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Abstract: The critical challenge of estimating the Remaining Useful Life (RUL) of MoSi2 heating
elements utilized in pusher kiln processes is to enhance operational efficiency and minimize down-
time in industrial applications. MoSi2 heating elements are integral components in high-temperature
environments, playing a pivotal role in achieving optimal thermal performance. However, prolonged
exposure to extreme conditions leads to degradation, necessitating precise RUL predictions for proac-
tive maintenance strategies. Since insufficient failure experience deals with Predictive Maintenance
(PdM) in real-life scenarios, a Generative Adversarial Network (GAN) generates specific training
data as failure experiences. The Remaining Useful Life (RUL) is the duration of the equipment’s
operation before repair or replacement, often measured in days, miles, or cycles. Machine learning
models are trained using historical data encompassing various operational scenarios and degradation
patterns. The RUL prediction model is determined through training, hyperparameter tuning, and
comparisons based on the machine-learning model, such as Long Short-Term Memory (LSTM) or
Support Vector Regression (SVR). As a result, SVR reflects the actual resistance variation, achieving
the R-Square (R2) of 0.634, better than LSTM. From a safety perspective, SVR offers high prediction
accuracy and sufficient time to schedule maintenance plans.

Keywords: generative adversarial network; predictive maintenance; machine learning; Remaining
Useful Life; Long Short-Term Memory; Support Vector Regression

1. Introduction

“Industry 4.0” was initially introduced in 2011 during the Hannover Messe, recognized
as the most significant industrial technology expo globally. This event, held in Germany,
marked the inception of the fourth industrial revolution, which is currently in its early
stages of development [1]. Industry 4.0 incorporates two primary dimensions of advance-
ment: the Cyber–Physical System (CPS), a comprehensive control system that integrates
networks, computational capabilities, sensors, and physical objects, and the smart factory,
which leverages the CPS system and the Internet of Things (IoT) to enhance manufacturing
production, intelligent machinery [2], logistics supply chains [3], human–computer interac-
tion [4], and automated control within factories [5]. The differences between the existing
industries and the 4.0 model can be categorized into 3 primary domains: components that
possess self-awareness and self-predictive capabilities; machines that exhibit self-awareness,
self-predictive abilities, and the ability to self-compare; and a productive system that can
self-configure, self-maintain, and self-organize [6].

A push-plate sintering furnace is a type of industrial furnace used for the sintering
process, which is a heat treatment method used to compact and harden a material without
melting it. This process is commonly used in the production of ceramics, powders, metal
powders, and other materials [7]. The furnace is equipped with heating elements that
generate heat. These elements are responsible for raising the temperature inside the
furnace to the desired sintering temperature. Every single heating element material has its
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temperature limitation. Heating element problems in a push-plate sintering furnace can
significantly impact its performance and efficiency [8]. Therefore, predicting the Remaining
Useful Life (RUL) of heating elements (MoSi2) is important to avoid possible machinery
failure in a pusher kiln process.

The fundamental attributes of Industry include the capacity for data customization and
accessibility, enabling human and automated actions [9]. Data acquisition and analysis play
a crucial role in the current period, enabling the development of information that can be
utilized for anticipatory purposes or to facilitate collaborative efforts in making predicted
decisions. This work was prompted by the concept that the manufacturing industry
should transition toward predictive manufacturing [10]. Predictive Maintenance (PdM) is a
methodology that relies on historical data, models, and domain expertise. Using statistical
or machine-learning models enables anticipating forthcoming problems, enhancing the
decision-making process for maintenance activities. This predictive capability identifies
trends, behavior patterns, and correlations, minimizing downtime and improving overall
operational efficiency [11]. Machine learning, an interdisciplinary field, uses classification
as a supervised learning approach to analyze datasets and create models for classifying
data into desired classes [12].

Industry maintenance is crucial for equipment efficiency and operation. On the other
hand, the preventive maintenance system is performed periodically, which can lead to
increased costs and unexpected shutdowns. The basic principle of PdM is identifying
touchable, quantifiable factors that indicate deterioration or aging [13]. The entities above
are commonly referred to as reliability indicators. The surveillance of these indicators
for differences or the prediction of their progression provides assessments of future mal-
functions. The careful selection of appropriate indicators is of utmost importance, as the
accuracy of calculations can only be deemed meaningful if the reliability indicators align
with the actual physical condition of the machine. Identifying these signs necessitates
a comprehensive understanding of the corresponding machinery. The enhancement or
refinement of such methodologies is outside the scope of our methodology. Neverthe-
less, our efforts are directed towards integrating these technologies to acquire condition
data automatically [14,15].

PdM uses predictive methodologies to ascertain the optimal timing for implementing
maintenance interventions. The approach relies on the ongoing monitoring of the integrity
of a machine or process, enabling maintenance activities to be carried out uniquely when
necessary [15]. Furthermore, this technology allows for the timely identification of mal-
functions by utilizing prediction algorithms that leverage historical data, such as machine
learning techniques. Additionally, integrity considerations, including visual aspects, wear
and tear, and deviations in coloration from the original, among other indicators, are taken
into interpretation. Statistical inference methods and engineering approaches are also
employed in this process.

PdM involves maintenance based on an estimate of a piece of equipment’s health
status [16]. PdM is an advanced maintenance strategy that monitors equipment status to
diagnose errors and estimate damage time. According to the research of Groba et al. [17],
it involves defining status indicators, which are calculable parameters reflecting damage
or the aging degree. The actual factory equipment status indicators are calculated using
detected parameters. The state index modeling model is used to identify the dynamic
characteristics of state indicators. The model predicts future trends of these indicators,
and decision making is conducted by analyzing the prediction results and developing
response strategies. This approach helps in reducing equipment damage and ensuring
optimal equipment performance. Predictive technology is the fundamental component of
the PdM plan and can be broadly categorized into three distinct approaches [18]. Several
methods can be employed to assess errors from a statistical standpoint such as cluster
analysis [19], statistical process control (SPC) [20], hidden Markov models (HMM) [21],
and other statistical methods. Another method involves utilizing model-based approaches
to develop a precise and well-defined mathematical model. While this approach can
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yield high accuracy, it also requires a deep program understanding. However, complex
procedures often hinder the establishment of an accurate model.

