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Abstract: Latent Low-Rank Representation (LatLRR) has emerged as a prominent approach for fus-

ing visible and infrared images. In this approach, images are decomposed into three fundamental 

components: the base part, salient part, and sparse part. The aim is to blend the base and salient 

features to reconstruct images accurately. However, existing methods often focus more on combin-

ing the base and salient parts, neglecting the importance of the sparse component, whereas we ad-

vocate for the comprehensive inclusion of all three parts generated from LatLRR image decomposi-

tion into the image fusion process, a novel proposition introduced in this study. Moreover, the ef-

fective integration of Convolutional Neural Network (CNN) technology with LatLRR remains chal-

lenging, particularly after the inclusion of sparse parts. This study utilizes fusion strategies involv-

ing weighted average, summation, VGG19, and ResNet50 in various combinations to analyze the 

fusion performance following the introduction of sparse parts. The research findings show a signif-

icant enhancement in fusion performance achieved through the inclusion of sparse parts in the fu-

sion process. The suggested fusion strategy involves employing deep learning techniques for fusing 

both base parts and sparse parts while utilizing a summation strategy for the fusion of salient parts. 

The findings improve the performance of LatLRR-based methods and offer valuable insights for 

enhancement, leading to advancements in the field of image fusion. 

Keywords: Latent Low-Rank Representation (LatLRR); sparse part; Convolutional Neural Network 

(CNN); VGG19; ResNet50; image fusion 

 

1. Introduction 

Image fusion, particularly the integration of visible and infrared images, has become 

an interesting and demanding research area in recent years. Visible images offer rich color 

and texture information, while infrared images succeed in capturing thermal radiation 

data in low-light conditions. The fusion of these image modalities yields valuable insights 

for a wide range of applications, such as intelligent urban surveillance [1], environmental 

monitoring [2], autonomous vehicles [3], medical diagnostics [4,5], military surveillance 

[6], and precision weapon targeting. Researchers in this domain have diligently advanced 

various methods, classifiable into three main categories based on their processing tech-

niques: multi-scale transformation, sparse representation, and deep learning [7–9]. 

Multi-scale transformation is a method that primarily involves the decomposition of 

the original image into multiple scales, resulting in sub-images at different spatial scales. 

Common methods for this decomposition include wavelet transforms [10], pyramid trans-

forms [11], contourlet transforms (CT) [12], non-subsampled contourlet transforms 

(NSCT) [13], fourth-order partial differential equations (FPDEs) [14], anisotropic diffusion 

[15], and shift-invariant shearlet transforms [16]. Following this decomposition, pixel-
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level or region-level fusion strategies are applied, which include techniques such as 

weight allocation and combination methods like maximum, average, and weighted aver-

age. Subsequently, the final fused image is reconstructed from the fused sub-images using 

an inverse multi-scale transformation. This approach is widely used in various applica-

tions and research contexts. 

The fundamental concept of sparse representation (SR) [17–21] posits that image sig-

nals can be represented as a linear combination of a select few atoms drawn from a pre-

learned dictionary, with the sparse coefficients capturing the salient characteristics of the 

source images. 

These two categories correspond to conventional approaches for fusing visible and 

infrared images. In recent years, there has been widespread adoption of deep learning in 

this field. Typically, these approaches can be further subdivided into four categories de-

pending on the specific methodologies applied: 

• Convolutional Neural Network (CNN)-based methods can be categorized into two 

primary methods. First, CNNs are trained on visible, infrared, and fused images to 

acquire the requisite weightings for fusion [22–29]. Second, it leverages pre-trained 

neural network models to only extract features and obtain weight maps from the im-

ages, thereby achieving the fusion objective [30–33]; 

• Generative Adversarial Network (GAN)-based methods transform the task of inte-

grating visible and infrared images into an adversarial process, characterized by the 

interplay between a generator and a discriminator. Their objective is to combine vis-

ible and infrared images through the generator, at the same time tasking the discrim-

inator with evaluating the sufficiency of visible and infrared information within the 

fused image [34–40]; 

• Encoder-decoder-based networks consist of two main components: an encoder and 

a decoder. The encoder extracts high-dimensional feature representations from the 

source images. The decoder’s job is to reconstruct the encoded features, gradually 

restoring the image’s details and structure, ultimately producing the fused image. 

Traditional autoencoders typically employ fully connected layers. Convolutional lay-

ers and pooling layers have also been utilized, thus improving feature extraction ca-

pabilities and robustness [41–46]; 

• Transformer-based methods: the Transformer was originally introduced for natural lan-

guage processing and has demonstrated significant achievements in this domain [47]. 

Due to its remarkable long-range modeling capabilities, the Transformer has attracted 

the attention of researchers in the field of image fusion [48–53]. Transformer converters 

incorporate Multilayer Perceptron (MLP) and Multihead Self-Attention (MSA) blocks. 

Residual structures and Layer Normalization (LN) are applied before each MSA and 

MLP layer. The core design of these converters involves the fusion of input vectors with 

positional embeddings to preserve positional information for each vector. 

