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Abstract: In order to meet the increasing demand for crops under challenging climate conditions,
efficient and sustainable cultivation strategies are becoming essential in agriculture. Targeted herbi-
cide use reduces environmental pollution and effectively controls weeds as a major cause of yield
reduction. The key requirement is a reliable weed detection system that is accessible to a wide range
of end users. This research paper introduces a self-built, low-cost, multispectral camera system and
evaluates it against the high-end MicaSense Altum system. Pixel-based weed and crop classification
was performed on UAV datasets collected with both sensors in maize using a U-Net. The training
and testing data were generated via an index-based thresholding approach followed by annotation.
As a result, the F1-score for the weed class reached 82% on the Altum system and 76% on the low-cost
system, with recall values of 75% and 68%, respectively. Misclassifications occurred on the low-cost
system images for small weeds and overlaps, with minor oversegmentation. However, with a preci-
sion of 90%, the results show great potential for application in automated weed control. The proposed
system thereby enables sustainable precision farming for the general public. In future research, its
spectral properties, as well as its use on different crops with real-time on-board processing, should be
further investigated.

Keywords: weed detection; self-built; drone; precision farming; Raspberry Pi; U-Net

1. Introduction
1.1. Motivation

With the rapidly increasing population around the world, diminishing cultivable areas,
and unreliable farming conditions due to climate change, the pressure on agriculture is
rising. In order to meet the growing demand for food in the future, innovative solutions
that increase the efficiency of agriculture and are accessible to everybody are needed [1].
Weeds are the primary cause of yield reduction [2], as they compete with crops for nutrition,
water, sunlight, and space [3,4]. The use of herbicides is the most common and efficient
tool to control weeds but leads to irreversible ecological damage such as groundwater
pollution, soil contamination, and biodiversity loss [5–7]. Given the spatial variability
of weed cover, site-specific weed control can significantly reduce herbicide use by up to
39.2% [5] and is therefore essential for sustainable crop management. Unmanned aerial
vehicles (UAVs) have recently proven to be an effective platform for weed monitoring,
capable of flying close to crops and covering large areas in a short time [3]. A crucial first
step for the application of targeted weed control measures, such as spot spraying, is the
precise and reliable detection and discrimination of weeds and crops [8], as wrong weed
detection information may lead to failure in weed removal or even cause crop damage [9].
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1.2. Related Research

Recent studies have explored different methods for weed detection [10,11], ranging from
computer vision image processing [9,12] and machine learning (ML) techniques [13–17] to
state-of-the-art deep learning (DL) algorithms [18–20]. Since weeds and crops often share
similar colors, textures, and shapes, the effective extraction of distinguishing features be-
tween crops and weeds is critical. Concerning this challenge, several studies have revealed
the superiority of DL methods over traditional ML techniques [21,22]. As demonstrated by
Ong et al. [23] in a case study on Chinese cabbage, a convolutional neural network (CNN)
accurately detected weed by 92.41%, notably surpassing the performance of the opposing
Random Forest model. Object detection and instance segmentation models have also
recently outperformed the ML algorithm Support Vector Machine [24]. Further research
has been conducted to evaluate the performance of various DL semantic segmentation
networks such as a U-Net, SegNet, FCN, and DeepLabv3+, employing pixel-based image
classification to differentiate between the background, crops, and weeds [3,25–29]. In a
study using multispectral UAV imagery, a U-Net proved most efficient in terms of com-
putational resources as well as model performance [27]. This is further demonstrated by
the U-Net’s proficiency in real-time segmentation during on-board processing [30] and its
successful application to a blurry UAV-based dataset of sorghum [28]. However, the precise
detection of weeds relies not only on the choice of a high-performance algorithm but also
largely on the applied sensor.