The bidirectional nature of this contact has been facilitated by advances in artificial
intelligence (AI) and big data, as well as the continuous enhancement of computer process-
ing capacity [22]. The transformation above has not only been dominant in everyday life
but has also been adopted in industrial and manufacturing settings regarding automation.
To maintain a competitive edge, firms have increasingly relied on automation to enhance
productivity [23]. The emergence of the Internet of Things (IoT) has been made possible by
advancements in machine-to-machine (M2M) communication technologies. This notion
permits interconnectivity and facilitates the active monitoring of systems within manufac-
turing appearances. The continuous transmission of data by these devices gives rise to the
phenomenon known as big data, which necessitates a systematic approach to management
within industrial settings. Big data enhances system performance and self-calibration,
facilitating system coordination and feedback among various devices [24]. Predictive main-
tenance, using IoT and big data analytics, uses a predictive machine-learning model to
predict equipment’s Remaining Useful Life based on historical data. The field of predictive
maintenance is experiencing a surge in research efforts. Various types of equipment, such as
bearings, turbofans, and engines, are the primary focus of these investigations. The primary
objective is to identify the impending failure of such equipment by monitoring the intensity
of vibrations. Predicting changes in vibration frequencies makes estimating the remaining
operational lifespan possible. However, a significant challenge most researchers face in
this domain is the limited availability of training data. This challenge becomes particularly
pronounced when dealing with equipment with a longer service life, as obtaining sufficient
damage data becomes difficult.

The proposal of the generative adversarial network (GAN) was put forth by Goodfel-
low et al. [25]. This framework involves the utilization of a generator and a discriminator
to train an optimal generator that can generate synthetic data resembling accurate data.
If this concept is applied to the domain of predictive maintenance, it has the potential to
address the issue of insufficient experience with damages in real-world factory settings.

Lu et al. [26] introduced a novel approach that integrates generative adversarial
networks (GANs) and LSTM models. This method effectively incorporates the training
and prediction information of extended adversarial networks into the architecture of
GANs. The proposed approach demonstrates improved capability in capturing the trend
of deterioration curves.

This study aims to improve the Remaining Useful Life prediction and operational
efficiency in industrial applications. The main challenge is to obtain sufficient for Remaining
Useful Life prediction of MoSi2 heating elements in high-temperature environments. GANs
network is applied to generate synthetic data resembling real-world damage. The main
contribution to estimating the Remaining Useful Life of a MoSi2 heating element in a
pusher kiln process lies in predictive maintenance strategies. By implementing a proactive
approach that combines historical data analysis, real-time monitoring, and predictive
modeling, organizations can anticipate potential failures and schedule replacements before
they occur. This helps minimize downtime, reduce maintenance costs, and optimize the
overall efficiency of the kiln process.

In this study, PdM architecture is applied to rotating bearing cases, further validating
its effectiveness. It utilizes a specific architecture as a reference point and aims to implement
it in the heating element of heating equipment within a natural factory setting. To achieve
this, a substantial amount of data synthesized by a generative adversarial network is
employed to train a regression model. Two prediction model selections by Long Short-
Term Memory and Support Vector Regression models conduct a comparative analysis and
identify the most appropriate machine-learning model for this particular case.



Sensors 2024, 24, 1486 4 of 20

2. Process

The push-plate sintering furnace is frequently utilized in the high-temperature sin-
tering process of multilayer ceramic capacitors (MLCC). Within the sintering furnace, the
ceramic chips undergo the necessary crystallization operation. The production line operates
continuously, with approximately 50 plates constituting the circuit’s assembly. Each dish
requires a minimum of 20 min for its movement process. Consequently, the duration for a
single platen to complete the feeding and discharging is at least 1000 min. The sintering
furnace has a total of 3 blocks and 15 heating zones (Heating Zones 1~6 in the heating
block; Heating Zones 7~11 in the heating block; and Heating Zones 12~15 in the cooling
block). Each heating zone is subdivided into Parts A and B, and different furnace areas of
the heating furnace tube have 1~3 different pieces [27]. This research focuses on the heating
section containing 10 heating areas (i.e., 7A; 7B; 8A; 8B; 9A; 9B; 10A; 10B; 11A; and 11B).
The heating components in the heating zone are the subject of this research. The research
data presented in this study, provided by Yageo Corporation Co., Ltd., (Kaohsiung, Taiwan)
focus on collecting voltage, current, and temperature measurements in each heating zone.
The sampling frequency for data collection is measured in days. A comprehensive dataset
spanning three years has been accumulated. Figure 1 depicts the side and top views of the
push-plate sintering furnace’s physical appearance.
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2.1. MoSi2 Heating Element

Molybdenum disilicide, a ceramic metal, finds frequent application in high-temperature
treatment and heating processes due to its possession of the following qualities [27]: molyb-
denum disilicide exhibits high-temperature resistance due to its ability to generate a pro-
tective oxide film in elevated temperature conditions. This film inhibits further oxidation
and corrosion, enabling the material to function in extreme temperatures. Notably, molyb-
denum disilicide can operate at temperatures as high as 1700 ◦C [8], demonstrating its
exceptional thermal stability and prolonged capacity for consistent heating performance
under such conditions. The resistivity of molybdenum disilicide exhibits a pronounced
increase as the ambient temperature rises. Consequently, when a fixed voltage is applied to
the equipment, regions with lower ambient temperatures generate higher energy, resulting
in rapid heating to the desired operating temperature. MoSi2 heating elements contribute
significantly to the operational efficiency and thermal performance of pusher kilns by
providing high-temperature capabilities, rapid and uniform heating, energy efficiency,
durability, and oxidation resistance. Their versatility makes them a preferred choice for
applications demanding precise and reliable high-temperature heating.

