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Abstract: Field Oriented Control (FOC) effectively realizes independent control of flux linkage
and torque, and is widely used in application of Permanent Magnet Synchronous Motor (PMSM).
However, it is necessary to detect the phase current information of the motor to realize the current
closed-loop control. The phase current detection method based on a sampling resistor will cause a
measurement error due to the influence of parasitic parameters of the sampling resistor, which will
lead to the decrease in PMSM control performance. This paper reveals the formation mechanism of
the current sampling error caused by parasitic inductance and capacitance of the sampling resistor,
and further confirms that the above error will lead to the fluctuation of the electromagnetic torque
output by simulation. Moreover, we propose an approach for online observation and compensation
of the current sampling error based on PI-type observer to suppresses the torque pulsation of PMSM.
The phase current sampling error is estimated by the proportional and integral (PI) observer, and
the deviation value of current sampling is obtained by low-pass filter (LPF). The above deviation
value is further injected into the phase current close-loop for error compensation. The PI observer
continues to work to keep the current sampling error close to zero. The simulation platform of Mat-
lab/Simulink (Version: R2021b) is established to verify the effectiveness of online error observation
and compensation. Further experiments also prove that the proposed method can effectively improve
the torque fluctuation of the PMSM and enhance its control accuracy performance of rotation speed.

Keywords: permanent magnet synchronous motor; field oriented control; current sampling; error
analysis and compensation; PI observer

1. Introduction

PMSM is increasingly applied to electric vehicles, robots, and marine propulsion due
to high power density, wide speed range, strong anti-interference capability, and high
efficiency [1–5]. Considering the rotor structure, motor size, and security in industrial ap-
plication, the installation of speed/position sensor is not recommended, and consequently,
sensorless control methods of PMSM have emerged [6–8]. FOC realizes independent con-
trol of the flux linkage and torque by utilizing the Clark and Park transformations, and
results in enhancements of PMSM’s performance [9,10].

FOC needs phase currents information as feedback signals to realize the closed-loop
control of the current [11]. The current loop is the innermost loop of FOC; its performance
constrains the performance of the entire control system [12,13]. The current sampling is a
crucial step in acquiring phase current information, and the current sampling errors will
cause torque pulsation of PMSM and affect the control performance of FOC [14,15].

Sources of current measurement errors can be categorized as follows. (1) Gain error
is caused by the unequal proportional gain of the current sensors, operational amplifiers,
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and the passive components in conditioning circuits, which may change with time and
temperature [16–18]. The presence of gain error will generate the torque ripple, leading
to the mechanical vibration and decreasing service life [19,20]. (2) Offset error [21,22] is a
superimposed quantity, which is caused by unstable power supply voltage, the deadband of
pulse wide modulation (PWM), and offset error in sensors. Offset errors generate harmonic
components in the torque with the same frequency as the stator current, which will provide
wrong amplitude information to the deadband compensator in the power stage [23].

For the current measurement error, many scholars carry out in-depth discussions and
propose many compensation schemes. Bai Y, Li B, Wang Q, et al. [24] constructed a single
frequency current harmonic suppressor to filter out the harmonic currents caused by the
current sensor measurement error from the current harmonic suppression consideration,
which is feasible at the low-speed operation of PMSM, but lacks the suppression effect
at the high-speed operation of PMSM. Lei M, Peng T, Zhou F, et al. [25] proposed an
improved temperature compensation circuit to suppress the temperature drift of the current
sensor, which fundamentally solves the phase current offset errors due to temperature
shift, but neglects the current offset errors caused by the supply voltage unbalance problem
of the current sensor. Yamaguchi T, Tadano Y and Hoshi N [26] proposed a periodic
disturbance observer to suppress harmonic current, considering that the current offset
error caused by the current sensor will cause harmonic currents at specific frequencies in
the q-axis, and the observer will suppress the current signals at those specific frequencies,
which can compensate the gain error offset error at the same time. Zhang K, Fan M,
Yang Y, et al. [27] proposed an improved harmonic elimination algorithm to eliminate
the q-axis harmonic current caused by the current measurement errors, which effectively
suppresses the harmonic currents in the q-axis, but increases the difficulty of phase current
reconstruction. Zhang Q, Guo H, Liu Y, et al. [28] proposed an error compensation strategy
of human error injection to reduce the offset error and gain error by multiple human error
compensation injections, which effectively compensates the offset error and gain error of
the phase current, but the experimental process is more cumbersome. Ye S and Yao X [29]
proposed an improved sliding mode observer that integrates the current error compensator
into the sliding mode observer to compensate the offset error and gain current error in the
current error measurement, which can effectively compensate the current measurement
error, but the shake of the motor will affect the performance of the observer. Kim S I, Kim J
Y and Lee K W [30] proposed a current offset error compensator, which reflects the error
between the output of the current controller and the actual output voltage to the current
measurement offset error compensator to compensate the current offset error.

In the PMSM control systems that use sampling resistors as current sensors, the effect
of sampling resistor parasitic parameters on current sampling is often neglected. In this
paper, the current offset error caused by sampling resistor parasitic inductance in the current
sampling process is investigated, and an error compensation method is pre-proposed to
compensate the current offset error.

The main contributions of the paper are highlighted as follows.

• We reveal the effect of parasitic capacitance and inductance of the sampling resistor on
the electromagnetic torque characteristics of PMSM.

