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Abstract: The proposed novel algorithm named decision-making algorithm with geographic mobility
(DMAGM) includes detailed analysis of decision-making for cognitive radio (CR) that considers a
multivariable algorithm with geographic mobility (GM). Scarce research work considers the analysis
of GM in depth, even though it plays a crucial role to improve communication performance. The
DMAGM considerably reduces latency in order to accurately determine the best communication
channels and includes GM analysis, which is not addressed in other algorithms found in the literature.
The DMAGM was evaluated and validated by simulating a cognitive radio network that comprises
a base station (BS), primary users (PUs), and CRs considering random arrivals and disappearance
of mobile devices. The proposed algorithm exhibits better performance, through the reduction in
latency and computational complexity, than other algorithms used for comparison using 200 channel
tests per simulation. The DMAGM significantly reduces the decision-making process from 12.77% to
94.27% compared with ATDDiM, FAHP, AHP, and Dijkstra algorithms in terms of latency reduction.
An improved version of the DMAGM is also proposed where feedback of the output is incorporated.
This version is named feedback-decision-making algorithm with geographic mobility (FDMAGM),
and it shows that a feedback system has the advantage of being able to continually adjust and adapt
based on the feedback received. In addition, the feedback version helps to identify and correct
problems, which can be beneficial in situations where the quality of communication is critical. Despite
the fact that the FDMAGM may take longer than the DMAGM to calculate the best communication
channel, constant feedback improves efficiency and effectiveness over time. Both the DMAGM and
the FDMAGM improve performance in practical scenarios, the former in terms of latency and the
latter in terms of accuracy and stability.

Keywords: cognitive radio; decision-making; geographic mobility in cognitive radio; location;
handoff management

1. Introduction

Geographic mobility (GM) models describe the movement of nodes in a specific region
during a given time, including changes in speed, direction, and acceleration. GM can thus
adapt to a solution’s specific needs, providing improved performance and flexibility. The
use of wireless networks comprises two important tasks: location and handoff management.
Location management ensures that the location of network nodes can be tracked, while
handoff management is responsible for maintaining connections while a node moves from
one network to another [1]. This GM management needs to be considered for cognitive
radio networks (CRNs), given that the available radio spectrum can considerably change
with location and handoff. Consequently, user GM represents a major challenge in CRNs [2]
since it can significantly affect performance by interrupting the services, thus reducing
service quality.
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According to the current state of the art, existing mobility models can be divided into
four groups: random, group, route-planned, and time-dependent models [3]. Random
mobility models in wireless networks consider the random distribution of nodes within
a previously defined simulation area. Each node remains in that location for a randomly
selected time within a specified interval [4,5]. Similarly, the group mobility model considers
that a group of nodes in a network revolve together around a common point [6,7]. Route-
planned models seek to avoid unforeseen changes in speed and direction. The planning
of the movements is defined by mathematical equations, in which the nodes are forced
to follow these movement patterns [8]. Similarly, time-dependent mobility models are
based on mathematical equations in which the nodes depend on an initial time with respect
to a previous time, thus avoiding sudden changes in speed and direction [9]. Different
prediction schemes can be used to control GM. For an implementation in CRNs, it is a
question of finding the best GM prediction technique in order to select the most stable
communication path, thus improving general performance and performance reliability.

As a consequence of the relevance of GM for a better performance of the CRN,
the proposed novel algorithm, named decision-making algorithm with geographic mo-
bility (DMAGM), includes a detailed analysis of decision-making that considers and
involves GM.

In addition, an improved version of the DMAGM is also proposed where feedback
of the output is incorporated. This version is named feedback-decision-making algorithm
with geographic mobility (FDMAGM). This algorithm shows that a feedback system has
the advantage of being able to continually adjust and adapt based on the feedback received.
Furthermore, the feedback version helps to identify and correct problems, which can be
beneficial in situations where the quality of communication is critical.

Grounded in this research’s particular focus on decision-making, different decision-
making mechanisms that include GM were studied making the following contributions:

• Proposing a detailed analysis of decision-making that considers geographic mobility
(GM), a parameter that most CRN proposals have not yet explored in depth

• Developing a robust process that reduces latency to find a better communication
channel; and

• Providing a feedback function that increases the precision in the selection of a better
communication backup channel, based on historical data regarding network behav-
ior through a feedback process that considers information from the evaluations of
previously used channels. The value assigned to each channel thus corresponds to a
relationship between current information and previous evaluations.