The heating element exhibits a significantly elevated thermal conductivity, facilitating
a uniform temperature distribution and effective thermal energy conversion, but it does
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not exhibit any signs of aging. The specifications of this model can be observed in Figure 2.
The high-temperature end of the object has a W-shaped configuration, with a length (Le) of
400 mm and a diameter of 6 mm. On the other hand, the low-temperature end possesses a
length (Lc) of 560 mm and a diameter of 12 mm.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 21 
 

 

when a fixed voltage is applied to the equipment, regions with lower ambient 
temperatures generate higher energy, resulting in rapid heating to the desired operating 
temperature. MoSi2 heating elements contribute significantly to the operational efficiency 
and thermal performance of pusher kilns by providing high-temperature capabilities, 
rapid and uniform heating, energy efficiency, durability, and oxidation resistance. Their 
versatility makes them a preferred choice for applications demanding precise and 
reliable high-temperature heating. 

The heating element exhibits a significantly elevated thermal conductivity, 
facilitating a uniform temperature distribution and effective thermal energy conversion, 
but it does not exhibit any signs of aging. The specifications of this model can be observed 
in Figure 2. The high-temperature end of the object has a W-shaped configuration, with a 
length (Le) of 400 mm and a diameter of 6 mm. On the other hand, the low-temperature 
end possesses a length (Lc) of 560 mm and a diameter of 12 mm. 

 
Figure 2. W-type molybdenum disilicate heating element. 

2.2. Maintenance 
Maintenance is a growing field in multidisciplinary research, integrating data 

acquisition, infrastructure, storage, distribution, security, and intelligence. This section 
provides essential context for understanding maintenance and directs the study’s results. 
Maintenance costs account for 15–60% of manufacturing operating costs, but companies 
often mis-measure these costs. This review emphasizes the need for studies on new 
technologies to address this issue. The research focuses on maintenance growth and its 
role in Industry 4.0 implementation, highlighting its potential to be a significant factor in 
reducing maintenance costs [28]. 

The significance of high-temperature sintering in the manufacturing of Multi-Layer 
Ceramic Capacitors (MLCC) highlights the crucial role of maintaining consistent 
temperature during the process. The sintering furnace, operating at temperatures 
between 1100 °C and 1300 °C, utilizes nitrogen/hydrogen to prevent oxidation. The key 
challenge is ensuring uniform temperature across the furnace to promote the even and 
dense growth of the ceramic body’s crystal phase. The push-plate sintering furnace, 
equipped with multiple heating elements, requires consistent functioning for 
uninterrupted production. A failure in any heating element can lead to equipment 
shutdown, product defects, and substantial financial losses. 

The study proposes the implementation of a maintenance strategy involving 
continuous monitoring of voltage, current, and other data through sensors. A 
machine-learning model is then employed to predict the deterioration of heating 
elements, estimate potential damage time, and attentive maintenance personnel for 

Figure 2. W-type molybdenum disilicate heating element.

2.2. Maintenance

Maintenance is a growing field in multidisciplinary research, integrating data acquisi-
tion, infrastructure, storage, distribution, security, and intelligence. This section provides
essential context for understanding maintenance and directs the study’s results. Mainte-
nance costs account for 15–60% of manufacturing operating costs, but companies often
mis-measure these costs. This review emphasizes the need for studies on new technolo-
gies to address this issue. The research focuses on maintenance growth and its role in
Industry 4.0 implementation, highlighting its potential to be a significant factor in reducing
maintenance costs [28].

The significance of high-temperature sintering in the manufacturing of Multi-Layer Ce-
ramic Capacitors (MLCC) highlights the crucial role of maintaining consistent temperature
during the process. The sintering furnace, operating at temperatures between 1100 ◦C and
1300 ◦C, utilizes nitrogen/hydrogen to prevent oxidation. The key challenge is ensuring
uniform temperature across the furnace to promote the even and dense growth of the
ceramic body’s crystal phase. The push-plate sintering furnace, equipped with multiple
heating elements, requires consistent functioning for uninterrupted production. A failure
in any heating element can lead to equipment shutdown, product defects, and substantial
financial losses.

The study proposes the implementation of a maintenance strategy involving continu-
ous monitoring of voltage, current, and other data through sensors. A machine-learning
model is then employed to predict the deterioration of heating elements, estimate po-
tential damage time, and attentive maintenance personnel for timely replacement. This
approach aims to reduce unforeseen heating element failures and associated production
disruptions. The predicted benefits of this study are threefold. Firstly, it aims to track
equipment deterioration in real time, enabling the proactive replacement of components
on the verge of failure. Predicting the Remaining Useful Life (RUL) of MoSi2 heating ele-
ments is crucial for implementing proactive maintenance strategies in industrial processes.
This approach minimizes downtime, reduces costs, and optimizes resource allocation. It
enhances safety in high-temperature environments, preserves product quality, and extends
the lifespan of MoSi2 heating elements, contributing to long-term equipment performance
and regulatory compliance. This approach ensures safer, more reliable, and cost-effective
operation of industrial processes. This approach ensures continuous equipment operation,
minimizing downtime and maintenance requirements, thereby enhancing productivity.
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Secondly, the study seeks to guarantee temperature consistency, leading to improved yield
and reduced scrap losses from defective products. Thirdly, by eliminating unnecessary
maintenance associated with regular schedules, the research aims to optimize the service
life of heating elements and reduce overall waste. Maintenance strategies have evolved
over industrial revolutions, with reactive maintenance being more common in understaffed
manufacturing plants [29].