Latent Low-Rank Representation (LatLRR) has emerged as a recently employed 

method for image fusion [54–58]. LatLRR decomposes images into three components: 

base, salient, and sparse parts [59]. A fusion strategy is then applied to merge the extracted 

features from the base and salient parts. Typically, it is common to use the average of base 

parts and the summation of salient parts. Lately, the integration of LatLRR with CNN-

based methods has been proposed. This integration is aimed at further enhancing the 

quality and effectiveness of the fusion process, ultimately resulting in improved fused 

images. Nevertheless, it is noteworthy that existing LatLRR-based methods suffer from 

certain limitations as indicated in the literature. Firstly, the current approaches mainly 

concentrate on the base and salient parts, forgetting about the sparse parts. Furthermore, 

the proficient development of fusion strategies, particularly in the integration of CNN 

technology, continues to be a crucial element influencing the overall performance of fu-

sion processes. 
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Taking these issues into account, this study incorporates all three components ob-

tained from LatLRR image decomposition, namely the base, salient, and sparse parts, into 

the image fusion process. VGG19 and ResNet50 are separately employed as methods to 

obtain weight maps. The investigation seeks to evaluate the impact of including the sparse 

parts on fusion performance and identify the most appropriate fusion strategy, effectively 

leveraging the advantages of hybrid methods. 

2. Related Work 

LatLRR is an image decomposition method initially introduced by Liu et al. [59] in 

2011, serving as an enhancement over the Low-Rank Representation (LRR) proposed in 

2010 [60]. This development aimed to address LRR’s constraint in extracting local struc-

tures from raw data. In 2018, Li et al. [54] utilized LatLRR for the fusion of visible and 

infrared images. Their methodology involved utilizing a weighted average to combine the 

base parts, while employing the summation strategy to combine the salient parts, result-

ing in the creation of the final fused image. Following this, in 2020, Li et al. [56] introduced 

a multi-level decomposition approach named MDLatLRR for image decomposition. Ad-

ditionally, they crafted a fusion framework based on MDLatLRR for the fusion of visible 

and infrared images. The MDLatLRR method facilitates the extraction of multi-level sali-

ent features. It leverages the weighted average to obtain the fused base parts and utilizes 

the nuclear norm to compute the weights for the fusion of salient parts. 

After the application of LatLRR in the fusion of visible and infrared images, several 

studies have proposed fusion methods that combine LatLRR with other feature extraction 

techniques. The primary concept is to use LatLRR for image decomposition and then em-

ploy various techniques to fuse the base parts or the salient parts. In 2021, Huang and col-

leagues [58] introduced a method that combines LatLRR with Independent Component 

Analysis (ICA). This method uses ICA to fuse the base parts, while the salient parts are fused 

using a summation strategy. In 2022, Prema and others [57] proposed a fusion method that 

combines LatLRR with ResNet. They used ResNet50 to fuse the salient parts, and the base 

parts were fused using a weighted average strategy. Tao et al. [61] proposed LatLRR-VGG19 

which uses VGG19 to fuse the base parts, while the salient parts are fused using a summa-

tion strategy. In 2023, Yang and his team [55] presented LatLRR-CNN, where both the base 

parts and the salient parts were initially fused using CNN, and the final fused image was 

obtained by summing the two. These studies aim to enhance image fusion performance by 

leveraging LatLRR and various other feature extraction techniques. 

LatLRR has been verified as a robust and efficacious approach for image decomposi-

tion, especially in the context of fusing visible and infrared images. The key point of fusion 

strategies using LatLRR lies in the judicious application of a good weight map extraction 

methodology and developing a suitable mechanism for the optimal integration of each sep-

arated component. It is noteworthy that the extant literature on visible and infrared image 

fusion methodologies based on LatLRR has tended to overlook sparse parts. This oversight 

may result in the loss of specific features inherent in the original images during the fusion 

process. Additionally, the determination of the application of CNN-based weight map ex-

traction methods for specific parts represents a pivotal factor influencing fusion perfor-

mance. These considerations serve as the primary focus of inquiry in this study. 

3. Methodology 

This study focuses on suggesting a new way to combine images using the LatLRR 

method. We also want to look at the sparse parts of the images usually seen as noise and 

removed. We think the sparse parts might have important information. Our main idea is to 

show that this part should not be ignored. The main goal is to prove this with real evidence. 

To achieve this, we use the LatLRR fusion method as our base. We choose methods that have 

performed well in traditional approaches without incorporating sparse parts. We pay close 

attention to how we design our fusion strategies and carefully analyze the results. By 
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building on what others have done before, we can test and show the differences between 

our method, which includes the sparse parts, and other methods that do not. 

Through this careful analysis, we hope to provide strong evidence that the LatLRR-

based image fusion method really does improve how well it works. At the same time, we 

aim to share useful insights that can help make progress in the field of image fusion. 