• We propose an online observation and compensation method of current sampling
error based on the PI-type observer, which effectively suppresses the torque pulsation
of PMSM.

• The parameters of the PMSM are achieved from the laboratory.

The rest of this paper is organized as follows. The model of the current measurement
error is presented in Section 2. We introduce an online observation and compensation
method of current sampling error based on the PI-type observer in Section 3. The experi-
mental platform and results are discussed in Section 4. Section 5 gives the conclusions and
future work.
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2. Current Measurement Error Model
2.1. Current Sensors in PMSM

The current sensor plays a crucial role in the PMSM drive control system; it feeds the
sampled phase current information back to the current loop, and the accuracy of phase
current sampling directly affects the stability of the PMSM drive control system [31,32].
During long term operation, the performance of PMSM can be affected by various en-
vironmental factors such as vibration impact, high and low temperature, humidity, and
dust. These factors can cause current sensor sampling failure and impact the stability of
PMSM operation [33,34]. To address the drawbacks of using current sensors, a sampling
resistor is often connected in series between the lower arm of the inverter and the ground in
engineering, which acts as the current sensor [35]. The sampling resistor is a low resistance
resistor with high precision and low temperature drift, and has good application stability
and reliability.

According to the different channels of current sampling, the sampling methods can be
divided into three types [36–38]: three-phase current sampling, two-phase current sampling,
and single-phase current sampling. In this paper, the three-phase inverter topology with
two-phase current sampling constructed for the sampling resistor is shown in Figure 1.
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Figure 1. Three-phase inverter topology with dual sampling resistors.

2.2. Sources of Current Sampling Errors

The sampling resistor is affected by its material and manufacturing process; the
sampling resistor will have parasitic parameters, such as parasitic capacitance and parasitic
inductance [39]. Considering the existence of parasitic parameters, the sampling resistor
behaves as series and parallel model of resistance, capacitance, and inductance in the actual
circuit [40]. Using the impedance to describe the blocking effect of the sampling resistor on
the current, and the impedance magnitude can be described as:

Z = R + j(ωL − 1
ωC

) (1)

where: Z, R, L, and C are impedance, actual resistance, parasitic inductance, and capacitance
of sampling resistor, respectively. ω is the frequency of phase current.

For the PMSM drive control system that uses sampling resistors, the current is sampled
by the analog-to-digital converter (ADC) of the control chip after passing through the
operational amplifier and other conditioning circuits. The current value can be reflected
by the value of the potential difference on the sampling resistor [41]. Phase current values
sampling by ADC can be expressed as:{

ia_AD = Za · ia_act · Kopa_a
ib_AD = Zb · ib_act · Kopa_b

(2)

where: ia_AD and ib_AD are the sampling value of ADC corresponding to the phase current,
respectively; Za and Zb are the value of impedance corresponding to the a-phase and
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b-phase sampling resistor, respectively; ia_act and ib_act are the actual value of the phase
current, respectively; Kopa_a and Kopa_b are the gain of amplifier circuits of the a-phase and
b-phase, respectively.

Considering the frequency of the phase current and the value of the parasitic capaci-
tance of the sampling resistor, the influence of the parasitic capacitance of the sampling
resistor on the impedance can be ignored. The high precision resistor with 1% or 0.5%
accuracy is commonly used as the sampling resistor in engineering; thus, the impact of the
actual value and the theoretical value of the sampling resistance can be ignored. According
to Equations (1) and (2), phase current values sampling by ADC of the chip can be presented
in the following form:

ia_AD = Ra · ia_act · Kopa_a + jωLa · ia_act · Kopa_a
ib_AD = Rb · ib_act · Kopa_b + jωLb · ib_act · Kopa_b
ia_AD = ia + ia_o f f set
ib_AD = ib + ib_o f f set

(3)

where: Ra and Rb are theoretical values of the sampling resistors of a-phase and b-phase,
respectively; ia and ib are theoretical measured values of a-phase and b-phase currents,
respectively. Additionally, ia_offset and ib_offset are offset currents, which are caused by the
parasitic inductance of the sampling resistor during the measurement of phase currents. Af-
ter considering the impact of above factors, the theoretical measured values and theoretical
offset values of phase current can be expressed in the following form:

ia = Ra · ia_act · Kopa_a
ib = Rb · ib_act · Kopa_b
ia_o f f set = jωLa · ia_act · Kopa_a
ib_o f f set = jωLb · ib_act · Kopa_b

(4)

The sampling resistor resistance error and sampling resistor parasitic capacitance
error have been neglected. According to the expression of the theoretical measurement
value and the theoretical offset value of the phase current, the phase current measurement
error mainly comes from the phase current offset error, which is caused by the parasitic
inductance of the sampling resistor.

2.3. Effects of Current Sampling Error

The speed regulation of the PMSM is realized by the closed-loop control of the current
and speed, and the three-phase inverter regulates the PMSM’s speed based on the current
error [42]. Figure 2 shows the block diagram of the current loop, iref, iess, iact, and iAD are
the reference current, current error, actual current, and the sampling current of the control
chip’s ADC, respectively. u is the command voltage.
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Ideally, the current loop error is 0, but the reference current value and the current
sampling value are not equal in actual operation. There is an error in the feedback of actual
current, but it cannot be reflected directly from the current sampling value, so it is necessary
to find other variables that reflect the current error.
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In the closed-loop control system of FOC, the coordinate transformation of the sam-
pling current is performed. After the Clark transformation, the current offset error in
Equation (4) is expressed in α-β coordinate system as:

iα_m = iα + iα_o f f set
iβ_m = iβ + iβ_o f f set
iα_o f f set = ia_o f f set

iβ_o f f set =
√

3
3 (ia_o f f set + 2ib_o f f set)

(5)

where: iα_m and iβ_m are measured currents of α-axis and β-axis, respectively; iα_offset and
iβ_offset are current offset errors of α-axis and β-axis, respectively.