The evaluation process of the proposed algorithm is based on determining the at-
tributes characterizing a communication channel through the Delphi method [2]. The
decision-making attributes were proposed based on the criteria reported in the CR liter-
ature and compared with [2]. Such criteria include the signal-to-interference plus noise
ratio (SINR), the bandwidth (BW), the channel availability probability (AP), the estimated
channel time availability (ETA), and the random way-point mobility model (RWPM). These
criteria were evaluated for two types of services, i.e., real time (RT) and best effort (BE). Test
execution was conducted with an NS-3 simulator, and, in order to contrast the DMAGM
and the FDMAGM, some comparisons were made with the algorithms Dijkstra [10], an-
alytic hierarchy process (AHP) [11], fuzzy analytic hierarchy process (FAHP) [12], and
modified Dijkstra decision-making algorithm (ATDDiM) [13], in which the results indicate
a considerable reduction in the processing time of the proposed algorithms. In addition,
there was greater precision in the selection of a communication channel since the feedback
process proposed in the FDMAGM contained information regarding the evaluations of
the current and previous channels. According to the analysis of the different mobility
models that can be considered with the interaction among CRs and PUs, it was possible
to determine which mobility model would be appropriate for this scenario. This is based
on sets of given data that can be compared with wireless networks in operations such as a
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cellular network. The characteristics that were considered to determine user movements
are speed, acceleration, pause time, and time in a location.

The rest of this paper is organized in the following sections. Section 2 describes the
related works. Section 3 describes the proposed decision-making algorithm. Section 4
shows the conducted tests that compare latency with similar algorithms and mobility tests.
Lastly, Section 5 presents the conclusions. At the end of this document, a table with the list
of acronyms used throughout this paper is shown.

2. Related Work

To the best of the authors’ knowledge, none of the studies propose research related
to spectrum handoff in CRNs and solving problems associated with geographic mobility
(GM). Trigui et al. [14] propose a multi-agent system (MAS) with a mobility management
scheme for CRNs that considers user mobility and radio resources in order to provide
optimal access and make resource allocation decisions. Obaid et al. [15] propose a cluster-
based MAC protocol for CR wireless sensor networks with radio frequency (RF) energy
harvesting. The protocol is based on the mobility for spectrum access decision-making.
The proposed protocol requires a localization system to determine the users’ current
location. Priya and Kannan [16] present a frequency-band selection routing protocol
with enhanced spectrum aggregation for cognitive radio ad hoc networks. The protocol
considers user mobility, spectrum availability, and quality of service to make optimal
routing decisions. Zhao et al. [17] propose a new approach to spectrum management in
cognitive radio networks based on predicting spectrum availability to make more efficient
spectrum allocation decisions. Hanif et al. [18] propose a new approach to spectrum
handoff management in CRNs. This approach is based on analyzing the user traffic pattern
to make more efficient spectrum handoff decisions and requires the implementation of a
traffic analysis system, a spectrum handoff system, and a coordination system. The study
by Jaffar et al. [19] proposes a new approach to spectrum management in heterogeneous
CRNs based on user location to make proactive channel selection decisions.

The work proposed by Omer et al. [20] introduces a new approach to channel assign-
ment in CRNs for scalable video streaming. This approach is based on adaptively assigning
channels to users based on their bandwidth and quality-of-service requirements. On the
other hand, Tlouyamma and Velempini [21] propose a channel selection algorithm (CSA)
optimized for improved performance in CRNs. This algorithm considers multiple factors,
including channel availability, interference, channel quality, user distance, and channel
usage history. Thakur et al. [22] consider a new approach to spectrum mobility in CRNs
using spectrum prediction and monitoring techniques. This approach is based on predict-
ing the occurrence of primary users (PUs) and continuously monitoring the spectrum in
order to detect the presence of PUs. Meanwhile, Yawada and Dong [23] show an approach
to spectrum handoff/mobility (SHMA) in CRNs based on an intelligent decision-making
process that takes into account multiple factors, including channel availability, interface,
channel quality, user distance, and channel usage history.