3.1. LatLRR for Image Decomposition 

In this study, LatLRR is employed to decompose visible and infrared images into 

base parts, salient parts, and sparse parts. In reference [59], LatLRR, by solving a nuclear 

norm minimization problem, can approximate the recovery of hidden data influences. The 

optimization problem can be expressed as Equation (1): 

min
𝑍,𝐿,𝐸

‖𝑍‖∗ + ‖𝐿‖∗ + 𝜆‖𝐸‖1  

𝑠. 𝑡. , 𝑋 = 𝑋𝑍 + 𝐿𝑋 + 𝐸 (1) 

where λ is the balance coefficient and is greater than 0, ‖‧‖∗ denotes the nuclear norm, 

which is the sum of the singular values of the matrix, and ‖‧‖1 represents the l1-norm. X 

represents the observed data matrix, Z is the low-rank coefficient, L is the salient coeffi-

cient, and E is the sparse spart. Equation (1) could be solved using the inexact Augmented 

Lagrangian Multiplier (ALM) [59] algorithm. Then, the base part XZ, salient part LX, and 

sparse part E are derived from Equation (1), as illustrated in Figure 1. 

 

Figure 1. The three parts of a decomposed image using LatLRR. 

In the context of LatLRR’s image decomposition algorithm, the sparse part is classi-

fied as sparse noise. However, theoretically, this part derived from the original image 

might encapsulate significant image information. Disregarding it in the image fusion pro-

cess could potentially lead to the forfeiture of valuable image information, consequently 

inducing distortion in the fused image. Thus, within this study, particular emphasis is 

placed on integrating the sparse parts meticulously into the image fusion phase to miti-

gate such potential loss of critical image information. 

3.2. CNN-Based Pre-Trained Model for Weighted Maps Extraction 

As CNNs’ capability in feature extraction has gained widespread acknowledgment, 

this study adopts a CNN-based pre-trained model to obtain the weighted maps necessary 

for the image fusion process. The advantage of using this method lies in obviating the 

need for retraining deep learning models or designing loss functions. This approach facil-

itates the ease of implementation for the fusion strategy designed in this study, thereby 

offering convenience for subsequent applications of interest to stakeholders. 

Li et al. [31] employed the VGG19 model for extracting multi-layer features of the 

detailed image parts. Following this, they utilized the l1 norm and a weighted average 

strategy to generate multiple candidate options for the fused detailed part. Ultimately, 

employing a maximum selection strategy, they derived the definitive fused detailed con-

tent. This content was then integrated with the fused base parts to reconstruct the final 

fused image. Continuing the study by Li et al. [6], the reutilization of ResNet50 for 
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extracting deep features from the source images is proposed. Subsequently, normalization 

of the deep features is conducted utilizing Zero-Phase Component Analysis (ZCA) and 

the l1 norm to derive initial weight maps. The final weight maps are acquired through a 

soft-max operation, jointly applied to the initial weight maps. Ultimately, a fused image 

is reconstructed employing a weighted average strategy. Inspired by the literature, this 

study will utilize VGG19 and ResNet50 as neural network models for feature extraction. 

3.3. The Fusion Strategy 

The image fusion techniques devised in this study institute comprise four methods: 

weighted average, summation, and the utilization of VGG19_l1 norm [31] and Res-

Net50_ZCA_l1 norm [30] to derive weight maps. The weighted average method is specif-

ically applied to the base parts, while the summation method is employed for the salient 

and sparse parts. Additionally, VGG19_l1 norm and ResNet50_ZCA_l1 norm are utilized 

for all three parts. It is important to note that VGG19 and ResNet50 are used inde-

pendently and not concurrently within the same strategy. The proposed framework is 

described in Figure 2. The fusion methodologies for weighted average and summation are 

mathematically expressed in Equations (2) and (3): 

𝐼𝑀𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡𝐼𝑅 × 𝐼𝑅𝑝𝑎𝑟𝑡 + 𝑤𝑒𝑖𝑔ℎ𝑡𝑉𝐼𝑆 × 𝑉𝐼𝑆𝑝𝑎𝑟𝑡 (2) 

𝐼𝑀𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 = 𝐼𝑅𝑝𝑎𝑟𝑡 + 𝑉𝐼𝑆𝑝𝑎𝑟𝑡 (3) 

where 𝐼𝑀𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑎𝑣𝑒𝑟𝑎𝑔𝑒  represents the fused portion obtained through the weighted av-

erage method, 𝐼𝑀𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 signifies the fused part derived using the summation strategy, 

𝐼𝑅𝑝𝑎𝑟𝑡   denotes the decomposed component extracted from the infrared image, while 

𝑉𝐼𝑆𝑝𝑎𝑟𝑡   represents the decomposed segment from the visible image. 𝑤𝑒𝑖𝑔ℎ𝑡𝐼𝑅  corre-

sponds to the weight attributed to 𝐼𝑅𝑝𝑎𝑟𝑡, and 𝑤𝑒𝑖𝑔ℎ𝑡𝑊𝐼𝑆 pertains to the weight assigned 

to V𝐼𝑆𝑝𝑎𝑟𝑡. In this study, both weights were set to 0.5. 

The methodologies referred to as VGG19_l1 norm and ResNet50_ZCA_l1 norm em-

ploy CNN models for feature map extraction. Following this step, the application of the l1 

norm and a combined ZCA with l1 norm operation is utilized to reduce feature dimen-

sionality while preserving crucial features, thereby obtaining weighted maps for subse-

quent fusion. Detailed procedural information regarding these methodologies can be 

found in the literature [5,6], with the expressions described as VGG19+l1 norm in Equa-

tions (4) and (5). 