Predictive maintenance aims to prevent failures, reduce the risk of failure, and extend
equipment life by intervening before failure occurs. Industries have struggled to abandon
this maintenance philosophy due to its high costs and unplanned downtime. Adopting
predictive maintenance in an industrial context is inevitable, but it faces challenges. Com-
panies need to balance the benefits of predictive maintenance with the capital expenditure
required to purchase necessary tools, software, and expertise. This disadvantage is partic-
ularly significant in the early stages of development when data on equipment behavior
is uncommon, or new systems lack experience. This can lead to increased investment
in predictive maintenance solutions. Challenges encountered in the scientific literature
include financial and organizational limits, data source limits, machine repair activity
limits, and deployment limits in industrial predictive maintenance models. While real-time
monitoring is mentioned as a potential strategy, there may be a gap in how effectively
this approach is integrated into existing maintenance practices. Implementing robust real-
time monitoring systems that continuously collect data on key performance metrics, such
as temperature profiles, electrical properties, and thermal efficiency, could enhance the
accuracy of Remaining Useful Life estimates and enable proactive maintenance actions.
Many existing predictive models for Remaining Useful Life estimation rely on simplified
degradation models or empirical relationships, which may not capture the full complexity
of degradation processes in pusher kiln environments. Developing more sophisticated
predictive models, such as physics-based models or machine-learning algorithms trained
on comprehensive datasets, could improve the accuracy and reliability of Remaining Useful
Life predictions.

3. Predictive Maintenance
3.1. Machine Learning Algorithm

A machine learning (ML) model is a mathematical model that can be learned using
machine-learning algorithms. Advanced monitoring infrastructures in modern power
distribution systems enable fine-grained analytics and improved forecasting performance,
particularly in electric load forecasting. Accurate load forecasting at the single-household
level can create savings and reduce energy footprint [30]. Machine learning and statistical
methods are used to train or calculate the probability of taking the maximum possible action
in mahjong games, such as k-gate problems and search trees [31]. The study explored hybrid
models for time series forecasting, following the positive results of single network-based
models [32]. These algorithms apply historical data and prior experiences to determine
the operational patterns that enable the model to make predictions, execute classifications,
group data, or do other activities based on varying training data. The current research uses
Python programming language and machine learning frameworks such as TensorFlow,
Scikit-learn, and Keras to construct a modeling database. Machine learning models can be
categorized into different types based on the availability of labels on training data, notable
in Table 1. The excitation function enhances the expressive capacity of the neural network
model by using non-linear equations, addressing its limitations, and tackling unsolvable
problems. Without training the neural network with the excitation function, the output
signal would be a basic linear function, resulting in a linear regression model. However,
since real-world problems are inherently non-linear, the absence of non-linear functions
would render the model meaningless and provide a summary of commonly perceived
excitation functions [33].
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Table 1. Common excitation functions.

Function Name Noted

Second, the focus curve function
(Sigmoid function)

graphics
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3.2. Optimizer

While developing the ML model, the Optimizer is responsible for modifying the
model’s parameters to minimize the loss function. Stochastic Gradient Descent (SGD) is
treated as an optimizer for updating weight parameters in the gradient direction using
differential techniques shown in Equations (1) and (2).

Vt = βVt−1 − η
∂L
∂W

(1)

Wt+1 = Wt + Vt (2)

where Vt represents the velocity of the direction. L represents the loss function, W denotes
the weight parameter, and η signifies the learning rate. This technique enhances the
learning process by accelerating the learning rate. If Vt aligns with the previous update
direction, a larger Vt will result in a higher gradient for the weight update. Conversely, a
smaller Vt will lead to a decrease in the rise. The drag coefficient, denoted as β, is typically
assigned a value of 0.9.
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3.3. Generative Adversarial Networks

The advantage of Generative Adversarial Networks (GANs) is that they provide a
framework for learning the underlying probability distribution of a dataset, allowing for
the generation of new samples that are indistinguishable from real data. However, the
disadvantages of GANs are notoriously unstable and sensitive to hyperparameters, often
requiring careful tuning and experimentation to achieve good results. Mode collapse,
vanishing gradients, and oscillations in training dynamics are common challenges that can
hinder the convergence [34]. Goodfellow et al. [25] introduced the Generative Adversarial
Network (GAN) structure, which trains two opposing neural networks: a generator, G, and
a discriminator, D. The generator generates synthetic data like real data. In contrast, the
discriminator distinguishes between real and synthetic data. The competition is formu-
lated into a two-player minimax game defined by the value function V(G, D), improving
the generated data quality until the discriminator fails. The minimax game is given by
Equation (3).

min
G

max
D

V(G, D) = Ex∼pdata(x)[logD(x)] +Ex∼pz(z)[log(1 − D(G(z)))] (3)

where x is the real data, z is the random noise, D(x) denotes the output given by the
discriminator when the input is x, and G(z) denotes the generated data.