Li et al. [24] propose a method based on deep learning for the prediction of user
mobility using a preferential exploration and return model as a deep-learning technique
to predict the future locations of the nodes. According to the proposal made by Iftikhar
et al. [25], a decision-making algorithm using game theory is presented to model spectral
mobility, which serves as a switching game that considers whether to change or remain in
the channel. Alozie et al.’s scheme [26] presents a strategy to minimize the delay that occurs
during spectrum handoff from a backup channel selection mechanism based on fuzzy data.
Basically, the proposed scheme considers gathering backup channels in advance and using
fuzzy logic for the selection of the best available backup channel.

Other studies have addressed the issue of user mobility in solving CR problems.
For example, Sivasundarapandian et al. [27] present an approach based on a secondary
user (SU) mobility model that considers SU movement and distribution. Dey and Saha
propose a scheme that considers channel availability, interference, channel quality, and
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user distance to define the parameter MOS [28]. Al-Dulaimi et al. [29] propose a congestion
control scheme, and Zhang et al. [30] propose an opportunistic programming scheme in
the spectrum. However, none of these schemes solve the problem of effective handoff, nor
do they consider a decision-making process that can help CR communication processes
when there is GM.

The literature thus offers a wide range of proposals that consider mobility strate-
gies. However, none of these proposals do not posit a decision-making process to deter-
mine the best communication channels, which results in ineffective handoff. In addition,
the attributes that characterize a communication channel are not specified through the
Delphi method [2]. To gain insights into the latency time of the proposed algorithm,
other algorithms were included for comparison purposes, such as Dijkstra, AHP, FAHP,
and ATDDiM.

Table 1 presents a summary that allows the comparison of common research methods,
main features, limitations, and other characteristics of the algorithms found in the literature.

Table 1. Main characteristics of different decision-making algorithms for cognitive radio, where n
represents the number of nodes and m represents the number of channels. The acronym NC means
not considered, and NA means not available.

Algorithm Geographic
Mobility (GM)

Computational
Complexity

Min./Average/Max.
Decision-Making

Latency (ms)
Main Features Limitations

Dijkstra [10] NC O
(
n2) 0.2/8.6/20

This approach can find the
optimal path between two

nodes in a graph.
This approach can be used

to make decisions in a
variety of scenarios.

This approach can be scaled
to large networks.

This approach is sensitive
to the accuracy of the data

on the structure of
the graph.

AHP
[11] NC O

(
n2) 0.04/2.2/6

Identifies the most
cost-effective and

latency-optimal routes
between two points.
Simplifies the route
selection process for

delivery services.
Allows the user to specify

the weights of the
decision factors.

It depends on the accuracy
of the specified weights by

the user.
It might be unreliable in
networks with changing

conditions, like
mobility scenarios.

FAHP
[12] NC O

(
n2) 0.02/0.47/1

Improves the performance
of spectral handoff by more

efficiently selecting
channels.

It can be adaptable to
different cognitive radio

network scenarios.

It requires a large amount
of data about the cognitive

radio network.
It is more complex than

traditional spectral handoff
algorithms.

It depends on the accuracy
of the specified weights by

the user.

ATDDiM [13] NC O(nlog(n)) 0.02/0.46/1

Enhances route planning
performance by reducing

computation time
compared with Dijkstra.
Reduced computation

complexity.
The improved algorithm

implements a configurable
set of

numerical parameters.

It requires more
preprocessing power than

the original Dijkstra’s
algorithm.
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Table 1. Cont.

Algorithm Geographic
Mobility (GM)

Computational
Complexity

Min./Average/Max.
Decision-Making

Latency (ms)
Main Features Limitations

MAS
[14] NC O

(
n2) NA

Spectrum efficiency using a
chaotic

channel selection algorithm.
The scheme is robust to

changes in the
radio environment.
Easy to implement.

The mobility scheme
requires data on the

structure of the cognitive
radio network.

The mobility scheme is
sensitive to the accuracy of
the data on the structure of

the cognitive
radio network.

Cluster-
based
MAC

protocol
[15]

NC O(nlog(n) + m) NA

Energy efficiency.
Robustness because of the
mobile clustering scheme.

Easy to implement.