As Peña et al. [6] have shown, the use of multispectral cameras promises higher
accuracy compared to RGB sensors, as they are able to capture additional plant charac-
teristic spectral information and provide more robust imagery under varying lighting
conditions [19,31]. Despite their advantages, commonly used high-end multispectral cam-
eras for agricultural applications like the Parrot Sequoia+, Sentera Double 4K, Airinov
MultiSpec 4C, and the MicaSense Altum, are usually very expensive (approx. EUR 15,000)
and thus affordable to only a minority of users. To overcome these economic limitations,
the Raspberry Pi Foundation’s customizable single-board computers, combined with the
corresponding RGB and infrared camera modules, provide a cost-effective alternative to
commercial multispectral camera systems [32]. These so-called Raspberry Pis are character-
ized by their light weight, compactness, and high-performance system on chip, functioning
as a fully fledged computer [33]. Unlike the Arduino microcontroller board, they offer
high computing power and memory, which makes them suitable for a broad spectrum
of scientific and engineering applications [34]. In 2017, Pagnutti et al. [35] investigated
the radiometric characterization of raw-data format imagery acquired with the Raspberry
V2.1 camera module, laying the foundation for comparison with other sensors and further
application-oriented research. However, there are only a few studies in which a Raspberry
Pi-based multispectral camera has been developed and applied in agricultural contexts.
Pioneering approaches in this field were conducted by Dworak et al. [36], Döring et al. [37],
and Sangjan et al. [38], who implemented Raspberry Pi-based multispectral camera systems
for NDVI (normalized difference vegetation index) calculation, while Belcore et al. [33] and
Döring et al. [37] have demonstrated the successful integration of a similar system into
a UAV for automated image acquisition. Regarding weed and crop identification, initial
attempts using RGB sensors on robots or ground stations have been made [4,39]. However,
to date, there are no studies in which a low-cost multispectral camera has been employed
for specific challenges in precision agriculture.

1.3. Goals and Structure

Further investigations are fundamental in assessing the efficacy of a Raspberry Pi-
based multispectral camera system in weed management. To address this research gap,
this paper proposes an innovative Raspberry Pi-based low-cost camera system (LCS)
developed for agricultural applications and capable of autonomous multispectral image
capture on a UAV. Aiming to offer a reliable alternative to commercial sensor systems,
the performance of the LCS in accurately detecting weed was benchmarked against the
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high-end multispectral camera MicaSense Altum. The study was conducted using UAV
data in early-season maize, being a valuable study case for its popularity and vulnerability
to weeds [6]. Different from the approach in previous work [40], this research does not focus
on developing a novel classification algorithm, which is why the well-established U-Net
architecture was employed for weed segmentation. The U-Net’s strong feature learning
capabilities and automatic feature extraction allow for easy scaling to new datasets, making
it highly suitable for real-world applications [10,22,41]. The pixel-based classifications
generated by this dense semantic segmentation framework serve as a valuable data source
for autonomous weed control based on precise localization information.

In summary, this research aims to

1. Present the hardware and software development of a multispectral LCS for weed
detection in agriculture.

2. Compare the performance of the proposed multispectral LCS against the trusted Mi-
caSense Altum in a real-world scenario. The classification accuracy of both sensors will
be evaluated in the context of a practical application using different evaluation metrics.

3. Identify and discuss possible weaknesses of the LCS to determine suitable use cases
and outline a path for further development of the system.

2. Materials and Methods
2.1. Data Acquisition
2.1.1. Sensor Description

In this work, the well-performing high-end multispectral camera MicaSense Altum
was compared with a self-built multispectral LCS. Thereby, the Altum served as a bench-
mark due to its successful application in numerous studies [42–44]. As a sensor specialized
in agricultural analysis, the Altum integrates a radiometric thermal camera alongside
five discrete narrow bands, enabling the simultaneous capture of advanced thermal, mul-
tispectral, and RGB imagery in a single flight [44]. The spectral bands encompass the
channels blue at 475 nm, green at 560 nm, red at 668 nm, red edge at 717 nm, and NIR at
842 nm (see Table 1). Its high spatial and radiometric resolution makes it the ideal sensor
for machine learning plant-level applications such as early-stage weed detection [45].

The proposed LCS employs the Raspberry Pi camera module V2 equipped with a
Sony IMX219 image sensor for RGB imaging and a similar version sensitive to infrared
wavelengths. Accordingly, it offers red, green, blue, and NIR channels as a multispectral
system. However, unlike the Altum system, which captures each RGB channel using
distinct sensors, the LCS records those through a single sensor. This is reflected in its
spectral sensitivity, with bandwidths in the visible spectrum extending to approximately
100–150 nm, as opposed to those of the Altum system, at 14–32 nm [44]. Additionally, the
central wavelengths in the LCS are shifted approximately 40–90 nm towards shorter wave-
lengths [35] (see Figure A1 and Table 1). Given its uncommon spectral characteristics, there
is great research interest in the sensing capabilities of this pioneering system. Although the
field of view and spatial resolutions of both camera systems differ due to their inherent
hardware properties (see Table 1), they yield comparable GSDs, approximately 0.55 cm/px.