The basic architecture of the GAN model is shown in Figure 3 [35]. It aims to develop
a generator to provide the highest fidelity synthetic data. The study uses a Generative
Adversarial Network (GAN) to generate simulated failure scenarios in situations where
real-life failure experience is limited. GANs are artificial intelligence models that work
together to create synthetic data, with the generator creating data and the discriminator
evaluating its authenticity. This approach allows for the generation of realistic failure
patterns, mimicking the behavior of MoSi2 heating elements as they degrade over time.
This synthetic data generation improves the robustness of predictive models and allows
for more accurate estimation of the Remaining Useful Life (RUL) in scenarios without
extensive real-world failure data. GANs are a valuable tool for addressing data scarcity
challenges and enhancing prediction reliability in scenarios with limited actual failure
events. The execution of the objective function involves periodically altering the parameters
in a back-and-forth method. The steps for this procedure are as follows: (i) the generator
G parameters are held constant while modifying the parameters of the discriminator D to
maximize the discrimination degree V(G, D), resulting in the acquisition of the optimal
discriminator; (ii) optimize the discriminator while altering the parameters of the generator
G to minimize the recognition; (iii) iterate steps (i) and (ii) to generate synthetic data that
closely resembles the actual data.
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3.4. Regression Models

The Long Short-Term Memory (LSTM) network is well suited for processing significant
events with long intervals and delays in time series data. The input value undergoes
processing through three control gates (gates) to determine the storage and utilization of
information. These control gates, namely the forgetting gate, input gate, and output gate,
regulate whether the information modifies the cell state (cell state) and whether the cell
state continues to be propagated [26]. The forget gate operation determines how much
information carried over from the previous layer’s output will be disregarded and not
propagated to the subsequent layer. The forget gate serves the purpose of deciding whether
the prior information should be discarded or preserved.

The Support Vector Regression (SVR) model is founded upon expanding the Support
Vector Machine (SVM) method designed for regression analysis. The model initially
identifies a hyperplane in the high-dimensional space, then it constructs a pipeline around
the hyperplane with a margin of ε on both sides. The loss function is not computed for
all samples within the pipeline. Instead, the error arises from support vectors outside
the pipeline. SVR aims to find a hyperplane that fits data with minimal error, like linear
regression models. The SVR optimization algorithm is required to minimize the tube’s size.

3.5. Methodology

The flowchart of the proposed machine-learning algorithm is shown in Figure 4.
The furnace equipment consists of a total of 15 furnace areas, each of which is further
divided into two parts, namely A and B. As the primary focus of the heating zone, each
furnace zone is outfitted with three sensors that gather data on voltage, current, and
temperature. The sampling frequency is set at 1 reading every 30 s. These readings
are stored in the SD card of the acquisition device until a sufficient amount of data is
accumulated. At that point, the data are manually transferred to a computer for storage.
Given the minimal daily fluctuations in data, the original data are documented on a
daily basis. The equipment data have been accumulated over approximately three years,
specifically from 18 June 2020, to 7 April 2022. During this period, instances of furnace
tube breakage and subsequent replacements have been meticulously recorded. To create a
machine-learning model capable of forecasting the deterioration curve of a heating furnace
tube, it is necessary to get historical data about past instances of degradation. However,
since heating furnace tubes typically last for 4 to 5 years, it is challenging to collect data on
the tubes from replacement to rupture period. The raw data only record two unexpected
fractures and their occurrence times.

The heating method of the molybdenum disilicide heating element is based on re-
sistance heating. It uses current to generate resistance heat, which is then transferred to
the environment as heat energy. Over time, the surface of the heating element gradually
peels off, causing the diameter of the heating section to decrease and the resistance to
increase. Eventually, when the resistance reaches infinity, the heating element breaks. By
monitoring the change in resistance, we can assess the health of the heating element. In
this study, the resistance value is used as an indicator of the heating element’s condition.
The simplest method of creating a virtual health index is by transforming raw sensor data
using mathematical functions. In most cases, a virtual health index is built using physical
sensor measurements with one or multiple objectives, such as improving the correlation
between the health index and the RUL, reducing the signal noise, and removing nonmono-
tonic behavior. Remaining Useful Life (RUL) is a crucial concept in industrial equipment
operation, guiding proactive maintenance and resource optimization. It allows organi-
zations to schedule maintenance activities, minimize downtime, and optimize resource
allocation. This proactive approach enhances operational efficiency, reduces costs, and
extends equipment longevity. Predicting RUL helps in ensuring safety and compliance
with regulatory standards. In industrial applications, RUL is measured using historical
data, sensor readings, and predictive models, using techniques like condition monitoring
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and machine-learning algorithms. The goal is to balance equipment lifespan with the risk
of unexpected failures, ensuring reliable and efficient industrial system operation.
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To create a deterioration curve, data smoothing is performed on the original data
to remove noise and volatility, highlighting trends and allowing for analysis of the data.
Exponential smoothing is a smoothing method based on a weighted average, using a
smoothing coefficient α (0 < α < 1). The smoothed value of the previous data and the actual
value of the current data are weighted and averaged to calculate the smoothing value of
the current data, which is suitable for data with trend and seasonality. Locally Weighted
Scatterplot Smoothing (LOWESS) fits the polynomial regression curve in a specific regional
window and weights the distance between each point of the regional window and the
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current data point, which is conducive to observing the data in the region. The larger the
proportion of the regional window, the smoother the data, but with the relative sacrifice of
fitting accuracy.

First Prediction Time (FPT) and End of Life (EOL) are the start and end points of
the deterioration curve, respectively. Two common methods of data regularization are
Min–Max Normalization and Rewrite–Minimize Normalization. Min–Max Normalization
scales data to 0-1, requiring redefining the maximum and minimum values. However, this
method has a disadvantage as processed data do not have zero meaning, suggesting the
data center is not at the origin. The molybdenum disilicide heating element is a resistive
heating method that uses current to heat the heating element, transferring heat energy
to the environment. As the heating element’s surface peels off over time, its resistance
increases until it breaks when it reaches infinity.