The protocol does not use a
mobility prediction model

to estimate the future
location of nodes.

The protocol does not take
into account the impact of

mobility on
network performance.

CSA
[21] NC O(nlog(n) + m) NA

Improves the performance
of cognitive radio networks

in terms of transmission
success rate and

signal quality.
The algorithm is robust

to interference.

The model does not
consider user mobility to

estimate the probability of
interference-free channels

at a given time.
The model does not

consider interference from
other users to estimate the

probability of occupied
channels at a given time.

SHMA
[23] NC O(nlog(n) + m) NA

The proposed algorithm
improves spectrum

efficiency by selecting the
best channel for each

mobile user.
The proposed algorithm

improves QoS by
considering the reception

gain, interference, and
other factors when
selecting channels.

The proposed algorithm is
adaptive to mobility by

considering the mobility of
the user when

selecting channels.

The algorithm assumes that
the user’s spectral mobility

is known.
The algorithm does not
consider the impact of

spectral mobility on
interference.

The algorithm does not
consider the impact of

spectral mobility on
network congestion.

MOS
[28] NC O(mlog(n) + n)) NA

The scheme is robust to
interference because it

considers the interference
from primary users when
making spectrum handoff

switching decisions.
The scheme is adaptive to

mobility because it
considers the mobility of

secondary users when
making spectrum handoff

switching decisions.

The scheme assumes that
primary users behave

predictably.
They are the only

considered parameter for
spectrum handoff without

geographic mobility.

3. Decision-Making Algorithm with Geographic Mobility (DMAGM)

The proposed algorithm is based on the weighted sum shown in (1), which is part of
a conventional technique for solving multi-objective optimization problems [30]. To find
a better channel in a CR environment, with the efficiency and simplicity of using a linear
combination of weights, some attributes such as the signal-to-interference plus noise ratio
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(SINR), the bandwidth (BW), the channel availability probability (AP), and the estimated
channel time availability (ETA) are evaluated using the random way-point mobility model
(RWPM). These criteria are considered for two types of services, i.e., real time (RT) and
best effort (BE). In addition, the attributes are compared with those considered in [2] with a
calculation of the weights to evaluate the channels that provide the best performance.

Equation (1) shows the objective function and attributes used for analyzing
communication channels.

Y = ∑n
j=1 wj f j(x), (1)

where wj ∈ [0, 1], and f j(x) is the jth objective function.
Considering that it is necessary to determine the channel with the best ‘fitness’/‘aptitude’,

applying Equation (2), i.e.,

Ci = wts
bwBW + wts

sinrSINR + wts
ap AP + wts

etaETA, (2)

where

i: id-number of one of the N channels to be compared
ts: type of service (RT or BE)
BW: normalized values of BW detected by the CR for channel i
SINR: normalized values of SINR detected by the CR for channel i
AP: normalized values of AP estimated by the CR for channel i
ETA: normalized values of ETA estimated by the CR for channel i
wts

bw : assigned weight to BW depending on the selected ts
wts

sinr : assigned weight to SINR depending on the selected ts
wts

ap : assigned weight to AP depending on the selected ts
wts

eta : assigned weight to ETA depending on the selected ts

The values of BW, SINR, AP, and ETA, detected by the CRs, must be normalized
in order to perform the weighted sum of multiple objectives. This sum is referred to as
the ‘objective function’. All the objective function’s ‘aptitudes’ corresponding to the ‘N’
channels to be compared are thus obtained, computing a ‘global maximum’ among the set
of channels and determining which channel has optimal communication characteristics.
Figure 1 shows the flowchart of the DMAGM operation. Note that the input values are the
‘service type’ (ST) and the number of channels to be compared (N). The ‘type of service’
used consists of RT or BE.