After Park transformation of the current offset error in the α-β coordinate system, the
expression of the current offset error in the d-q coordinate system can be presented in the
following form: 

id_m = id + id_o f f set
iq_m = iq + iq_o f f set
id_o f f set = Ko f f setsin(ωr + ϕ)
iq_o f f set = Ko f f setcos(ωr + ϕ)

(6)

where: id_m and iq_m are measured currents of q-axis and d-axis, respectively; id_offset and
iq_offset are current offset errors of q-axis and d-axis, respectively; Koffset, ωr and ϕ are the
amplitude, frequency and phase of the current offset error, respectively.

The expressions in Equation (6) can be transformed to obtain expressions Koffset and ϕ,
which can be expressed as:{

Ko f f set =
√

i2a_o f f set +
1
3 (ia_o f f set + 2ib_o f f set)

2

ϕ = arctan[2(
√

3ia_o f f set, ia_o f f set + 2ib_o f f set)]
(7)

The simulation model of FOC based PMSM drive control system is built in Mat-
lab/Simulink. The simulation sampling step time is 1 × 10−6 s. The motor model is
a surface-mounted PMSM from the Simulink library. The initial load is 0 N·m, and the
rotational speed frequency of motor is 20 Hz. The PI controller is selected from the Simulink
library and the anti-integral saturation is turned on, and the q-axis current amplitude is lim-
ited to 25 A. PI parameters of speed loop are Kp = 0.0025 and Ki = 4.8, while PI parameters
of current loop are Kp = 2.15 and Ki = 1281.5. The power of the motor is small, and Metal
Oxide Semiconductor (MOS) tubes are chosen to form the three-phase full-bridge circuit
of the inverter. Simulation model of FOC based PMSM drive control system is shown in
Figure 3.
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The frequency of reference speed is 20 Hz in the PMSM drive control system, and the
offset current of 0.3 A is injected into the a-phase at 1 s. Waveform of the q-axis current
obtained by simulation in Simulink, as shown in Figure 4.
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Figure 4. The effect of the injected offset current into a-phase on the q-axis current of the PMSM. An
offset current of 0.3 A was injected into a-phase at 1 s.

The q-axis current in Figure 4 is analyzed using fast Fourier transformation (FFT) to
determine the waveform distortion rate and frequency of the oscillation component. The
FFT result is shown in Figure 5.
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Figure 6. The effect of the injected offset current to a-phase on the rotation speed and the torque of 

the PMSM. An offset current of 0.3 A was injected into a-phase at 1 s. (a) The rotation speed wave-

form of PMSM (The red dotted line and blue are referenced rotation speed and actual rotation speed, 

respectively); (b) The torque waveform of PMSM. 

Figure 5. The FFT result of q-axis current of the PMSM in Figure 4.

As shown in Figure 5, the total harmonic distortion (THD) of q-axis current is 5.60%, it
indicates that the frequency of the alternating current (AC) oscillation component generated
on the q-axis current is close to 20 Hz, and confirms the derivation of Equation (6). It also
confirms that the current offset error appears as an AC oscillation in q-d axis, and the
oscillation frequency is close to the operating frequency of PMSM.

The motor model in Simulink is the surface-mounted PMSM, flux distribution of it
is uniform, so the q-axis and d-axis inductances are equal [43]. Equation (6) is brought
into the torque equation of the PMSM [44], which is reconstructed using measured q-axis
current and offset current to obtain a new torque equation, and the new torque equation
can be expressed as: 

Te =
3
2 PnΨf (iq_m − iq_o f f set)

Te = Te_re f − ∆T
Te_re f =

3
2 PnΨf iq_m

∆T = 3
2 PnΨf iq_o f f set

(8)

where: Pn, Ψf, and Te_ref are the pole pair number, the permanent magnet flux linkage, and
the commanded torque of PMSM, respectively; ∆T is the torque fluctuation caused by the
offset current error.
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The rotation speed and torque waveform of PMSM can be obtained while obtaining
the q-axis current waveform in Simulink, which is shown in Figure 6.
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Figure 6. The effect of the injected offset current to a-phase on the rotation speed and the torque of 

the PMSM. An offset current of 0.3 A was injected into a-phase at 1 s. (a) The rotation speed wave-

form of PMSM (The red dotted line and blue are referenced rotation speed and actual rotation speed, 

respectively); (b) The torque waveform of PMSM. 

Figure 6. The effect of the injected offset current to a-phase on the rotation speed and the torque
of the PMSM. An offset current of 0.3 A was injected into a-phase at 1 s. (a) The rotation speed
waveform of PMSM (The red dotted line and blue are referenced rotation speed and actual rotation
speed, respectively); (b) The torque waveform of PMSM.

From Figure 6, the offset current error will cause speed and torque fluctuations in
FOC, and the generated torque ripple will not only lead to increased loss and decreased
average torque of PMSM during PMSM operation, but also cause mechanical vibration.