This study uses the resistance value as the state index of the heating element, capturing
the two heating zones (9A/9B) over a year before equipment damage. The change in
resistance is observed to reflect the current health of the heating element. There are only
two sets of real damage data, one of which (9A) will be used as training data to generate
a large amount of synthetic data similar to training data in the adversarial network, and
the other (9B) will be used as test data because the test data must be new information that
the model has not seen before it can be evaluated with the reference value. In this case,
failure experience only happens twice, which is in Heating Zones 9A and 9B. A Generative
Adversarial Network (GAN) structure that simultaneously trains two opposing neural
networks: a generator and a discriminator. The generator G takes in random noise z and
tries to generate synthetic data that are similar to the real data. The discriminator D tries
to distinguish between real data and synthetic data. Therefore, GAN is trained on data
from 9A to generate sufficient training data for the LSTM model. Then, data from 9B are
used as testing data to evaluate the performance of the LSTM model. To show the quality
of the forecasting model, testing data must be assumed to be future or unknown data, so it
cannot participate in the generation of training data.

The goal of SVR is to find a hyperplane that can fit the data with a minimum error,
like a linear regression model. The difference is that it introduces an ε-insensitive tube
where loss is neglected for data included. The slack variable is also introduced for some
data outside the tube. After regression models are tuned, they are tested by both curves.
However, only Degradation Curve 9B has a reference value since it is unknown data for both
models. MAE, RMSE, and R-squared are used as evaluation metrics. The Remaining Useful
Life (RUL) using deep-learning techniques for predictive maintenance is based on three
different data types: lifetime data, run-to-failure data, and threshold data. The final step is
to set a pre-defined threshold so that a warning would be triggered when the resistance
value becomes abnormal. In this case, a warning would be triggered if resistance exceeds
10% to 20% of the normal value. Machine-learning models predict Remaining Useful Life
(RUL) using historical data, including sensor readings and operational parameters. These
data are analyzed through feature engineering to identify health and degradation patterns.
The model is trained on the training set, followed by validation and hyperparameter tuning.
The richness and diversity of historical data contribute to its effectiveness in accurately
predicting equipment’s RUL.

4. Results and Discussion

The data used in this institute comes from the sintering furnace of passive component
used by Guogeo Corporation Co., Ltd. located in the Nanzi plant area of Kaohsiung. The
equipment has a total of 15 furnace areas. The furnace area is divided into two parts:
Parts A and B, with heating areas ranging from 7 to 11 and cooling areas from 13 to 15.
A predictive maintenance strategy is primarily used for the heating furnace tube in the
heating zone. Each furnace zone in the heating zone is equipped with three sensors, which
collect voltage, current, and temperature, respectively, and the sampling frequency is
1 every 30 s, which is stored in the SD card of the acquisition device until a certain amount
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of data are collected and then manually stored in the computer. Since the daily data change
very little, the original data are recorded in days. The equipment data have been collected
for about three years (18 June 2020~7 April 2022), and the time of the furnace tube damage
and replacement has been recorded.

To establish a machine-learning model that can predict the deterioration curve of the
heating furnace tube, the past deterioration experience must be used as training data for
the model to learn, but due to the long service life of the heating furnace tube, an average
of about 4~5 years, it is quite difficult to completely obtain the data of the heating furnace
tube from the replacement to the fracture period, and the existing raw data only records
two fractures without warning, and its occurrence time and location. Data pre-processing
consists of the following four steps: defining status indicators, data smoothing, plotting
deterioration curves, and data regularization are explained in detail in Supplementary
Material (Figures S1–S4).

In the current study, data are assembled regularly from 10 April 2019 to 6 April 2022.
During this particular time frame, instances of failure were observed in two specific heating
zones, 9A and 9B. Consequently, the Generative Adversarial Network (GAN) is trained
using data from 9A to produce ample training data for the Long Short-Term Memory
(LSTM) model. Subsequently, the data obtained from 9B are utilized as testing data to
assess the LSTM model’s efficacy. To evaluate the effectiveness of a forecasting model,
it is imperative to designate the testing data as future or unknown data, excluding its
involvement in developing the training data shown in Figure 5. The degradation curve
of 9A is initially inputted into a Generative Adversarial Network (GAN) to provide a
substantial quantity of training data. Given the complex nature of the problem and the
evaluation metric of Long Short-Term Memory (LSTM) and Support Vector Regression
(SVR) models concerning the impact of the training data size on model performance, we
have decided to employ 10,000 epochs for training the Generative Adversarial Network
(GAN). Consequently, we will build a dataset of 300 instances to train the regression model
shown in Figure 6.

The evaluation of synthetic data quality often relies on commonly used metrics such
as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Percent Root Mean
Square Deviation (PRD), which are shown in Equations (4)–(6).

RMSE =

√
1
N ∑N

i=1(Oi − Si)
2 (4)

MAE =
1
N ∑N

i=1|Oi − Si| (5)

PRD =

√√√√∑N
i=1(Oi − Si)

2

∑N
i=1 Oi

2 ∗100% (6)