Table 2 shows the selected values, which are values like [2] in order to compare
performance. Initially, for the ‘best channel’s’ value to be optimized, a channel is placed
outside the range of channels to be analyzed, and a channel within the range of channels
is determined. If, at the end of the proposed algorithm, the value of the ‘best channel’
is outside the range of channels, the algorithm will not be able to determine a channel
with the best ‘fitness’. The ‘global maximum’ value starts with a value of 0, which is the
‘fitness’ and represents that it will never have a channel analyzed, ensuring that the ‘global
maximum’ value may be modified at least once. The ‘objective function’ for each channel is
determined within the cycle shown in Figure 1, a value called the ‘local maximum’, which
is compared with the value that demonstrates the ‘global maximum’. If the value is greater,
then the ‘global maximum’ takes the value of the ‘local maximum’, and the ‘best channel’
assumes the value of the channel that is currently being analyzed. If the value is lower, the
analysis of the next channel continues without modifying the values of the ‘best channel’
and the ‘global maximum’. The flowchart shows that this repetitive cycle continues until
there are no more channel ‘fits’ to calculate, which is controlled by the ‘channel’ variable.
Once the channel comparison cycle is complete, the output values with the ‘best channel’
and the ‘global maximum’ determined by the DMAGM are displayed.
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Table 2. Weights of attributes according to the type of service used.

Criteria RT BE

BW 0.1471 0.2921
SINR 0.1970 0.3949

AP 0.3593 0.1607
ETA 0.2966 0.1523

At this stage, a feedback mechanism is implemented in order to improve the accuracy
with which a channel with the best communication characteristics can be determined. This
procedure allows consulting the history of previous results. The process to improve the
precision in selecting a channel is described below.

Feedback-Decision-Making Algorithm with Geographic Mobility (FDMAGM)

The feedback-decision-making algorithm with geographic mobility (FDMAGM) con-
siders increasing the accuracy in selecting the best channel in a similar way to [12]. The
feedback process obtains information from previous evaluations of the channels. The
value allocated to each channel corresponds to a relationship between current information
and past evaluations. As can be seen in Figure 2, the FDMAGM is based on the original
DMAGM but includes a feedback process.

A process to determine the new ‘best channel’ is carried out that considers the current
value, the last generated value, and the average value of a certain time interval. The final
value for each channel is determined using (3).

SFi = α•SA + β•SPa + (1 − α − β)•SPr, (3)
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where

i: id-number of one of the N channels to be compared
SF: final value
SA: current value
SPa: previous value
SPr: mean value
α, β ∈ [0, 1]

Once the final value is obtained for each channel, a comparison is made with the
decision-making process outlined above, thus determining the best channel among the
set of channels analyzed. The values of α and β are obtained in a similar way as in [12]
by performing an experimental auto-regressive analysis with different combinations of α
and β for a set of predetermined data. The values of α and β were considered so that the
precision in the selection of the best channel was higher. These values are α = 0.60 and
β = 0.35, with an experimental precision of 87%. Both algorithms were analyzed with the
two types of services: RT and BE, as well as with normalized weights.
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4. Tests and Result Analysis

The algorithm proposed in this study for decision-making (DMAGM) has the charac-
teristic of improving the response time (latency). The test scenario for the evaluation and
validation of the DMAGM and the FDMAGM was configured with the services of RT and
BE using Network Simulator 3 (NS-3). Table 3 shows the network characteristics in which
it is considered that a base station (BS) with cognitive radio characteristics receives all the
information detected by the CRs, i.e., the main characteristics and attributes of the channels
observed and selected during previous analyses, which are: BW, SINR, AP, and ETA found
within the range of channels that can be detected by the system. Initially, as shown in
Figure 3, the behavior of the proposed algorithms, the DMAGM and the FDMAGM, is
considered with and without a feedback mechanism, in a scenario with GM in which there
is interaction of cognitive radios (CRs) and primary users (PUs). Subsequently, the latency
in relation to the DMAGM is obtained and compared with the Dijkstra [10], AHP [11],
FAHP [12], and ATDDiM [13] algorithms. Finally, the results obtained for the DMAGM are
shown and compared with the FDMAGM (applying the feedback mechanism).

4.1. Simulation Scenario with Geographic Mobility

Figure 3 shows an approximation of the BS’s geographical positions, primary users
(PUs), and cognitive radios (CRs). In addition, considering that the decision-making algo-
rithm is developed by the BS, it therefore assesses the selection of the best communication
channel and establishes which channels can be occupied by the CRs. The mobility pattern
followed by the CRs and PUs is defined by the random way-point mobility model (RWPM),
and mobility simulation time has a duration of 3600 s. Consequently, the behavior of CRs
and PUs is modeled and simulated using 124 randomly distributed nodes on a circular



Sensors 2024, 24, 1540 9 of 15

surface with a radius ranging from 2167 m to 4334 m, in which each node is allocated with
a transmission channel.