𝐹𝑓𝑢𝑠𝑒𝑑_𝑝𝑎𝑟𝑡
𝑖 = ∑ 𝑊𝑛

𝑖 × 𝐼𝑛
𝑝𝑎𝑟𝑡

, 𝐾 = 2
𝐾

𝑛=1
 (4) 

𝐹𝑓𝑢𝑠𝑒𝑑_𝑝𝑎𝑟𝑡 = 𝑚𝑎𝑥[𝐹𝑓𝑢𝑠𝑒𝑑_𝑝𝑎𝑟𝑡
𝑖 |𝑖 ∈ {1,2,3,4}] (5) 

Here, 𝐹𝑓𝑢𝑠𝑒𝑑_𝑝𝑎𝑟𝑡
𝑖  represents the multi-layer fused part, 𝑊𝑛

𝑖 denotes the weight maps 

extracted using VGG19, 𝐼𝑛
𝑝𝑎𝑟𝑡 refers to the decomposed parts from both visible and infra-

red images, 𝐾 represents the number of image modalities, while 𝑖 stands for the number 

of layers, and 𝐹𝑓𝑢𝑠𝑒𝑑_𝑝𝑎𝑟𝑡 symbolizes the ultimate fused part. 

ResNet50_ZCA_l1 norm is represented through Equations (6)–(10). 

𝐶𝑜𝑣𝑖
𝑗

= 𝐹𝑖
𝑗

× (𝐹𝑖
𝑗
)𝑇 (6) 

[𝑈, 𝛴, 𝑉] = 𝑆𝑉𝐷(𝐶𝑜𝑣𝑖
𝑗
)     𝑠. 𝑡. , 𝐶𝑜𝑣𝑖

𝑗
= 𝑈𝛴𝑉𝑇  (7) 

𝐹𝑖
𝑃,𝑗

= 𝑠𝑖
𝑃,𝑗

× 𝐹𝑖
𝑗 (8) 
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𝑠𝑖
𝑃,𝑗

= 𝑈(𝛴 + 𝜖𝐼)−0.5𝑈𝑇 (9) 

𝑊𝑖 =
∑ ∑ ‖𝐹𝑖

𝑃,1:𝑐
(𝐸,𝑁)‖

1

𝑦+𝑡
𝑁=𝑦−𝑡

𝑥+𝑡
𝐸=𝑥−𝑡

(2𝑡+1)∗(2𝑡+1)
  (10) 

𝐹𝑓𝑢𝑠𝑒𝑑_𝑝𝑎𝑟𝑡 = ∑ 𝑊𝑖 × 𝐼𝑖
𝑝𝑎𝑟𝑡

2

𝑖=1
 (11) 

In the equation set, 𝐶𝑜𝑣𝑖
𝑗represents the covariance matrix, where 𝑖 ∈ {1,2} denotes 

the image modality, and 𝑗 ∈ {1,2, … 𝐶} signifies the channels of deep features. 𝐹𝑖
𝑗 stands 

for the deep feature maps extracted by ResNet50. 𝑈, 𝛴, 𝑉, represent the correlation matri-

ces resulting from singular value decomposition (SVD). 𝐹𝑖
𝑃,𝑗 represents the deep feature 

maps after undergoing ZCA projection transformation from 𝐹𝑖
𝑗 , and 𝑠𝑖

𝑃,𝑗  denotes the 

ZCA transformation matrix. I denotes the identity matrix, while ϵ serves as a small posi-

tive value utilized to stabilize matrix inversion. 𝑊𝑖 signifies the weight maps resulting 

from the 𝐹𝑖
𝑃,𝑗 after the application of the l1 norm operation. Here, t represents the window 

parameter used during the l1 norm operation, set to 2 in this study. 𝐼𝑖
𝑝𝑎𝑟𝑡 refers to the 

decomposed parts from both visible and infrared images, 𝐹𝑓𝑢𝑠𝑒𝑑_𝑝𝑎𝑟𝑡 symbolizes the ulti-

mate fused part. 

Finally, the fusion of visible and infrared images is obtained by summing the three 

merged parts, as illustrated in Equation (12). 

𝐼𝑚𝑎𝑔𝑒𝑉𝐼𝐹 = 𝑉𝐼𝐹𝐵𝑎𝑠𝑒_𝑝𝑎𝑟𝑡 + 𝑉𝐼𝐹𝑠𝑎𝑙𝑖𝑒𝑛𝑡_𝑝𝑎𝑟𝑡 + 𝑉𝐼𝐹𝑠𝑝𝑎𝑟𝑠𝑒_𝑝𝑎𝑟𝑡 (12) 

 

Figure 2. The framework of the proposed method. 
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3.4. Image Dataset 

In this study, image pairs consisting of visible images and infrared images were 

sourced from the TNO image dataset. These image pairs encompass diverse military and 

surveillance scenarios captured during both day and night periods. They depict various 

objects and targets, including people, vehicles, ships, and aircraft, against different back-

grounds such as rural and urban settings. A total of 21 aligned and processed pairs of 

visible images and infrared images were selected, as depicted in Figure 3. 

 

Figure 3. Image pairs of visible images and infrared images (from TNO). 