Table 1. Overview of investigated sensors with lens and imagery information.

MicaSense Altum Raspberry Pi 4 V2 Sony IMX219 RGB +
NoIR

Resolution 2064 × 1544 px 2592 × 1944 px
Field of view 48º × 36.8º 53.50° × 62.2°

GSD (at 12 m altitude) ∼0.53 px/cm ∼0.55 px/cm
Center Wavelength Blue: 465 nm, Green: 560 nm,

Red: 668 nm, NIR: 842 nm
Blue: 450 nm, Green: 520 nm,
Red: 600 nm, NIR: 750 nm

Price ∼15,995.00 € ∼500.00 €
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2.1.2. System Hardware LCS

The proposed system is based on the single-board computer Raspberry Pi 4B [46]. A
connected powerbank with a 20,000 mAh capacity guarantees a recording time of several
hours. Since the Pi 4 only has one camera port, it was further linked to two computers,
namely Pi Zeros, via the plug-on board ClusterHAT [47] (see Figure 1). The Zeros are
particularly small and inexpensive and serve as connections for the camera modules. The
installed visible and infrared sensors are identical in construction, with the difference that,
on the so-called “NoIR”, no IR-cut filter was installed above CMOS. The subsequently
added bandpass filter allows the chip to be sensitive only to the infrared spectrum. The
sensor specifications can be taken from Table 1. To ensure a similar shooting angle for both
Pi cameras, the V2.1 lenses were detached from their circuit boards and connected to them
via an extension cable. The camera’s housing was modeled using Blender software and
then 3D-printed. This ensures that the device is ventilated while being protected from
environmental influences.

Figure 1. Wiring diagram of the proposed LCS.

2.1.3. System Software LCS

The Raspberry Pi 4 as well as both Pi Zeros are equipped with SD cards on which
Raspbian operating system images (available at https://dist1.8086.net/clusterctrl/buster/
2020-08-20/, accessed on 18 February 2024) are installed. The Pi 4 acts as the Controller
Pi and creates an IP-subnet for the Pi Zeros via the installed CNAT image, which allows
access to the sub-Pis via Secure Shell Protocol (SSH). All captured images were stored
on the Controller Pi. To ensure the exact same time of capture, a server application was
implemented on each of the sub-Pis so that the Controller Pi serving as a client could
simultaneously trigger the cameras and request the images. Images were taken with a delay
of two seconds between each shot, same as with the Altum system. On each Pi Zero, a Python
script determined the settings during the recording, which were adjusted automatically.
Only the white balance of the NIR camera was set statically to the surrounding illumination
using awb_gains = (0.5, 2.0).

2.1.4. UAV Platform and Study Site

Aerial flights were conducted under cloudy conditions in a maize (Zea mays L.) field
in Lower Saxony, Germany. The flight was carried out during the two-leaf stage of the
maize, i.e., at a BBCH stage of 12. This describes the most sensitive phenology stage of
the plant and is therefore a common time for initial weed control measures [48]. The flight
altitude of 12 m resulted from a trade-off between flight time and spatial resolution that

https://dist1.8086.net/clusterctrl/buster/2020-08-20/
https://dist1.8086.net/clusterctrl/buster/2020-08-20/
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ensures visibility of the weeds in the early vegetation stage. Unlike the Altum camera,
the sensors of the LCS do not feature autofocus, which is why the lenses were manually
focused to the appropriate distance before flight. As the focus is highly sensitive to even
slight adjustments, it was fine-tuned through an iterative trial-and-error process to attain
the best possible sharpness. Both camera systems were attached to the UAV (DJI M2010)
side by side (see Figure 2) in order to capture the photos under comparable conditions.

(a) (b)

Figure 2. Flight setup and location. (a) Sensor mounted (left: Altum, right: LCS). (b) Investigated
agricultural field.