Table 3. Parameters used in the simulation scenario with NS-3.

Parameters Value

Frequency band 824–849 [MHz]
Communication system Mobile

Communication technology GSM
Number of channels 124

BW per channel 200 [kHz]
Power Tx BS 30 [dBm]

BS coverage area 2167 [m]
BS height 25 [m]

Mobile user Rx power −80 [dBm]
Mobile user height 1 [m]

Sensors 2023, 23, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 3. Geographic mobility scenario of a CRN with one BS. 

4.1. Simulation Scenario with Geographic Mobility 

Figure 3 shows an approximation of the BS’s geographical positions, primary users 

(PUs), and cognitive radios (CRs). In addition, considering that the decision-making 

algorithm is developed by the BS, it therefore assesses the selection of the best 

communication channel and establishes which channels can be occupied by the CRs. The 

mobility pattern followed by the CRs and PUs is defined by the random way-point 

mobility model (RWPM), and mobility simulation time has a duration of 3600 s. 

Consequently, the behavior of CRs and PUs is modeled and simulated using 124 

randomly distributed nodes on a circular surface with a radius ranging from 2167 m to 

4334 m, in which each node is allocated with a transmission channel. 

In this evaluation, three GM scenarios with different occupancy percentages were 

generated for each channel, considering values between 25% and 75% in 25% intervals. 

For each of these three scenarios, three variations in PU mobility were proposed by 

modifying the PU mobility radius in relation to the BS coverage radius. That said, the 

following distances were considered: 

• Same as the BS coverage radius, i.e., 2167 m 

• 50% greater than the BS coverage radius, i.e., 3250.5 m 

• 100% greater than the BS coverage radius, i.e., 4334 m 

The simulation results yielded the average time that a channel is available. For the 

proposed scenarios, a simulation time of approximately 1.48 s corresponding to 2400 

samples per scenario was tested. Table 4 shows the results obtained from both algorithms, 

with and without the feedback mechanism. Note that in the selection of the best channel, 

there is a similarity above 75% for the different scenarios. Therefore, algorithm application 

and implementation will depend on the scenario in which they are tested. 

Table 4. Match rate between FDMAGM and DMAGM, with and without the feedback mechanism, 

for the selection of the communication channel. 

Characteristics of the GM Scenario 
Number of Matches 

over 2400 Samples 
Match Rate 

Mobility Radius CPU Occupancy 

Figure 3. Geographic mobility scenario of a CRN with one BS.

In this evaluation, three GM scenarios with different occupancy percentages were
generated for each channel, considering values between 25% and 75% in 25% intervals. For
each of these three scenarios, three variations in PU mobility were proposed by modifying
the PU mobility radius in relation to the BS coverage radius. That said, the following
distances were considered:

• Same as the BS coverage radius, i.e., 2167 m
• 50% greater than the BS coverage radius, i.e., 3250.5 m
• 100% greater than the BS coverage radius, i.e., 4334 m

The simulation results yielded the average time that a channel is available. For the
proposed scenarios, a simulation time of approximately 1.48 s corresponding to 2400 sam-
ples per scenario was tested. Table 4 shows the results obtained from both algorithms, with
and without the feedback mechanism. Note that in the selection of the best channel, there
is a similarity above 75% for the different scenarios. Therefore, algorithm application and
implementation will depend on the scenario in which they are tested.



Sensors 2024, 24, 1540 10 of 15

Table 4. Match rate between FDMAGM and DMAGM, with and without the feedback mechanism,
for the selection of the communication channel.