4. Results 

For assessing the quality and performance of the fused images, this study employs a 

comprehensive evaluation comprising subjective (visual) and objective (quantitative) 

analyses. Subjective evaluation involves the direct perception and assessment of image 

quality, considering visual features like clarity, contrast, details, and textures of the fused 

images based on subjective perception and experience. Objective assessment utilizes 

quantitative indicators, including Entropy (EN), Mutual Information (MI), Quality As-

sessment of Fused Band-ratio Images (Qabf), Feature Mutual Information for pixel do-

main (FMI_pixel), Feature Mutual Information for DCT domain (FMI_dct), Feature Mu-

tual Information for wavelet domain (FMI_w), Normalized Absolute Fused Error (Nabf), 

Spatial Consistency Deviation (SCD), Structural Similarity Index (SSIM), and Multi-Scale 

Structural Similarity Index (MS_SSIM). These metrics enable the quantification of proper-

ties such as similarity, fidelity, information preservation, and spectral consistency be-

tween the fused and original images. In evaluating the performance of the proposed im-

age fusion method, not only were comparisons made among various methods proposed 

in this study, but also comparisons were conducted with 10 State-of-the-Art methods. 

4.1. Objective Assessments 

This part of the study focuses on measuring the effectiveness of different fusion ap-

proaches that include sparse components in the image fusion process. Tables 1 and 2 pre-

sent a comparative analysis of quantitative outcomes derived from different fusion tech-

niques, using LatLRR image decomposition, Resnet50_ZCA_l1 norm, VGG19_l1 norm, 

weighted average, and summation. Additionally, these approaches are compared directly 

with the singular utilization of Resnet50_ZCA_l1 norm (Resnet50) and VGG19_l1 norm 

(VGG19), and the traditional LatLRR (WB + S) methods. The numerical values in these 
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tables signify the absolute comparative performance of each fusion mode across multiple 

evaluation metrics, where, except for Nabf, higher values indicate superior fusion out-

comes across the remaining nine indicators. Consistently, both tables demonstrate an 

overall enhancement across most evaluation metrics when integrating the sparse parts 

alongside the base and salient parts in image fusion, compared to strategies that overlook 

the sparse parts. 

By employing a summation strategy for fusing the salient and sparse parts and 

adopting a CNN-based fusion methodology for the base parts (SS + NB + S), optimal values 

across metrics such as EN, MI, Qabf, and SCD can be attained. The study introduces two 

fusion strategies specifically for the sparse parts: summation and CNN-based fusion. 

While there is no significant discrepancy observed across most indicators between these 

strategies, the CNN-based fusion strategy demonstrates superior performance in Nabf. 

Concerning the base parts, CNN-based fusion strategies generally outperform weighted 

average, albeit with nuanced differences. In terms of the salient parts, a more pronounced 

disparity exists between CNN-based and summation fusion strategies. The CNN-based 

fusion manifests superiority in FMI_dct, Nabf, FMI_pixel, and SSIM, whereas the summa-

tion strategy excels in EN, MI, Qabf, SCD, and MS_SSIM. 

Among the numerous proposed methods, no singular fusion method emerges as uni-

versally superior across all 10 assessment metrics. This aligns with the prevalent consen-

sus in this domain that no single fusion method presently exhibits comprehensive ad-

vantages. Consequently, the choice of fusion method predominantly hinges upon user-

specific requisites. Nevertheless, in an overarching evaluation encompassing multiple 

metrics, the proposed method employing the CNN-based method for sparse and base 

parts alongside summation for salient parts (NSS + NB + S) demonstrates robustness, reli-

ability, and comprehensiveness across the metrics. 

Table 1. Comparison of quantitative evaluation metrics (Resnet50_ZCA_l1 norm). 

EN MI Qabf FMI_Pixel FMI_dct FMI_w Nabf SCD SSIM MS_SSIM Methods 

6.2440 12.4881 0.3641 0.8985 0.3100 0.3487 0.0121 1.6506 0.7660 0.8676 NB + S 

6.2541 12.5082 0.3715 0.8971 0.3467 0.3772 0.0163 1.6528 0.7671 0.8691 SS + NB + S 

6.2475 12.4951 0.3712 0.8981 0.3411 0.3784 0.0101 1.6520 0.7680 0.8687 NSS + NB + S 

6.1197 12.2395 0.2616 0.9071 0.3283 0.3531 0.0034 1.5979 0.7667 0.8300 WB + NS 

6.1319 12.2637 0.2753 0.9040 0.3572 0.3742 0.0063 1.6004 0.7687 0.8319 SS + WB + NS 

6.1241 12.2481 0.2708 0.9063 0.3634 0.3845 0.0026 1.5995 0.7693 0.8315 NSS + WB + NS 

6.1394 12.2788 0.2652 0.9073 0.3290 0.3537 0.0034 1.6002 0.7666 0.8319 NB + NS 

6.1512 12.3025 0.2788 0.9043 0.3578 0.3748 0.0063 1.6027 0.7686 0.8338 SS + NB + NS 

6.1433 12.2867 0.2740 0.9067 0.3646 0.3858 0.0026 1.6018 0.7692 0.8331 NSS + NB + NS 

6.2272 12.4543 0.3613 0.8982 0.3095 0.3484 0.0121 1.6483 0.7661 0.8659 WB + S 

6.2373 12.4747 0.3686 0.8967 0.3462 0.3769 0.0162 1.6505 0.7671 0.8674 SS + WB + S 

6.2307 12.4614 0.3683 0.8978 0.3407 0.3781 0.0100 1.6497 0.7681 0.8670 NSS + WB + S 

6.1819 12.3639 0.3677 0.9107 0.4050 0.4168 0.0012 1.6348 0.7780 0.8746 VGG19 

6.1953 12.3905 0.3510 0.9092 0.4058 0.4169 0.0006 1.6336 0.7782 0.8732 Resnet50 

NB, NS, NSS: Fused base part, fused salient part, and fused sparse part using Resnet50_ZCA_l1 