3. Online Observation and Compensation Methods for Current Measurement Errors
3.1. Overall Design

The sources of current offset error and the error influence on PMSM drive control
system are analyzed, how to eliminate the current offset error and reduce the torque ripple
of the PMSM becomes the key problem to be solved. In the PMSM drive control system,
observers such as Luenberger observer, sliding mode observer, and Kalman filter observer,
are commonly used to observe the angle or speed information of PMSM. Based on the
above consideration, the observer is designed to observe the current offset error, analyze
its impact in open-loop control, and build the simulation model in Simulink to verify the
observer’s performance.

Under the condition of ensuring that the performance of the observer is satisfied, the
observed estimated offset current is used as the error compensation of the offset current to
participate in the closed-loop control of the FOC. The design process of online detection
and compensation scheme for current measurement error is shown in Figure 7.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 22 
 

 

From Figure 6, the offset current error will cause speed and torque fluctuations in 

FOC, and the generated torque ripple will not only lead to increased loss and decreased 

average torque of PMSM during PMSM operation, but also cause mechanical vibration. 

3. Online Observation and Compensation Methods for Current Measurement Errors 

3.1. Overall Design 

The sources of current offset error and the error influence on PMSM drive control 

system are analyzed, how to eliminate the current offset error and reduce the torque ripple 

of the PMSM becomes the key problem to be solved. In the PMSM drive control system, 

observers such as Luenberger observer, sliding mode observer, and Kalman filter ob-

server, are commonly used to observe the angle or speed information of PMSM. Based on 

the above consideration, the observer is designed to observe the current offset error, ana-

lyze its impact in open-loop control, and build the simulation model in Simulink to verify 

the observer’s performance. 

Under the condition of ensuring that the performance of the observer is satisfied, the 

observed estimated offset current is used as the error compensation of the offset current 

to participate in the closed-loop control of the FOC. The design process of online detection 

and compensation scheme for current measurement error is shown in Figure 7. 

_

_

*

_

_

_ _2

ˆˆ ˆ
ˆ

ˆ ˆ

ˆ
ˆ ˆ( )

offset

m

s

offset

m

s

p i

offset offset

s p i

u E Ri
i

L s R

u E Ri
i

L s R

K s K
i i

L s K R s K

  



  



 

 − +
=

+


− +
=

+
 +
 =
 + + +


 

the observer 
mathematical 

model

the observer 
simulation model

The estimated 
offset current

simulatebuilt

the Foc control 
model

compensation

2xpi

18,000

1.4×10-3

Discrete
1×10-6

－

E
st

im
a
te

d
 o

ff
s
e
t 

c
u

rr
e
n

t（
A
）

_ offseti

_ offseti

_
ˆ

offseti

_
ˆ

offseti

0 1 2 3 4 5 6 7 8 9

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
0.3

-0.173

Time (s)

 

Figure 7. The design process of online detection and compensation scheme for current measurement 

error based on the PI-type observer. 

3.2. Design of the Observer 

In the α-β coordinate system, the voltage equation of the surface-mounted PMSM 

can be presented in the following form [43]: 






 

 

 


= + −


 = + −


d
sin

d
d

cos
d

a s e f

s e f

i
u Ri L

t
i

u Ri L
t

 (9) 

where: uα and uβ are voltages of α-axis and β-axis, respectively; iα and iβ are currents of α-

axis and β-axis, respectively; Ls is the inductance of the straight and intersection axis, ωe is 

the angular velocity of PMSM. 

According to Equations (5) and (9), the new voltage equation can be presented as: 



  



  

 

 


= + − − −





= + − − −

__

_ _

__

_ _

dd
sin

d d
dd

cos
d d

offsetm

m s e f offset s

offsetm

m s e f offset s

ii
u Ri L Ri L

t t
ii

u Ri L Ri L
t t

 (10) 

Figure 7. The design process of online detection and compensation scheme for current measurement
error based on the PI-type observer.



Sensors 2024, 24, 1538 8 of 21

3.2. Design of the Observer

In the α-β coordinate system, the voltage equation of the surface-mounted PMSM can
be presented in the following form [43]:{

uα = Ria + Ls
diα
dt − ωeΨf sin θ

uβ = Riβ + Ls
diβ

dt − ωeΨf cos θ
(9)

where: uα and uβ are voltages of α-axis and β-axis, respectively; iα and iβ are currents of
α-axis and β-axis, respectively; Ls is the inductance of the straight and intersection axis, ωe
is the angular velocity of PMSM.

According to Equations (5) and (9), the new voltage equation can be presented as:{
uα = Riα_m + Ls

diα_m
dt − ωeΨf sin θ − Riα_o f f set − Ls

diα_o f f set
dt

uβ = Riβ_m + Ls
diβ_m

dt − ωeΨf cos θ − Riβ_o f f set − Ls
diβ_o f f set

dt

(10)

In the stable situation, the current offset error can be defined as the disturbance, it
behaves as the direct current (DC) error in the α-β coordinate system. The effect of the
time derivative on the current is neglected. If Eα = we Ψf sinθ and Eβ = we Ψf cosθ, the
disturbance expression and voltage equation (See Equation (10)) can be simplified as:

dα = Riα_o f f set + Ls
diα_o f f set

dt ≈ Riα_o f f set

dβ = Riβ_o f f set + Ls
diβ_o f f set

dt ≈ Riβ_o f f set

uα = Riα_m + Ls
diα_m

dt − Eα − dα

uβ = Riβ_m + Ls
diβ_m

dt − Eβ − dβ

(11)