2.2. Data Analysis
2.2.1. Preprocessing

To align the images of the individual channels, they were geometrically transformed
using image correlation (Enhanced Correlation Coefficient Maximization) [49]. Subsequent
cropping of the image edges by approx. 25% effectively removed any distortions, vignetting
caused by the bandpass filter, and overlapping of the images (see Figure 3 Section I). Since
the available DL architecture is primarily designed for a three-channel input, it has been
limited here to the red, green, and NIR bands, being most relevant for vegetation detec-
tion [27,50–52] and commonly used in comparable studies [53–56]. The NIR channel is
less sensitive to differences in solar incidence, contributing to a more robust classification
with dynamic weather conditions [57]. The red, green, and NIR information were provided
separately rather than combined into the NDVI for a straightforward classification input.
Radiometric calibration was intentionally not performed to simplify preprocessing. Fur-
thermore, the focus of the study lies in the comparison of the classification performance
and not the spectral properties. A vegetation mask served as the basis for subsequent
annotation of the images. This follows well-established practices and is similarly applied
in the studies evaluated [31,58,59]. To create a vegetation mask based on which to label the
training images similar to [31], the NDVI [60] was extracted from the layerstack. This index
was used to distinguish between vegetation and soil. An intensity histogram clustering
algorithm, Otsu’s method [61], was used for individual threshold selection. Figure 4 dis-
plays the corresponding intermediate steps of the preprocessing with the resulting binary
mask. These were manually annotated by the author using GIMP image editing software.
Thereby, the original image was placed under a mask for direct comparison and all pixels
marked as vegetation were divided into the classes weed or crop, while the background
pixels were classified as soil. No additional correction of the vegetation mask, such as
removing oversegmentations or adding weeds, was performed. This kept inaccuracy due
to human influence low and comparable across all training data. In addition, a practicable
and easily comprehensible workflow was aimed for. With the intention of evaluating the
LCS as an alternative to the Altum system, it was also important to annotate the training
data of both systems independently.

A total of 75 images were labeled per sensor, with an extension of 1164 × 920 pixels.
These images were then divided into 224 × 224 pixel tiles, yielding a total of 1500 training
patches. As a further preprocessing step, the images were loaded into a range of [0, 1] and
normalized according to the following: mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]
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for compatibility with the pre-trained segmentation model employed for training. In total,
20% of the data was retained for testing and 80% was used for the training process.

Figure 3. Flow chart of performed work steps, subdivided according to paper structure.
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(a) MicaSense Altum camera

(b) Low-cost Camera System

Figure 4. Intermediate results from input data via NDVI to vegetation mask.

2.2.2. Evaluation of Training and Testing Data

It must be noted that the accuracy of the vegetation mask-based annotation largely
depends on the spectral and spatial resolution of the source image. This is because precise
separation of red and NIR bands is fundamental for NDVI calculations, while low spatial
resolution can cause mixed pixels of vegetation and soil, distorting the plant outlines [62,63].
In order to qualitatively assess the resulting inaccuracy in the ground truth, a subset of
five vegetation masks of the same referenced field sections of both sensors were addition-
ally corrected manually. Pixels that were incorrectly masked by the index were added
accordingly. In case of doubt, the images of the Altum sensor served as a reference for
the correction of both the Altum and LCS-based masks. The considered image sections
were chosen heterogeneously in order to be representative of the whole field. A subsequent
descriptive analysis of the sources of error allowed the accuracy of the mask to be estimated
for each class in reference to the application background (see Figure 3 Section II).