The effectiveness of a Remaining Useful Life (RUL) prediction model is evaluated using
metrics like Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared
values. These metrics measure the model’s accuracy in predicting actual RUL values,
with a lower MAE and RMSE indicating better performance. R-squared values measure
the proportion of variance in the RUL. The model’s generalizability to new data is also
crucial. Long Short-Term Memory (LSTM) and Support Vector Regression (SVR) models are
compared for RUL prediction, considering factors like their predictive accuracy, robustness,
and computational efficiency. Furthermore, the quantity of synthetic data is contingent
upon the intricacy of the case and lacks a predetermined requirement. Consequently, this
study employs various training data sizes to train the model and determine the optimal
training data based on the model’s prediction error and time consumption. The changes
in error for the two regression models use training data ranging from 0 to 1000. The
extended short-term memory network demonstrates exceptional predictive performance
with only approximately 300 training data instances. Despite the Support Vector Regression
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model exhibiting a relatively low deviation, it consistently experiences oscillation within a
specific range that cannot be reduced. This study addresses this issue by uniformly training
the model using a dataset of 300 instances. Additionally, it is observed that increasing
the number of iterations (epoch) leads to improved synthesis outcomes. However, this
improvement comes at the cost of increased computational energy and time consumption.
After careful consideration, a compromise is made, and the model is trained for 10,000
iterations. The design of the generative adversarial network is based on the architecture
used in the study by Lu et al. [26], as shown in Table 2.
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The generative adversarial network generates synthetic data that accurately reflect
real data trends, demonstrating low error between real and synthetic data, requiring no
model architecture modification. The study utilizes two LSTM layers and a fully connected
layer in a Long Short-Term Memory network model, adjusting hyperparameters like
time lag, dropout rate, and the number of neurons. The study indicates that the optimal
hyperparameter combination can achieve a RMSE of 0.0031. The Long Short-Term Memory
network model uses two LSTM layers and one fully connected layer for its hidden layer.
Hyperparameters like the number of neurons and dropout rate are adjusted using a grid
search shown in Table 3. The model makes predictions based on past time lag and feature
length. The best combination of hyperparameters is achieved when the hidden layer has
256 neurons and a 0.25 discard rate, achieving a RMSE of 0.0049. Regression models are
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tested using both curves, with Degradation Curve 9B as a reference. MAE, RMSE, and
R-squared metrics are used, with prediction results shown in Equation (7).

R2 = 1 − ∑m
i=0(yi − ŷi)

2

∑m
i=0(yi − yi)

2 (7)

Table 2. Generation adversarial network architecture.

Module Name Layer Parameter

Generator

Fully connected layer Output shape = (sample, 128)
Activation = LeakyReLU

Fully connected layer Output shape = (sample, 128)
Activation = LeakyReLU

Fully connected layer Output shape = (sample, n_output)
Activation = tanh

Discriminator

Fully connected layer Output shape = (sample, 64)
Activation = LeakyReLU

Fully connected layer Output shape = (sample, 128)
Activation = LeakyReLU

Fully connected layer Output shape = (sample, 64)
Activation = LeakyReLU

Fully connected layer Output shape = (sample, 1)
Activation = Sigmoid

Table 3. LSTM grid search result.

Grid Parameter Best Parameter RMSE

Time lag [3, 5, 7] 7

0.0031Number of neurons [64, 128, 256] 256

Dropout rate [0.2, 0.25] 0.25

Support Vector Regression (SVR) is a machine-learning algorithm that accurately
predicts resistance variation in predictive modeling tasks, especially when dealing with
non-linear relationships in data. It uses support vectors and a kernel function to map
input features into a higher-dimensional space, capturing complex patterns and non-linear
relationships. The R-squared (R2) value is used to assess the level of prediction accuracy,
which represents the proportion of variance in the dependent variable explained by the
model. A higher R2 value indicates a better fit to the actual data, with a maximum of
1.0 indicating a perfect fit.

SVR is a crucial tool in industrial operations for predicting equipment safety. It
accurately predicts the Remaining Useful Life of critical components, reducing the risk
of unexpected breakdowns. SVR’s predictive maintenance helps in reducing unplanned
downtime and enhancing overall safety. It also contributes to equipment reliability and
compliance with safety regulations, fostering a safer working environment. Integrating
SVR into real-time monitoring systems allows for continuous updates on equipment health,
enhancing safety measures and promoting the overall safety and reliability of industrial
processes. Overall, SVR significantly enhances safety measures and reduces risks. The
grid search method is applied to SVR, adjusting four hyperparameters: time lag, kernel
function, cost, and epsilon, resulting in a RMSE of 0.0016 using the best hyperparameter
combination. The grid search results are compared in Figure 7, and the best combination of
hyperparameters is shown in Table 4.
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Table 4. SVR grid search result.

Grid Parameter Best Parameter RMSE

Time lag [3, 5, 7] 7

0.0016
Kernel function [Linear, RBF] RBF

C [10, 5, 1, 0.1] 10

ε [0.001, 0.003] 0.001

Since the test data do not participate in the training of the adversarial network and
the regression model, the data can be identified as unknown data to ensure that the model
can maintain its accuracy when predicting future data, and the mean absolute error (MAE),
root mean square error (RMSE) and R-squared (R-squared) are selected as indicators to
evaluate the predictive ability of the model. Figure 8a,b is the prediction results of LSTM
and SVR for 9A, while Figure 8c,d is the prediction results of LSTM and SVR for 9B to use
the residual shoe-pulling method for obtaining 95% of the prediction interval.

Evaluation metrics include MAE, RMSE, and R-squared. The prediction performance
of the regression model is shown in Table 5, and the advantages and disadvantages of
the two regression models can be compared with the histogram. Based on the results
of unknown data 9B, the MAE of both models tends to be close to 0, indicating that the
average prediction ability of the two models is very strong. However, the comparison
results of RMSE and R2 show that the predicted value of SVR can better reflect the actual
resistance change.

Table 5. Prediction performance of the regression model.

MAE Test RMSE Test R2 Test

LSTM
9A 1.21×10−5 0.00348 0.97864

9B 3.21×10−5 0.00567 0.45889

SVR
9A 4.16×10−6 0.00204 0.99268

9B 2.17×10−5 0.00466 0.63352
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Warning System

Predictive maintenance uses machine-learning models to predict equipment damage
and find the best maintenance time. This study uses resistance values to assess the health
of molybdenum disilicide heating elements. When resistance exceeds 10% of normal,
warnings are issued. When resistance exceeds 20%, warnings are issued.