Based on the above analysis, a PI-type observer is proposed to estimate the offset
current. The block diagram of the PI-type observer is shown in Figure 8; uαβ

* is the
command voltage of the PMSM. The input is the difference between the estimated offset
current and the measured current in the α-β coordinate system, and the output is the
estimated offset current output by the PI-type observer.
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If the effect of motor parameters is not considered, and the error of the applied
voltage and the estimated back electromotive force is negligible, then the measured current
expression, estimated current expression, and the simplified estimated offset current error
expression can be presented in the following form:

iαβ_m =
uαβ − Eαβ + Riαβ_o f f set

Lss + R

îαβ_m =
uαβ

∗ − Êαβ + R̂s îαβ_o f f set

L̂ss + R̂s

îαβ_o f f set =
Kps + Ki

L̂ss2 + (Kp + R̂s)s + Ki
iαβ_o f f set

(12)



Sensors 2024, 24, 1538 9 of 21

The observer is the PI-type observer with adjustable observer gain. Based on the pole-
zero cancellation consideration, if Kp = L̂sωc, Ki = R̂sωc, the expressions of îαβ_offset and
iαβ_offset are simplified to a first-order LPF, and the expression of the simplified estimated
offset current can be expressed as:

îαβ_o f f set =
ωc

s + ωc
iαβ_o f f set (13)

where: ωc depends on the bandwidth of the first-order LPF.
As shown in Equation (13), îαβ_offset and iαβ_offset are equal in the stable case. The

simulation model is built in Matlab/Simulink based on the block diagram of the PI-type
observer shown in Figure 8. The simulation model and seal inside of it are shown in
Figure 9. The model takes phase voltage, phase current, motor angle, and motor speed
as inputs, and the output is the estimated offset current of phase current. According to
Figure 3 and the simplification process of the third equation in Equation (13), which shows
that ωc = 20, Rs = 0.6, Ls = 1.4 × 10−3, Kp = L̂sωc and Ki = R̂sωc. In order to reduce the
design difficulty, we control the value of L̂s constant and adjust the value of R̂s, we set the
value of R̂s to 0.72. Because the error in L̂s is neglected, in order to obtain the correct value
of the current offset, we make a slight adjustment to 1

R̂s
= 1.25. Therefore, PI parameters of

the PI controller are Kp = 0.0028 and Ki = 14.4.
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Figure 9. (a) The simulation model of PI-type observer in Matlab/Simulink; (b) The seal inside of the
simulation model.

The PI-type observer’s performance is simulated and verified in Matlab/Simulink.
In the stable operation stage of the PMSM, the offset current of 0.3 A is injected into the
a-phase and b-phase, respectively, to simulate the current offset error caused by the parasitic
inductance of sampling resistor. After the offset current of 0.3 A is injected, the output of
the PI-type observer and its performance under step torque are explored. The simulation
results are shown in Figure 10.

The simulation results show that offset current of 0.3 A is injected into a-phase and
b-phase at 1 s. According to Equation (5), those injections will generate current offset errors
of 0.3 A and −0.173 A in α-axis and β-axis, respectively. As shown in the Figure 10, the
PI-type observer is started to estimate the DC offset error at 2 s of PMSM operation. It can
be seen from the Figure 10 that the estimated offset error is consistent with the DC offset
error caused by the injected offset current. At 8 s, when the step load is added to the PMSM
drive control system, the q-axis current will change abruptly, and the current stabilizes
after approximately 0.5 s, but the DC offset error estimated by the PI-type observer is not
affected by the step load.
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Figure 10. Performance validation of the PI-type observer under no load or step load conditions.
During the operation of the PMSM, the offset current of 0.3 A is injected into the a-phase at 1 s, the
PI-type observer is turned on at 2 s, and the step load is added at 8 s. (a) The waveform of q-axis
current of PMSM; (b) Estimated value of offset current (blue line and red link are estimated values of
offset current in α-axis and β-axis, respectively; 0.3 and −0.173 are theoretical values of offset current
in α-axis and β-axis, respectively).

3.3. Design of Feed-Forward Compensation Method

In the PMSM drive control system, the DC offset error of phase current output by the
PI-type observer is required to be involved in the closed-loop control system of FOC. Based
on the above analysis, the proposed DC offset error compensation scheme based on the
PI-type observer is shown in Figure 11.
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(b) The block diagram of the method for obtaining the current offset error.

Where iαβ_offset_comp is the DC offset error compensation current in α-axis and β-axis.
The complete process of phase current compensation can be described as follows.

Firstly, after the DC offset error of the phase current passes through the PI-type observer, the
estimated phase current offset error can be obtained. Secondly, the estimated current offset
error undergoes processing through the LPF followed by the integrator. The LPF serves to
filter the AC component that may be contained in the current offset error. Meanwhile, the
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integrator’s effect is to ensure that the steady state error of the phase current offset error is 0.
Without the integrator, the estimated of the phase current offset error might exhibit steady
state error. Eventually, the current offset error compensation of each phase is reinjected into
current of α-β axis for error compensation.