2.2.3. Semantic Segmentation

The annotated images were subsequently fed into the U-Net (see Figure 3 Section III).
This state-of-the-art segmentation framework was originally introduced by
Ronneberger et al. [64] for biomedical image segmentation but has also been success-
fully used for weed classification tasks in recent years [3,26–28,65]. As an encoder–decoder
network, the architecture is based on that of an FCN, where a CNN is first placed up-
stream as a backbone (feature extractor) (see Figure 5). In this study, the well-established
ResNet-50 [66], consisting of convolutional and max pooling layers, was used for this
purpose. In order to maintain the 2D structure of the images, the last fully connected
layers in the CNN architecture were replaced by fully convolutional layers, which were
upsampled step by step in the corresponding decoder stage. Unlike FCN, learnable filters
were used instead of fixed bilinear interpolation. In addition, skip connections transferred
information from the encoder layers to the corresponding decoder layer. This returned
precise localization using transposed convolutions [27]. Existing research proves that this
model achieves good segmentation results even with little training data by relying on
a vigorous data augmentation pipeline [28]. The first concatenation level allows for an
arbitrary number of input channels. Using a softmax function, a probability distribution
was created over the possible classes for each pixel in the last layer. The class was then
assigned according to the highest probability.
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The implementation was carried out using the PyTorch framework. The feature
extractor was initialized with weights pre-trained on ImageNet [67] to take advantage of
transfer learning [66]. The batch size was limited to 4, being the maximum achievable with
the given patch size due to hardware constraints. Training spanned 10 epochs, applying
a learning rate of 0.001 for the initial 5 epochs and reducing to 0.0001 for the latter half
to prevent overfitting [68]. To improve the convergence of the optimization process, the
Adam optimizer [69] was employed.

Figure 5. The U-Net architecture with skip connections, where ResNet50 is used as an encoder
and transposed convolutions are used in the decoder for upsampling the result after bottlenecking.
The encoder outputs a 7 × 7 grid size, with the final convolutional layer’s output matching the
input dimension.

2.2.4. Evaluation Metrics

The predictions of the U-Net on the retained test dataset were compared pixel by
pixel with the corresponding annotated test data, which served as a ground truth (see
Figure 3 Section III). For each image, the Jaccard index, precision, recall, and F1-score were
calculated. Finally, the results were averaged over the entire test dataset. The metrics
applied correspond to those that are most common in this field of research.

• The Jaccard index (also known as the Jaccard coefficient or InterSection over Union)
is an established metric used to evaluate the performance of a segmentation algo-
rithm [58]. It is defined as the size of the interSection of the predicted and ground
truth segmentations divided by the size of the union of the predicted and ground truth
segmentations. The utilized Jaccard score computes the average of the Jaccard index,
between pairs of label sets. The average is weighted, considering the proportion for
each label in the dataset, to account for imbalances.

• The calculations of recall, precision, and F1-score were performed for each class sep-
arately. Recall is a measure of the ability of the model to correctly identify positive
instances in a dataset, whereas precision measures the proportion of instances identi-
fied as positive by the model which are indeed positive. The F1-score combines these
two metrics as a harmonic mean in a single score [70].

• To better comprehend the misclassifications, a confusion matrix (CM) was computed.
The matrix contains the normalized number of true positive, true negative, false
positive, and false negative predictions made by the U-Net for each class.

3. Results
3.1. Qualitative Results of the Training and Testing Data

Figures 6 and A2 in the appendix illustrate the posterior correction of the annotated
vegetation masks, using the corresponding Altum source images as a reference. These
manually created ground truths were utilized to qualitatively evaluate the accuracy of the
training and test datasets.
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Both the Altum and LCS-based vegetation masks captured all maize plants and
mapped their structure. However, the LCS data resulted in slightly oversegmented and
less precise boundaries. Gaps within vegetation were accordingly effectively detected in
the mask on the Altum data, whereas these were incorrectly included in the vegetation
class based on the LCS data. Additionally, finer leaf ends of maize were only accurately
masked in the Altum data, with these details often being misclassified as soil in the LCS
masks. Regarding the misclassifications marked in red, it becomes visible that the Altum
masks also occasionally fail to classify the leaf ends of maize as vegetation initially. When
correcting the LCS-based masks, broader outlines were added to include coarser leaf ends.
Narrow leaf sections, not depicted on the Altum vegetation mask, were partially captured
in the LCS-based mask due to broader outlining.

In the Altum images, the weed class was mapped accurately without any exceptions.
Even weeds consisting of less than 10 pixels were recorded as vegetation. These weeds
were no longer clearly recognizable as vegetation to the human eye on the LCS images
and were accordingly classified as soil via the index. As indicated in the figure, weeds
smaller than 30 pixels were generally not identified as weeds in the annotated LCS mask.
Moreover, larger weeds overlapping with maize were partially and erroneously assigned
to the maize class in the annotations. Overall, while both sensors exhibit varying levels
of detail in depicting plant structure, they accurately represent the majority of individual
plants as vegetation, leading to precise annotations.