The outcomes of the warning system are coupled with the probabilistic prediction of
heating elements in the heating zone of 9A and 9B by LSTM. The outcomes of the SVR
probabilistic prediction are in conjunction with the warning system for the heating elements
in the respective heating zones 9A and 9B. The two warning levels, the actual damage
amount, and the day that the anticipated resistance of the LSTM and SVR will, respectively,
cause the alert to be triggered are all noted. The second warning was issued 20 days before
the damage date and 10 days before the LSTM due to severe resistance oscillations in the
predicted SVR resistance. Figure 9a,c is the results of LSTM’s probabilistic prediction of
heating elements in the heating zone of 9A and 9B combined with the warning system.
Figure 9b,d is the results of SVR probabilistic prediction combined with a warning system
for heating components in the 9A and 9B heating zones, respectively. Table 6 records
the two warning thresholds, the actual damage value, and the date when the predicted
resistance of LSTM and SVR will trigger the warning, respectively. Based on the results
of unknown data 9B, the second warning was triggered earlier, about 20 days from the
actual damage date and about 10 days from the LSTM, due to the severe oscillation of the
predicted resistance of the SVR.
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Table 6. Heating element warning threshold and date.

Threshold
Normal Resistance Value Warning1 Warning 2 Actual damage value

9A 0.336 0.369 0.403 0.443
9B 0.319 0.351 0.383 0.387

Warning 1 date Warning 2 date

9A
Actual 12-11-2020 06-01-2021
LSTM 12-11-2020 29-12-2020
SVR 13-11-2020 29-12-2020

9B
Actual / 02-01-2022
LSTM / 22-12-2022
SVR / 12-12-2021

5. Conclusions

This study establishes that estimating the Remaining Useful Life (RUL) of MoSi2 heat-
ing elements in a pusher kiln process is a multifaceted task influenced by various factors.
The operating temperature, thermal cycling, atmospheric conditions, mechanical stress,
maintenance practices, element quality, and adherence to manufacturer recommendations
all play pivotal roles in determining the longevity of these heating elements. Two regres-
sion models, namely Long Short-Term Memory (LSTM) and Support Vector Regression
(SVR), are compared, and their hyperparameters are adjusted using grid search to enhance
model performance. Additionally, a generative adversarial network generates substantial
synthetic data for training the regression model. Nevertheless, when examining the root
mean square error (RMSE) and coefficient of determination (R2), it becomes evident that
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Support Vector Regression (SVR) is more adept at capturing the variations in actual resis-
tance. The R2 value can be 0.634, indicating a superior level of fitting accuracy. Moreover,
the study recommends ongoing research to refine and validate the RUL prediction mod-
els, considering variations in operational parameters and exploring potential mitigation
strategies. The outcomes of this investigation contribute to the broader understanding of
high-temperature material degradation in industrial settings and provide a foundation
for proactive maintenance practices in pusher kiln processes employing MoSi2 heating
elements. However, it is important to acknowledge the need for a nuanced approach,
considering the unique circumstances of each specific application. Collaborating with
manufacturers and specialists in industrial heating systems is advisable to obtain accurate
estimations tailored to the specific operational conditions. Consequently, two threshold
values, Warning 1 and Warning 2, are developed for optimal maintenance intervals when
the usual resistance value increases by 10% and 20%, respectively.

The predictive resistance of Support Vector Regression (SVR) exhibits a higher degree
of realism. However, it is important to note that SVR’s huge vibration amplitude has a
higher likelihood of activating the warning system, and this activation occurs approximately
10 days before the occurrence predicted by Long Short-Term Memory (LSTM). About safety
considerations, Support Vector Regression (SVR) demonstrates a notable level of predictive
accuracy. Even though it may prompt an earlier warning, it allows ample time to establish
maintenance plans. Consequently, SVR is a more appropriate choice for the predictive
maintenance technique employed in this study.

In future research endeavors, it is imperative to delve deeper into the estimation of the
RUL of MoSi2 heating elements in pusher kiln processes. Advanced monitoring techniques,
such as real-time sensor data analysis, and the development of predictive maintenance
models using machine-learning algorithms offer promising avenues for refining RUL pre-
dictions. Additionally, exploring material improvements, optimizing operating parameters,
and fostering collaborative research efforts among industry stakeholders can collectively
contribute to enhancing the durability and efficiency of MoSi2 heating elements. Case
studies documenting the performance of these elements under varying conditions and
participation in standardization efforts further ensure a comprehensive and standardized
approach to managing these crucial components in industrial heating applications. Ad-
dressing these future considerations will be instrumental in advancing our understanding
and implementation of effective maintenance strategies for MoSi2 heating elements in
pusher kiln processes. Although previous studies have observed that deep-learning tech-
niques (e.g., Generative Adversarial Networks, Recurrent Neural Networks, Deep Belief
Networks, Convolutional Neural Networks, etc.) attract growing interest in RUL prediction
and suggests a promising future for their applications in manufacturing, no study focused
on the RUL prediction of MoSi2 heating elements [36].
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Nomenclature

AL Artificial Intelligence
CPS Cyber–Physical System
EOL End of Life
FPT First Prediction Time
GANs Generative Adversarial Network
HMM Hidden Markov Model
LOWESS Locally Weighted Scatterplot Smoothing
LSTM Long Short-Term Memory
IoT Internet of Things
MAE Mean Absolute Error
ML Machine Learning
MLCC Multilayer Ceramic Capacitors
MoSi2 Molybdenum disilicate
M2M Machine-To-Machine
PdM Predictive Maintenance
PRD Percent Root Mean Square Deviation
RMSE Root Mean Square Error
RUL Remaining Useful Life
SGD Stochastic Gradient Descent
SPC Statistical Process Control
SVM Support Vector Machine
SVR Support Vector Regression
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