3.4. Simulation

The PMSM drive control model for current offset error compensation scheme based
on the PI-type observer is build in Matlab/Simulink; the simulation model is shown in
Figure 12. The current sampling method in this paper is two-phase current sampling; it
needs two integrators to ensure that the steady-state error of the phase current offset error
is 0. The simulation sampling time is 1 × 10−6 s. The motor model is the surface-mounted
PMSM, and the model comes from the model library in Matlab/Simulink. The initial load
of PMSM is 0 N·m, and the frequency of the PMSM’s rotation speed is 20 Hz. According
to Figure 1, it is known that the current sampling method used in this paper is two-phase
current sampling, which needs to capture the phase currents of phase a and phase b
separately. According to Equation (5), the current offset errors will produce corresponding
current offset errors in α-axis and β-axis, the PI-type observer needs to compensate current
offset error of α-axis and β-axis, respectively. Therefore, the model will use two integrators
to ensure that the steady state errors of current offset errors are 0.
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Figure 12. PMSM drive control model for current offset error compensation scheme based on the
PI-type observer in Simulink.

To verify the effect of the PI-type observer on the operation of the PMSM during the
normal operation of PMSM, when the current offset errors of a-phase and b-phase are 0.
The resulting waveforms of each module are shown in Figure 13.

When the current offset errors are 0, and the PI-type observer participates in the PMSM
drive control. As shown in Figure 13, the amplitude of the three-phase current waveform of
the PMSM are same, and the phase difference is 120◦. As time goes by, the rotation speed is
closed to the reference rotation speed, and the angle information is normal. The estimated
offset current of the output of the observer is close to 0. The simulation results show that
the PI-type observer will not affect the normal operation of PMSM.
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Figure 13. Outputs of each module of the PMSM under the operation of PMSM. The current offset
error is 0, and PI-type observer is turned off. (a) Waveforms of three-phase currents (black, blue and
red lines are phase currents of a, b and c phase, respectively); (b) Rotation speed and angle of PMSM
(grey and red line are rotation speed and angle of PMSM, respectively); (c) Outputs of Hall sensors;
(d) Estimated values of offset currents (grey and red line are estimated value of offset current in a
-phase and b-phase, respectively).

In order to verify the effect of the PI-type observer on the stability of the PMSM control
system, the stability simulation is carried out in Matlab/Simulink for the PMSM control
system without PI-type observer and with PI-type observer, respectively. The stability of
the PMSM control without PI-type observer is shown in Figure 14, and the stability of the
PMSM control with the PI-type observer is shown in Figure 15.
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Figure 14. The stability of the PMSM control without the PI-type observer. 
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Figure 15. The stability of the PMSM control with the PI-type observer. Figure 15. The stability of the PMSM control with the PI-type observer.

According to Figures 14 and 15, it can be seen that the presence of the PI-type observer
does not affect the stability of the PMSM control system, and can improve the phase margin
of the PMSM control system, but the improvement of the phase margin is small.

To verify the phase current error compensation performance of the PI-type observer
with the step load. Offset currents of 0.3 A and −0.3 A are injected into a-phase and b-phase
at 1 s during the operation of PMSM, respectively; those are performed to simulate the
current sampling error caused by the parasitic inductance of sampling resistor. To observe
the three-phase current waveform of the PMSM under the impact of the current offset error.
After 2 s of PMSM operation, the PI-type observer is turned on and the phase current error
is compensated by the estimated offset current. The step load is added at 8 s to observe
the three-phase current information and the operation of PMSM. The output waveforms
of each module in the PMSM drive control system are shown in Figure 16. The q-axis
current waveform and estimated offset current waveform output by the PI-type observer
are shown in Figure 16a,c. The phase current waveforms during the PMSM operation are
shown in Figure 16b, and the rotation speed waveform during the PMSM operation is
shown in Figure 16d.

As shown in Figure 16a,c, when the offset current is not injected, the q-axis current
gradually responds to the current value required at present, and the estimated offset
current of the PI-type observer output is approximately equal to 0. At 1 s, the q-axis current
oscillates immediately with the offset current injection, and the oscillation amplitude
gradually decreases with the error compensation of the offset current. When the step load is
applied to the running PMSM drive system at 8 s, it can be found that the PI-type observer
is almost unaffected by the step signal and can still output normally. Simulation results
demonstrate that the PI-type observer can perform well even under load condition and can
estimate the offset current error.

Figure 16b illustrates that the injection of offset currents into a-phase and b-phase at
1 s will induce an abrupt change in the PMSM’s phase currents, and amplitudes of phase
currents are not equal. The PI-type observer begins to compensate for current offset errors
after 2 s. Over time, the amplitudes of the PMSM phase currents are close to amplitudes
before the injection of offset currents. At 8 s, the added step load causes an abrupt change
in phase currents, but after about 0.5 s, the stable phase current amplitudes are same, and
the angle difference is 120◦. The simulation results show that the PI-type observer can also
be well involved in the PMSM drive control system with the added step load.
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Figure 16. Outputs of each module of the PMSM, when offset currents of 0.3 A and −0.3 A are in-

jected into a-phase and b-phase, respectively. The PI-type observer is turned on. (a) Estimated cur-

rent offset errors, which are output of PI-type observer; (b) Three-phase current waveform of PMSM 

(red line and blue line are a-phase current and b-phase current, respectively); (c) The q-axis current 

waveform of PMSM; (d) the rotation speed waveform of PMSM. 
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Figure 16. Outputs of each module of the PMSM, when offset currents of 0.3 A and −0.3 A are
injected into a-phase and b-phase, respectively. The PI-type observer is turned on. (a) Estimated
current offset errors, which are output of PI-type observer; (b) Three-phase current waveform of
PMSM (red line and blue line are a-phase current and b-phase current, respectively); (c) The q-axis
current waveform of PMSM; (d) the rotation speed waveform of PMSM.