(a) Field Section 1—Altum Sensor

(b) Field Section 1—Low Cost Sensor

(c) Field Section 2—Altum Sensor

(d) Field Section 2—Low Cost Sensor

Figure 6. Qualitative evaluation of training and testing data inaccuracy. Left, the annotated vegetation
mask. Middle, the manually corrected annotated vegetation mask. Right, the corrected pixels
highlighted, with red indicating weed and green denoting maize.
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3.2. Quantitative Evaluation of the U-Net Predictions

The overall detection accuracy of the U-Net, measured by the Jaccard score, amounts
to 96.75% on the Altum dataset and 93.27% on the LCS dataset. Figure 7 illustrates the
prediction accuracies of the U-Net for the classes soil, crop, and weed. The accuracy
measures recall, precision, and F1-score consistently indicate a 99% accuracy for the soil
class based on the Altum data. The predictions with the LCS source data are insignificantly
lower, ranging between 98 and 99% accuracy. The crop class shows greater sensor-related
differences. With 87% vs. 97%, the LCS performed 10 percent points (pp) lower in precision.
However, recall accuracy remained high for both sensors, at 95% and 96%, respectively. The
weed class shows a significant variance across different evaluation metrics. The recall for
the U-Net using LCS data recorded the lowest accuracy at 68%, which is 7 pp lower than
that of the Altum data. Precision is considerably higher, at 92% for Altum images and 90%
for LCS images. As expected, the F1-score represents the harmonic mean of these results.

(a) Recall (b) Precision (c) F1-Score

Figure 7. Quantitative evaluation results of the U-Net predictions on the hold-out test data.

The CMs depicted in Figure 8 provide information about the pixel-based class assign-
ment of the neural network (NN). For both the Altum and LCS cameras, the misclassifi-
cations in soil are negligible. The maize class was likewise accurately classified on both
datasets with high probability (~95%), while the predominant source of misclassification
for this class is the confusion with soil. The weed class exhibits more pronounced detection
inaccuracies based on both camera systems. Regarding the Altum images, 12.16% of the
pixels have been incorrectly assigned to crop and 12.95% to soil, respectively. For the LCS
images, 14.90% of weed pixels have been assigned to crop and 17.46% to soil.

(a) MicaSense Altum Camera (b) Low-cost Camera System

Figure 8. Normalized confusion with pixel-based classification results on the hold-out test set in
percent. (a) Showing the results on the Altum system-derived dataset and (b) showing the low-cost
system results. The darker the blue shade, the higher the proportion of pixels assigned to that class.
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3.3. Qualitative Evaluation of the U-Net Predictions

Figures 9 and A3 in the appendix display the predictions of the U-Net on the hold-
out test dataset. These are in opposition to the corresponding initial UAV images of the
compared sensors and the annotated input provided to the NN. The quality of the LCS
images differs not only in the displayed coloration but also in the spectral resolution and
noise and blur ratio in comparison with the Altum images. The resulting inequality of the
annotated training and test data have already been evaluated in Section 3.1. Regarding the
Altum-based dataset, the output of the U-Net (blue background) aligns closely with the
annotated vegetation mask (black background). In particular, the structure of the maize
plants has been detected correctly on a pixel level. The weed shapes in the predictions
also mostly mirror the ground truth, with occasional gaps in the plants and some weeds,
especially those overlapping with maize, misidentified as crops. Other misclassifications
occurred with a minority of the youngest weeds, which were not detected by the U-Net
and thus assigned to the soil class. For the LCS source images, the predictions reflect the
slight imperfections in the annotated input, resulting in less detailed representations of
plant structures compared to the Altum-based predictions. Nonetheless, all maize plants
and the vast majority of the weeds were also correctly classified. Notable misclassifications
in the examined subset primarily occurred where weeds overlapped with maize plants,
often leading to partial correct weed classification and partial misidentification as maize.
Similar to the Altum dataset, there was further confusion in identifying smaller weeds,
which is more pronounced in the LCS images.