norm. S, SS: Fused salient part and fused sparse part using summation. WB: Fused base part using 

weighted average. Bold indicates the best-performing value for each indicator. 

Table 2. Comparison of quantitative evaluation metrics (VGG19_l1 norm). 

EN MI Qabf FMI_Pixel FMI_dct FMI_w Nabf SCD SSIM MS_SSIM Methods 

6.2878 12.5755 0.3779 0.9013 0.3097 0.3478 0.0149 1.6728 0.7651 0.8709 NB + S 

6.2976 12.5952 0.3848 0.8999 0.3465 0.3763 0.0193 1.6750 0.7661 0.8724 SS + NB + S 

6.2912 12.5824 0.3848 0.9008 0.3407 0.3772 0.0129 1.6742 0.7671 0.8720 NSS + NB + S 

6.1225 12.2449 0.2655 0.9073 0.3277 0.3531 0.0034 1.5999 0.7668 0.8311 WB + NS 

6.1345 12.2691 0.2790 0.9043 0.3570 0.3745 0.0063 1.6023 0.7688 0.8330 SS + WB + NS 

6.1281 12.2561 0.2756 0.9068 0.3644 0.3862 0.0025 1.6020 0.7697 0.8333 NSS + WB + NS 

6.1875 12.3749 0.2871 0.9092 0.3269 0.3520 0.0059 1.6262 0.7659 0.8372 NB + NS 

6.1988 12.3976 0.3000 0.9067 0.3568 0.3735 0.0089 1.6287 0.7679 0.8391 SS + NB + NS 
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6.1914 12.3828 0.2959 0.9086 0.3622 0.3834 0.0051 1.6278 0.7686 0.8386 NSS + NB + NS 

6.2272 12.4543 0.3613 0.8982 0.3095 0.3484 0.0121 1.6483 0.7661 0.8659 WB + S 

6.2373 12.4747 0.3686 0.8967 0.3462 0.3769 0.0162 1.6505 0.7671 0.8674 SS + WB + S 

6.2307 12.4614 0.3684 0.8978 0.3407 0.3781 0.0100 1.6497 0.7681 0.8670 NSS + WB + S 

6.1819 12.3639 0.3677 0.9107 0.4050 0.4168 0.0012 1.6348 0.7780 0.8746 VGG19 

6.1953 12.3905 0.3510 0.9092 0.4058 0.4169 0.0006 1.6336 0.7782 0.8732 Resnet50 

NB, NS, NSS: Fused base part, fused salient part, and fused sparse part using VGG19_l1 norm. S, SS: 

Fused salient part and fused sparse part using summation. WB: Fused base part using weighted 

average. Bold indicates the best-performing value for each indicator. 

Tables 3 and 4 present a comparative analysis of the impact of including or excluding 

the sparse parts in the image fusion process and employing various fusion strategies. The 

numerical values in these tables, expressed as percentage improvement rates (%), depict 

the extent of enhancement observed in different metrics upon integrating the sparse parts 

into the fusion strategy. The findings reveal that, excluding FMI_pixel and Nabf, most 

indicators suggest an augmented fusion performance with the inclusion of sparse parts. 

Notably, FMI_dct, FMI_w, and Nabf exhibit the most pronounced changes compared to 

other metrics. The utilization of a summation strategy for fusing sparse parts did not im-

prove the performance in the Nabf indicator; instead, it experienced a decline. However, 

the implementation of a CNN-based method for fusing sparse parts mitigated the earlier 

limitations and notably amplified the performance in the Nabf indicator. Consequently, 

an integrated analysis of Tables 1–4 underscores the efficacy of employing a CNN-based 

approach for both sparse and base parts, complemented by a summation method for sali-

ent parts (NSS + NB + S). This fusion strategy demonstrates relatively superior perfor-

mance in terms of both image fusion quality and feature similarity. It effectively preserves 

the inherent characteristics of the original image while minimizing disparities between 

the fused image and the original, indicating commendable efficacy in information preser-

vation and error reduction. 

Table 3. Comparison of improvement after incorporating the sparse parts (Resnet50_ZCA_l1 norm). 

