse nature of these environments poses a
significant hurdle, demanding the implementation of personalization solutions that can
adapt seamlessly to different settings, noise levels, and acoustic conditions. Moreover,
the diversity in user preferences and hearing profiles adds another layer of complexity.
Designing a personalization solution capable of effectively learning and adapting to these
individual differences is a major challenge. Creating user-friendly interfaces on smart-
phones is essential for seamless interaction with users providing feedback and preferences
effortlessly. Additionally, the adaptability of a personalization solution and the potential
learning curve for users in understanding and utilizing the personalization capability
present further challenges.

It is worth noting that although the focus of this review has been on hearing aids,
the concept of personalizing or individualizing amplification can be applied to other
hearing-assistive devices such as cochlear implants, personal sound amplifiers, and audio-
processing devices. Moving forward, researchers working with other hearing-assistive
devices can consider implementing similar approaches to those covered in this paper in
order to study the applicability of personalization across other platforms.

Looking towards the future, the evolution of adaptive machine learning algorithms
holds promise in addressing these challenges. Implementing algorithms that can learn and
adapt in real-time based on user preferences will significantly enhance personalization.
Context-aware personalization is another future direction, in which solutions that automat-
ically identify a user’s operating audio environment and adjust settings accordingly are
being explored. Introducing effective feedback mechanisms, such as surveys and continu-
ous feedback loops, will be useful for refining personalization solutions based on a user’s
experiences. Integration with wearable devices is also a potential avenue for gathering
additional contextual data with which to further enhance personalization.

A user-centric design approach is imperative to ensure effectiveness and user accep-
tance. Involving users in the design process, conducting usability studies, and iteratively
refining the user interface will lead to the creation of intuitive and user-friendly personal-
ization solutions. Standardization and interoperability efforts are also necessary to enable
seamless integration between different hearing aid devices and smartphone platforms,
offering users a consistent experience across devices. Rigorous clinical validation through
trials conducted in various real-world scenarios will build confidence in a real-time per-
sonalization technology among users, particularly for over-the-counter hearing aids, by
empowering them to adjust settings according to their preferences. Overall, the future of
personalized hearing aids involves a convergence of technological advancements, user-
centric design principles, and robust validation processes to overcome existing challenges
and enhance user experience.
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