Characteristics of the GM Scenario Number of Matches
over 2400 Samples Match Rate

Mobility Radius CPU Occupancy

2167 m
25% 1819 75.79%
50% 2062 85.91%
75% 2128 88.66%

3250.5 m
25% 1839 76.62%
50% 2090 87.08%
75% 2162 90.08%

4334 m
25% 1821 75.87%
50% 2075 86.45%
75% 2190 91.25%

4.2. Comparison of the Decision-Making Algorithm with Geographic Mobility

In addition, for the purpose of comparison with existing algorithms, similar attributes
as the ones presented in [2] were considered. In the first part of the tests, the algorithms’
computational latency was obtained: Dijkstra [10], AHP [11], FAHP [12], ATDDiM [13], and
the DMAGM using pseudo-randomly generated channels with a triangular distribution
with normalized values from 3 to 38 for the ETA, 33 to 98 for the AP, 0 to 10 for the SINR,
and a single value of 200 for the BW. Triangular distribution is widely used as a general
approximation of any central tendency distribution (average value) and when its measure
of dispersion is loosely known.

Figure 4 shows that the DMAGM has a low latency with respect to the other algorithms
for 200 channels, which reveals that the time to indicate the best channel is the lowest with
respect to the other algorithms.
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It should be noted that each of the points shown in Figure 4 was obtained with an
average of 100 repetitions of algorithms using different inputs. Then, the latency for each
set of channels to be compared is calculated.

Figure 5 shows the percentage of time of the proposed algorithm DMAGM with respect
to the other algorithms evaluated. Note that decision-making latency for the DMAGM
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is significantly reduced by 12.77% compared with ATDDiM, which is the second most
effective algorithm and followed by FAHP with 21.42%, AHP with 71.84%, and Dijkstra
with 94.27% in terms of latency reduction.
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4.3. Analysis of the Feedback-Decision-Making Algorithm with Geographic Mobility

According to the results obtained above, and in order to validate the performance
of the proposed algorithm, a comparison between the FDMAGM and the DMAGM was
developed, i.e., with and without considering the feedback mechanism.

Figure 6 shows the number of channels and their respective latency, which initially
considers 2 channels, then 20 channels, and subsequently increases by 20 channels until
reaching 200 channels.

Figure 6 also shows the confidence intervals with a level of 95% for 200 analyzed chan-
nels. Channels were randomly generated using a triangular distribution with normalized
values from 3 to 38 for the ETA, 33 to 98 for the AP, 0 to 10 for the SINR, and a single value
of 200 for the BW. Subsequently, to obtain the confidence interval and determine which
channel is the best with respect to the proposed algorithm with and without a feedback
process, the averages of 100 repetitions were computed for each of the proposed algorithms
with different inputs.

In addition, Figure 6 shows that the latency of the proposed algorithm with feedback
(FDMAGM), on average, increases nine times with respect to the latency of the proposed
algorithm without feedback (DMAGM). This is due to the mechanism used in the feedback
to check the previous state of the current channel. Consequently, according to the results,
it can be suggested that the FDMAGM (with a feedback mechanism) is useful in cases in
which the processing time is not an important factor when determining a channel with the
best communication characteristics and with significant results in the new determination of
a better communication channel.
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Table 5 shows the results of the compared channels, which indicates that there is a 95%
confidence level in the latency it takes to select the communication channel.
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Table 5. Average latency values for FDMAGM and DMAGM (with and without a feedback mecha-
nism) with a confidence interval of 95% in the selection of the communication channel.

Algorithm Analyzed
Channels Average Latency Value x (s)

Confidence Interval (s)