(a) Field Section 3—Altum Sensor

(b) Field Section 3—Low Cost Sensor

(c) Field Section 4—Altum Sensor

(d) Field Section 4—Low Cost Sensor

Figure 9. Sample qualitative results achieved on the two investigated sensor systems. Left, the
corresponding UAV images. Center, the annotated vegetation mask as hold-out testing images.
Right, the predictions of the U-Net.
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4. Discussion

The accurate segmentation of crops and weeds with a cost-efficient sensor system
and straightforward workflow is currently of great interest in precision agriculture. In
this scientific work, a respective system was introduced and evaluated against a trusted
high-end system with the intention of using it in weed management. The NDVI-derived
vegetation mask for the generation of training data differs between the sensor-dependent
datasets in pixel precision. Particularly maize has been slightly oversegmented on the LCS
images, which can be explained by the ambiguous pixels, especially at the plant edges.
Since the GSD of both systems is the same up to 0.55 px/cm, the reasons for the poorer
image quality of the LCS are likely to lie in other factors. The slight blurring especially
with the NIR camera is possibly due to a less precise manual focus. The absence of a
display and the fine nature of the hardware complicated the manual focus setting of the
lenses, making an autofocus a significantly more convenient option for the application. The
higher noise ratio (see Figure 4) is presumably caused by lower-quality lenses that do not
offer the same sharpness, contrast, as well as color accuracy as those of the Altum system.
Additionally, the spectral responses of the Altum system are slimmer and more clearly
separated between the examined bands (see Figure A1), resulting in sharper delineating
index values between vegetation and soil. Accordingly, weeds consisting of a few pixels
were captured by the index. Those smallest weeds, however, do not stand out clearly on
the LCS images and were thus misclassified as soil via the threshold. Especially in the NIR
channel, the gray-level difference between vegetation and soil of the low-cost sensor is less
pronounced, which complicated the discrimination of classes for small segments based on
the NDVI. However, since these misclassifications primarily occurred only for the smallest
weeds on the LCS imagery, the annotations still serve as a reliable ground truth.

The predictions of the U-Net demonstrate high overall accuracies on both datasets,
93.3% (LCS) and 96.8% (Altum), respectively, which clearly exceed the performance of a
study with a comparable dataset, 88% [29]. However, class-specific differences in accuracy
are observed, with weeds showing the most misclassification. This is consistent with
the results of other research [26,27,31] and can be partly explained by the strong class
imbalance. Because there are a lot more crop- and soil-labeled pixels than weed-labeled
pixels, the model might be more sensitive to detecting crops. Along with this, the values
of the confusion matrix show a tendency to underestimate the weed class (see Figure 8).
This occurred based on both sensor systems, whereas the recall with respect to weed is
for the LCS, with 68%, which is a bit lower, presumably due to the spectral resolution.
Nevertheless, the high precision values (90%) provide the user with reliable weed detection
using the LCS. However, to account for class imbalance in the following work, an adjusted
loss function (e.g., focal loss) should be applied.

The qualitative evaluations on the predictions of the U-Net reflect the class-specific
strengths and weaknesses of the sensors. The segmentation detail corresponds to that of the
training data, which is why minor misclassification occurred at the plant edges, based on
the low-cost images. Such inaccuracies may be mitigated through the previously discussed
methods aimed at refining the preliminary vegetation masks, especially by improving focus
on the LCS. However, considering the context of real-world site-specific weed management,
this minor oversegmentation is deemed irrelevant, as the general plant shape and its
precise location are sufficient to generate accurate weed maps [28]. The overlap between
weed and crop caused further confusion, which explains the tendency to overestimate the
maize class. This is a common challenge in weed detection [10,58] and can possibly be
optimized with the adjustment of the segmentation model. Apart from this, the outputs
of the model differ with respect to very small weeds, which were not reliably detected on
the LCS. This is known as a general bottleneck in DL approaches [28] and is likely related
to a number of influences that cause poorer image quality of the LCS, determined by lens
quality, spectral resolution, camera focus, etc. Further research should therefore aim to
explore the improvement potential of the LCS by, for instance, evaluating alternative lenses
or automatic focus. Additionally, investigations regarding the filter on the NoIR sensor
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should be undertaken to optimize the contrast in the NIR channel [36]. In this respect, it
must be considered that the wavelength ranges of the two camera systems differ in the NIR
range, which influences the detection accuracy due to changing reflection properties of the
vegetation. Customizing the bandpass filter by aiming at a wavelength range similar to that
of the Altum camera could accordingly improve the information of the LCS NIR channel.
In addition, detailed research is needed on the reflectance properties of the Raspberry Pi
NoIR sensor, including a radiometric and spectral calibration.