Figure 16d shows that the PMSM experiences a sharp increase in speed upon nor-
mal start-up. However, the rotation speed will oscillate due to the injection of offset
current at 1 s. At 2 s, the PI-type observer is turned on to compensate for the current
offset error, so the rotation speed of PMSM gradually tends to be stable with the error
compensation. The step load is added at 8 s, which induces an abrupt change in rotation
speed, but the rotation speed gradually stabilizes and ultimately reaches the reference
rotation speed and without any oscillations. Simulation results show that the PI-type
observer can continuously compensate for the current offset error, and current offset error
gradually decreases over time, and the fluctuation of the rotation speed also decreases until
it returns to normal speed.

4. Experimental Verifications
4.1. Construction of the Experimental Platform

To further verify the feasibility of the current offset error compensation based on the PI-
type observer proposed in this paper, a PMSM drive control system based on STSPIN32F0A
chip is built. The machine parameters are shown in Table 1. The structure of the online
current offset error compensation experimental platform is shown in Figure 17, which
mainly includes the following: PMSM, PMSM control board (sampling resistors integrated
in it), switching power supply, computer, oscillograph. The experimental platform and its
structure of online phase current offset error compensation scheme are shown in Figure 18.
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Table 1. The machine parameters of PMSM.

Symbol Parameter Value

Pn Rated power 420 W
Rated current 15 A

p Pole pairs 2
Rs Stator resistance 9 mΩ
Ld d-axis inductance 93 µH
Lq q-axis inductance 93 µH
Ψ f Flue 0.0175 Wb
Vin Input voltage of power stage 12 V
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Figure 17. The experimental platform structure diagram of online phase current offset error com-

pensation scheme. 
Figure 17. The experimental platform structure diagram of online phase current offset error compen-
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Figure 18. Experimental platform and its structure of online phase current offset error compensation
scheme.

In Figure 18, the PMSM is the driving motor of the automotive electronic water pump,
the PMSM is installed on the hysteresis dynamometer, and the PMSM and the hysteresis
dynamometer is connected by a coupling shaft. During the PMSM operation, the hysteresis
dynamometer imposes the step load to the PMSM. The power supply is the switching
power supply with maximum rated current of 30 A.

4.2. Results of the Experiment

Before the experiment of the online current offset error compensation scheme, it
is essential to verify the effectiveness of the PI-type observer in the open-loop. After
downloading the written code to the main control chip, the SEGGER J-SCOPE (Version:
V7.90) software is utilized to observe the output waveform of the PI-type observer, and the
PI values of the PI-type observer are adjusted so that the estimated α-axis current in the
observer is close to the actual measured α-axis current, and the difference is close to 0.

After downloading the code to the control chip, the reference speed of PMSM is set
to 3870 r/Min, and the hysteresis dynamometer is turned on to apply the step load to the
PMSM. The current waveforms of PMSM in the α-axis and β-axis are shown in Figure 19a.
The angle waveform of PMSM is shown in Figure 19b. The rotate speed waveform of
PMSM is shown in Figure 19c.
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Figure 19. Outputs of each module of the PMSM under the operation of PMSM. The current offset
error is 0, and PI-type observer is turned off. (a) Current waveforms of PMSM in α-axis and β-axis;
(b) The angle waveform of PMSM; (c) The rotate speed waveform of PMSM.

Figure 19a shows that the current waveforms of the PMSM in the α-axis and β-axis
generally show a two-phase symmetrical distribution. Figure 19b shows that the frequency
of change of the angle of the PMSM gradually accelerated as the rotational speed of
the PMSM increases, and the feedback value of the angle fluctuates between 0 and 2π.
Figure 19c shows that the PMSM reaches the reference rotational speed at 1 s. Based on the
above information, it can be seen that the existence of the PI-type observer does not affect
the normal operation of the PMSM.

After ensuring that the difference between the measured current and the estimated
current of the PI-type observer is close to 0, the estimated α-axis current waveform of the
PI-type observer output and the actual measured α-axis current waveform in the stable
operation stage of PMSM are shown in Figure 20.
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Figure 21. The estimated α-axis offset current waveforms outputs by the PI-type observer in open 
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Figure 20. PMSM runs in the stable state, the estimated α-axis current waveform output by the
PI-type observer (the blue line) and measured α-axis current waveform of PMSM (the red dotted
line). The offset current is 0, and the PI-type observer is turned on.

It can be seen from Figure 20, during the start-up phase of the PMSM, the PI-type
observer is turned off, and the estimated current value of α-axis is 0. At 472 ms, the PI-type
observer is turned on, and the PMSM is in the high-speed operation state, but the PI-type
observer is still able to accurately output the estimated α-axis current. With the PMSM
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tending to be stable, the estimated α-axis current of the PI-type observer and the actual
measured α-axis current are basically the same.

When the offset currents of 0.3 A and 0.2 A are injected into the a-phase of the PMSM,
respectively, the estimated offset current waveforms output by the PI-type observer after
stabilization are shown in Figure 21. The estimated offset current output by the PI-type
observer fluctuates near the actual offset current, and the amplitude of the fluctuation is
very small.
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Figure 21. The estimated α-axis offset current waveforms outputs by the PI-type observer in open
loop situation. Offset currents of 0.3 A and 0.2 A are injected into a-phase, respectively.