EN MI Qabf FMI_Pixel FMI_dct FMI_w Nabf SCD SSIM MS_SSIM Methods 

     (%)      
          NB + S 

0.16 0.16 2.03 −0.16 11.83 8.19 −34.39 0.13 0.14 0.17 SS + NB + S 

0.06 0.06 1.96 −0.04 10.05 8.54 16.59 0.08 0.27 0.12 NSS + NB + S 
          WB + NS 

0.20 0.20 5.23 −0.35 8.80 6.00 −86.37 0.16 0.26 0.23 SS + WB + NS 

0.07 0.07 3.49 −0.09 10.71 8.92 24.06 0.10 0.34 0.18 NSS + WB + NS 

          NB + NS 

0.19 0.19 5.13 −0.33 8.76 5.97 −84.94 0.16 0.26 0.23 SS + NB + NS 

0.06 0.06 3.31 −0.07 10.85 9.08 24.44 0.10 0.34 0.15 NSS + NB + NS 

          WB + S 

0.16 0.16 2.03 −0.16 11.84 8.20 −34.54 0.13 0.14 0.17 SS + WB + S 

0.06 0.06 1.95 −0.04 10.09 8.54 16.96 0.08 0.27 0.12 NSS + WB + S 

ID_S: The metrics derived from methods incorporating the sparse parts. ID_non: The metrics de-

rived from methods that do not involve the sparse parts. Improvement: (ID_S − ID_non)/ID_non × 

100. Nabf values should be multiplied by −1 because a smaller value indicates better performance. 

Table 4. Comparison of improvement after incorporating the sparse parts (VGG19_l1 norm). 

EN MI Qabf FMI_Pixel FMI_dct FMI_w Nabf SCD SSIM MS_SSIM Methods 

     (%)      
          NB + S 

0.16 0.16 1.81 −0.15 11.87 8.21 −29.23 0.13 0.14 0.17 SS + NB + S 

0.05 0.05 1.83 −0.05 10.00 8.46 13.19 0.08 0.26 0.12 NSS + NB + S 
          WB + NS 

0.20 0.20 5.10 −0.33 8.93 6.04 −85.40 0.15 0.26 0.23 SS + WB + NS 
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0.09 0.09 3.83 −0.06 11.19 9.35 27.87 0.13 0.38 0.27 NSS + WB + NS 

          NB + NS 

0.18 0.18 4.49 −0.27 9.15 6.11 −51.31 0.15 0.26 0.23 SS + NB + NS 

0.06 0.06 3.08 −0.06 10.80 8.93 14.21 0.09 0.34 0.17 NSS + NB + NS 

          WB + S 

0.16 0.16 2.03 −0.16 11.84 8.20 −34.54 0.13 0.14 0.17 SS + WB + S 

0.06 0.06 1.95 −0.04 10.08 8.55 17.01 0.09 0.27 0.12 NSS + WB + S 

ID_S: The metrics derived from methods incorporating the sparse parts. ID_non: The metrics de-

rived from methods that do not involve the sparse parts. Improvement: (ID_S − ID_non)/ID_non × 

100. Nabf values should be multiplied by −1 because a smaller value indicates better performance. 

Table 5 presents a quantitative comparison between the proposed method in this 

study and 10 existing outstanding methods, encompassing both traditional and deep 

learning-based approaches. The results show that no single method has absolute superi-

ority. Compared to the 10 State-of-the-Art (SOTA) methods, the proposed method in this 

study demonstrates better performance in the FMI_dct, FMI_w, Nabf, and SSIM indica-

tors. It also shows impressive performance in the FMI_pixel, SCD, and MS_SSIM indica-

tors, with only slightly poorer performance in EN, MI, and Qabf. These results illustrate 

that the proposed method not only benefits from incorporating sparse parts but also 

demonstrates the advantages of combining LatLRR with Resnet50, achieving a comple-

mentary effect. It maintains different methods’ performances in individual indicators. 

Table 5. Comparison of quantitative evaluation metrics with SOTA methods. 

EN MI Qabf FMI_Pixel FMI_dct FMI_w Nabf SCD SSIM MS_SSIM Methods 

6.2519 12.5037 0.3870 0.8827 0.2256 0.2519 0.1460 1.6147 0.7070 0.8648 FPDE [14] 

7.1105 14.2209 0.3848 0.8826 0.1928 0.2569 0.2448 1.3986 0.6603 0.8458 RPSR [21] 

6.2691 12.5382 0.4127 0.8829 0.2275 0.2595 0.1451 1.6133 0.7091 0.8760 ADF [15] 

7.5980 15.1960 0.2831 0.8567 0.1996 0.2399 0.4225 1.4331 0.5429 0.7264 DIVFusion [46] 

6.3946 12.7893 0.1852 0.8863 0.1702 0.1933 0.0937 1.3831 0.6279 0.7009 FusionGAN [40] 

6.7471 13.4943 0.4273 0.9049 0.2163 0.2628 0.2138 1.5967 0.6701 0.8233 PIAFusion [27] 

7.0462 14.0925 0.4014 0.8958 0.2030 0.2511 0.3072 1.6298 0.6457 0.8251 SeAFusion [26] 

6.7612 13.5225 0.4059 0.9014 0.2100 0.2544 0.1847 1.6307 0.6865 0.8292 SwinFusion [53] 

6.8810  13.7621  0.3667  0.8869  0.2137  0.2468  0.3336  1.7128 0.6454  0.8729 U2Fusion [29,62] 

6.5667 13.1333 0.3291 0.8898 0.2031 0.2331 0.1859 1.6164 0.6865 0.8437 UMF-CMGR [28] 

6.2912 12.5824 0.3848 0.9008 0.3407 0.3772 0.0129 1.6742 0.7671 0.8720 Ours(NSS + NvggB + S) 

6.2475 12.4951 0.3712 0.8981 0.3411 0.3784 0.0101 1.6520 0.7680 0.8687 Ours(NSS + NResnetB + S) 

NvggB, NResnetB: Fused base part using VGG19_l1 norm and Resnet50_ZCA_l1 norm, respectively. S, 

SS: Fused salient part and fused sparse part using summation. Bold indicates the best-performing 

value for each indicator. 