Overall, the performance of the LCS is only slightly weaker than that of the high-end
model in terms of weed detection (F1-score of 76% vs. 82%), showing great potential for
a wide range of applications. The accurate prediction of weed patches makes the system
suitable for spot spraying, for which in the context of further work, the extraction of the
image localization via differential GPS should be implemented. Furthermore, flying with a
larger overlap would allow the images to be aligned into an orthophoto, providing valuable
data in regard to weed mapping. The predictions are also suitable as a basis for mechanical
hoeing due to the high recall, although the precision decreases with the LCS on small
weeds. Especially in application scenarios with a significant distance between the sensor
and the object of interest, similar to the experimental setup examined in this study, the
LCS may underperform compared to the Altum system. Besides filter optimization for
better spectral resolution, weed detection accuracy is therefore likely to increase further
with lower UAV altitude and correspondingly higher spatial resolution. Integrating the
presented system into a weeding robot, as an advancement of the methodology proposed
by Chechlinski et al. [4], would thus be of great research interest. To address the limitations
of the LCS in detecting small weeds, alongside the suggested enhancements to both setup
and hardware, it is essential to consider the necessity of regular hoeing. This allows for the
identification of weeds that were overlooked previously. Given this context, the disparity
in precision relative to the high-end system has a negligible effect in practical applications.

Moreover, the Raspberry Pi serves as a comprehensive computing device which, unlike
the Altum system, enables on-board processing of image data. Through modifications
to the U-Net architecture, as demonstrated by Chechlinski et al. [4] and Zou et al. [71],
it thereby becomes possible to achieve local, real-time weed detection. With this vision
for future research, it is crucial to underscore the LCS’s potential for UAV applications.
Integrating the proposed sensor with a suitable drone would provide a standalone low-cost
system and thus address a larger number of users globally than cost-intensive weeding
machines. In this context, the LCS needs to be tested in different crops and study areas to
evaluate its generalization capabilities.

5. Conclusions

In this paper, the usability of a multispectral low-cost UAV-based sensor system in
the practice of weed detection was demonstrated. The implemented DL model achieved
satisfying overall accuracies, with 93.27% based on the proposed LCS imagery and 96.75%
on the high-end sensor, which was used as a benchmark. The recall of the weed class on the
LCS dataset declined to 68%. However, the simultaneously high precision of 90% ensures a
reliable localization of the weeds from the user’s perspective. Further, a qualitative analysis
indicates that the general form of most crops and weeds can be detected accurately, with
minor misclassification occurring with small weeds and overlaps. To address this challenge,
future research should focus on the radiometric and spectral analysis of the Raspberry Pi
sensors to further improve the spectral resolution of the system using appropriate filters and
calibration. In addition, the variation in the lens and the implementation of an automatic
focus on the LCS might offer room for improvement. Overall, the LCS-based prediction is a
very good representation of the ground truth weed distribution and shows great potential
for applications such as spot spraying and mechanical weeding. The implementation
of real-time on-board processing is now essential to achieve sustainable, targeted, and
affordable weed control with minimum human intervention.
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Figure A1. Sensor comparison of spectral response functions.
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(a) Field Section 3—Altum Sensor

(b) Field Section 3—Low Cost Sensor

(c) Field Section 4—Altum Sensor

(d) Field Section 4—Low Cost Sensor

(e) Field Section 5—Altum Sensor

(f) Field Section 5—Low Cost Sensor

Figure A2. Qualitative evaluation of training and testing data inaccuracy. Left, the annotated
vegetation mask. Middle, the manually corrected annotated vegetation mask. Right, the corrected
pixels highlighted, with red indicating weed and green denoting maize.
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(a) Field Section 1—Altum Sensor

(b) Field Section 1—Low Cost Sensor

(c) Field Section 2—Altum Sensor

(d) Field Section 2—Low Cost Sensor

(e) Field Section 5—Altum Sensor

(f) Field Section 5—Low Cost Sensor

Figure A3. Sample qualitative results achieved on the two investigated sensor systems. Left, the
corresponding UAV images. Center, the annotated vegetation mask as hold-out testing images.
Right, the predictions of the U-Net.
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