x−1.96· σ√
n x+1.96· σ√

n

DMAGM

2 1.0018 × 10−5 6.6341 × 10−6 1.3402 × 10−5

20 9.4471 × 10−5 8.6513 × 10−5 1.0243 × 10−4

40 1.7717 × 10−4 1.7216 × 10−4 1.8217 × 10−4

60 2.5918 × 10−4 2.5102 × 10−4 2.6733 × 10−4

80 3.4220 × 10−4 3.2805 × 10−4 3.5634 × 10−4

100 4.2337 × 10−4 4.0347 × 10−4 4.4327 × 10−4

120 5.0618 × 10−4 4.8179 × 10−4 5.3058 × 10−4

140 5.9363 × 10−4 5.8207 × 10−4 6.0519 × 10−4

160 6.7631 × 10−4 6.6335 × 10−4 6.8927 × 10−4

180 7.5883 × 10−4 7.3926 × 10−4 7.7841 × 10−4

200 8.4375 × 10−4 8.2255 × 10−4 8.6496 × 10−4

FDMAGM

2 9.0613 × 10−5 3.2976 × 10−5 1.4825 × 10−4

20 8.5449 × 10−4 5.1269 × 10−4 1.1963 × 10−3

40 1.6415 × 10−3 1.0943 × 10−3 2.1886 × 10−3

60 2.2854 × 10−3 1.9420 × 10−3 2.6288 × 10−3

80 2.9847 × 10−3 2.0981 × 10−3 3.8714 × 10−3

100 3.7482 × 10−3 3.3557 × 10−3 4.1408 × 10−3

120 4.4709 × 10−3 3.9891 × 10−3 4.9526 × 10−3

140 5.2138 × 10−3 4.3504 × 10−3 6.0772 × 10−3

160 5.9145 × 10−3 4.9912 × 10−3 6.8378 × 10−3

180 6.6679 × 10−3 6.4288 × 10−3 6.9069 × 10−3

200 7.6456 × 10−3 6.8606 × 10−3 8.4306 × 10−3
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5. Conclusions

This work provides a novel proposal that considers multivariable decision-making
for cognitive radio (CR) with geographic mobility (GM). The consulted literature shows
scarce alternatives for channel allocation times when assessing the GM for the cognitive
radio network (CRN), which requires in-depth analysis.

It is very helpful to use GM information in a CRN for several reasons such as reducing
the number of secondary users that are connected to the network and where the quality
of service can be affected. The literature reveals that decision-making is one of the main
problems presented by CRNs since it is a fundamental operation for spectrum allocation,
as well as spectrum sensing, spectral mobility, and sharing and cooperation. The decision-
making algorithm with geographic mobility (DMAGM) is crucial for improving the channel
selection and spectrum mobility.

Simulations demonstrate that the DMAGM reduces the processing time between
12% and 94% compared with other algorithms. In addition, the analysis considers geo-
graphic mobility (GM), which is, to the best of the authors’ knowledge, not found in the
literature for CRNs. In addition to the DMAGM, a modification to the algorithm was
developed and tested using a feedback mechanism, named in this research as the feedback-
decision-making algorithm with geographic mobility (FDMAGM). The FDMAGM was
designed with the purpose of not only improving latency in decision-making but also
to explore other options to improve the quality of the selection for the communication
channel. The parameters considered for the analysis are based on a customized Delphi
method, which are the bandwidth (BW), the signal-to-interference plus noise ratio (SINR),
the channel availability probability (AP), and the estimated channel time availability (ETA).

Additionally, the history of previous results in the FDMAGM regarding the best
selected communication channel is considered. As shown in the results, the processing
time of the FDMAGM increased on average compared with the DMAGM. However, the
FDMAGM can efficiently be used in the proposed scenarios without significant changes in
the network. The feedback system has the advantage of being able to continually adjust
and adapt based on the feedback received. In addition, the feedback version helps to
identify and correct problems, which can be beneficial in situations where the quality
of communication is critical. Despite the fact that the FDMAGM may take longer than
the DMAGM to calculate the best communication channel, constant feedback improves
efficiency and effectiveness over time. Both the DMAGM and the FDMAGM improve
performance in practical scenarios, the former in terms of latency and the latter in terms of
accuracy and stability.

Both the DMAGM and the FDMAGM have proven to be useful depending on the
applications tested, such as best effort (BE) and real time (RT), and the different environ-
ments shown varying the radius of operation. This demonstrates that the match rate of
these algorithms is similar in the worst-case scenario, about 75% on the selection of the best
communication channel considering 2400 samples per scenario with the random presence
of primary users (PUs).
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Abbreviations

CR Cognitive Radio
CRN Cognitive Radio Network
GM Geographic Mobility
PU Primary User
SU Secondary User
BS Base Station
BW Bandwidth
SINR Signal-to-Interference plus Noise Ratio
AP Channel Availability Probability
ETA Estimated Channel Time Availability
DMAGM Decision-Making Algorithm with Geographic Mobility
FDMAGM Feedback-Decision-Making Algorithm with Geographic Mobility
ATDDiM Modified Dijkstra Decision-Making Algorithm
FAHP Fuzzy Analytic Hierarchy Process
AHP Analytic Hierarchy Process
RWPM Random Way-Point Mobility Model
RT Real Time
BE Best Effort
GSM Global System for Mobile Communications
NS-3 Network Simulator-3
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