4.2. Subjective Assessments 

The results of this section demonstrate the subjective evaluation of visual perfor-

mance achieved by incorporating sparse components as part of the fusion process. In Fig-

ure 4, the outcomes of image fusion based on LatLRR are presented, showcasing the visual 

comparisons of different fusion strategies proposed in this study, including Res-

net50_ZCA_l1 norm, weighted average, and summation. Despite the objective quantita-

tive analysis indicating a significant enhancement in fusion performance with the inclu-

sion of sparse parts, it is challenging for human observers to visually discern the differ-

ences in fusion outcomes when considering the limitations of human visual perception in 

the presence of sparse parts. We consider this to be an acceptable result, acknowledging 

that theoretically sparse parts contain less information, thus constraining human visual 

observation of these components. However, this does not imply their negligible im-

portance, as evident from the quantitative results. 

Figure 5 illustrates the comparison between the proposed optimal fusion strategies 

(SS + NvggB + S, SS + NResnetB + S) and 10 other State-of-the-Art methods. The results demon-

strate that the proposed method effectively showcases pedestrians and signage after the 
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fusion of visible and infrared images, achieving satisfactory image fusion outcomes. This 

aligns with the quantitative evaluation results in Section 4.1, affirming the effectiveness 

and reliability of the proposed method. The other 10 methods also exhibit their unique 

fusion styles, as indicated by the quantitative results in Section 4.1, each having its own 

advantages. However, subjective assessments are susceptible to individual biases and in-

herent limitations in human visual perception. Therefore, the judgment of visual effects 

should be considered in the context of specific application scenarios. 

As mentioned earlier in this study, previous image fusion methodologies based on 

LatLRR exclusively focused on fusion strategies concerning the base and salient parts, 

disregarding the sparse part by considering it as noise in the LatLRR image decomposition 

process. From the LatLRR theoretical perspective, these considerations are justifiable. 

Nevertheless, it is essential to note whether the sparse part solely comprises noise or po-

tentially encapsulates crucial image information that could significantly contribute to im-

proved fusion performance. The findings of this study demonstrate that regarding the 

sparse part as an innovative facet of the fusion process, unlike prior research, leads to 

substantial enhancements. The experimental validation of this concept in this study bears 

significant implications for LatLRR-based image fusion methodologies. Moreover, by 

amalgamating various fusion strategies and comparing their performance, this research 

proposes superior fusion strategies for consideration by subsequent researchers. 

 

Figure 4. Fused images (NB, NS, NSS: Fused base part, fused salient part, and fused sparse part 

using Resnet50_ZCA_l1 norm, S, SS: Fused salient part and fused sparse part using summation, WB: 

Fused base part using weighted average). (The red box indicates the focal areas during the Subjec-

tive Assessments.). 
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Figure 5. Comparison of fused images with SOTA methods. (The red box indicates the focal areas 

during the Subjective Assessments.). 

5. Discussion and Conclusions 

In previous research, the image fusion strategies based on the LatLRR method pre-

dominantly focused on processing the base parts and salient parts, while regrettably dis-

regarding the sparse parts. This oversight is noteworthy, as all three components originate 

from the original visible and infrared images. This operational approach risks the loss of 

crucial image information, failing to authentically represent the inherent characteristics of 

the original images, thus impeding the efficacy of the image fusion. Hence, this study ad-

vocates for the integration of the sparse parts as an integral element within the image 

fusion process. To articulate, it aims to concurrently amalgamate the base parts, salient 

parts, and sparse parts in strategies employed for visible and infrared image fusion. 

Beyond employing conventional weighted average and summation techniques, this 

study leverages pre-trained CNN-based models, such as VGG19 and ResNet50, to extract 

image key features. It additionally integrates the l1 norm and ZCA+ l1 norm to derive 

weight maps. Findings from this study underscore that the inclusion of the sparse parts 

within the fusion process yields superior fusion performance compared to its exclusion. 

The incorporation of the sparse parts via CNN-based methodologies to obtain weight 

maps notably enhances the FMI_dct, FMI_w, and Nabf indicators. Amongst diverse strat-

egy combinations, utilizing CNN-based methodologies to individually merge the base 

parts and sparse parts, while using summation to fuse the salient parts, emerges as the 

suggested fusion strategy within this study. 

The fusion model amalgamating LatLRR with CNN effectively integrates the respec-

tive strengths of each method, thereby yielding a more robust and comprehensive fusion 

performance. The outcomes of this study bear substantial value for both academic and 

practical applications. They can be utilized in diverse multimodal sensing devices that 

incorporate visible and infrared imagery, such as drones, robots, or surveillance equip-

ment, to enhance their sensing capabilities significantly. 
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