To ensure that the PI-type observer does not impact the normal operation of the PMSM
in the open-loop situation, and the compensation performance of the current offset error in
the closed-loop situation is further verified. According to the offset error compensation
scheme based on PI-type observer in Figure 11, which shows that the estimated offset
current by the PI-type observer will finally participate in the closed-loop control system
of PMSM as error compensation. Offset currents of 0.3 A and −0.3 A are injected into
a-phase and b-phase, respectively; according to the coordinate transformation, it can be
seen that offset currents of 0.3 A and −0.173 A will be generated in the α-axis and β-axis,
respectively. The estimated offset current waveforms of the PI-type observer in closed-loop
situation are shown in Figure 22.
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From Figure 22, it can be seen that the PI-type observer has good observation perfor-
mance, the estimated offset current output by it is basically the same as the actual offset
current, and fluctuation range of offset current in α-axis and β-axis are extremely small,
which verifies output performance of the PI-type observer in the closed-loop compensation.

Compared with the simulated work, the experimental work further validates the
feasibility of the proposed online observation and compensation of current offset error. The
comparison results are shown in Table 2.
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Table 2. Comparison of experimental results and simulated results.

Type of
Work

Rotation
Speed

Injected Offset
Current

Response
Time

Outputs of
PI Observer

Operation of
PMSM

simulation 120 rad/s
0.3 A 1

5 s
0.3 A 3

normal−0.3 A 2 −0.173 A 4

experiment 63 rad/s
0.3 A 1

622 ms
0.3 A 3

normal−0.3 A 2 −0.175 A 4

1 The offset current was injected into a-phase. 2 The offset current was injected into b-phase. 3 The estimated
offset current of α-axis. 4 The estimated offset current of β-axis.

According to Table 2, the PI-type observer stabilizes the output current offset error
and does not affect the normal operation of the PMSM control system in simulations
and experiments.

In order to verify the differences between different current offset error compensation
methods, this paper also needs to be compared with previous work. Comparison of
different current offset error compensation methods is shown in Table 3.

Table 3. Comparison of different current offset error compensation methods in five previously
published works.

Works Rotation
Speed

Method of
Compensation Compensating Object Difficulty Scope of

Application

Ref. [24] 167 rad/min Online Current of q-axis and d-axis Moderate Low speed
Ref. [26] 500 rad/min Online Current of q-axis and d-axis Easy Low speed
Ref. [27] 150 rad/min Online Current of q-axis and d-axis Easy Low speed
Ref. [28] 1000 rad/min Offline Current of a-axis and b-axis Difficult Low speed
Ref. [29] 2000 rad/min Online Current of q-axis and d-axis Difficult Middle speed

Ours works 3780 rad/min Online Current of α-axis and β-axis Easy Middle speed

According to the simulation results and experimental results, this paper aims at the
problems of the PMSM output torque pulsation caused by the parasitic parameter of
sampling resistor, we propose an online observation and compensation method of current
offset error based on PI-type observer, which effectively compensates the current sampling
error caused by parasitic inductance of the sampling resistance, and suppresses the speed
and torque pulsation of PMSM.

5. Conclusions

In this paper, considering the influence mechanism of sampling resistor parasitic
inductance and parasitic capacitance on current sampling, the effect of current sampling
errors on the torque of PMSM is analyzed, and a mathematical model is established. In
order to suppress the torque pulsation of PMSM caused by the current sampling error due
to the parasitic inductance of the sampling resistor, an online observation and compensa-
tion method of current sampling error based on the PI-type observer is proposed, which
effectively suppresses the torque pulsation of PMSM. In the simulations and experiments,
an offset current of 0.3 A is injected in a-phase and b-phase, respectively. The PI-type
observer can output offset currents of 0.3 A and −0.173 A for compensating the current
offset errors in the a-axis and b-axis, respectively, and the presence and operation of the
PI-type observer will not affect the normal operation of the PMSM. The simulation and
experimental results demonstrate the following.

• The sampling resistor in PMSM applications has a parasitic inductive-capacitive nature
that causes current sampling bias, which further causes torque pulsation and leads to
degradation of motor performance.

• The paper proposes a PI-type observer that can effectively obtain the offset error
estimate value of phase currents by the online observation method.
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• The paper proposes an online error compensation method that can rapidly compensate
for phase current offset errors, effectively reducing motor rotation speed and torque
pulsation caused by such errors, while exhibiting good dynamic performance.

Despite the limitations in the analysis, the proposed measurement method of current
offset error and the compensation scheme of current offset error show the value of the
new method, and the feasibility of the method is verified by simulations and experiments.
Future studies and more in-depth validation should include the following:

• For the impact of the parasitic inductance of the sampling resistor on the PMSM drive
control system, it is known that the offset current caused by it is periodic, this periodic
signal can be further studied to eliminate the impact of the parasitic inductance of
sampling resistor on the PMSM drive control system.

• When PMSM is running at low speed, operating frequency of the motor and the
sampling resistor parasitic capacitance are small, many scholars ignore the impact
of the sampling resistor parasitic capacitance on the PMSM drive control system.
However, when the PMSM is running at high speed, the impact of the sampling resistor
parasitic capacitance on the PMSM drive control system needs to be further clarified.
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