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Abstract: Motion reconstruction using wearable sensors enables broad opportunities for gait analysis
outside laboratory environments. Inertial Measurement Unit (IMU)-based foot trajectory reconstruc-
tion is an essential component of estimating the foot motion and user position required for any related
biomechanics metrics. However, limitations remain in the reconstruction quality due to well-known
sensor noise and drift issues, and in some cases, limited sensor bandwidth and range. In this work,
to reduce drift in the height direction and handle the impulsive velocity error at heel strike, we
enhanced the integration reconstruction with a novel kinematic model that partitions integration
velocity errors into estimates of acceleration bias and heel strike vertical velocity error. Using this
model, we achieve reduced height drift in reconstruction and simultaneously accomplish reliable
terrain determination among level ground, ramps, and stairs. The reconstruction performance of the
proposed method is compared against the widely used Error State Kalman Filter-based Pedestrian
Dead Reckoning and integration-based foot-IMU motion reconstruction method with 15 trials from
six subjects, including one prosthesis user. The mean height errors per stride are 0.03 ± 0.08 cm
on level ground, 0.95 ± 0.37 cm on ramps, and 1.27 ± 1.22 cm on stairs. The proposed method
can determine the terrain types accurately by thresholding on the model output and demonstrates
great reconstruction improvement in level-ground walking and moderate improvement on ramps
and stairs.

Keywords: integration reconstruction; inertial sensors; ramp/stair detection; heel strike

1. Introduction

Wearable sensors are becoming increasingly reliable and convenient in terms of size,
accuracy, battery life, robustness, range, data rate, and other performance measures. This
development facilitates the deployment of wearable sensors in real-world studies where
traditional motion capture systems cannot be used. As an attractive application, collecting
foot kinematic data outside laboratory environments in different terrains, including ramps
and stairs, can offer valuable data to enable scientific findings in gait analysis, such as under-
standing human locomotion [1–5], monitoring gait impairment [6,7], and in rehabilitation
device control [8,9].

To reconstruct the foot trajectory, the Pedestrian Dead Reckoning (PDR) algorithm
is often used to estimate the foot position and orientation from a foot-mounted Inertial
Measurement Unit (IMU). It estimates the system states from linear and angular motion
of the IMU and bounds the error accumulated between strides by applying Zero Velocity
Updates (ZUPT) at the stance phase. PDR algorithms can be generally categorized into
two types: integration methods [1–3,10–14] and filter-based methods [15–21]. The PDR
algorithm can be further integrated with other sources of data like Global Navigation
Satellite System (GNSS) [22,23], cameras [24,25], and other sources of data to further
improve accuracy.
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A well-known issue in IMU-based PDR is that the position estimation suffers from
drift in the vertical direction [11,19,26] in general and drift in the heading direction [19,27]
in the absence of global information such as GNSS or reliable magnetometer data. The
required accuracy of heading and vertical drift varies depending on specific applications.
For example, in emergency rescue navigation [11], both heading and height error matter
in identifying the location and floor of a building under restricted environments; in gait
analysis using wearable IMU sensors, height drift matters if we want to evaluate foot
clearance [13,14]. Noise and bias in IMU signals are usually considered as the main
causes of drift [24,28,29], but limited sensor bandwidth or range might be another source
of error [1,18,27,30]. Specifically, limited IMU sensor bandwidth cannot capture all the
information in acceleration and angular velocity measurement under highly dynamic
conditions [18,27]. A bandwidth above 100 Hz for acceleration and a bandwidth above
50 Hz for angular velocity are favored [27], while in reality, most consumer-grade Micro-
Electromechanical Systems (MEMS) IMUs for out-of-lab data collection run at around
100 Hz. For example, the APDM Opal used in this study runs at 128 Hz, which means
the bandwidth is only 64 Hz or less. Moreover, mathematically, the Kalman Filter is only
derived to be optimal under white Gaussian noise [31,32], while in reality, the noise might
not be Gaussian and therefore might degrade the filter performance [32,33]. A notable
case is the impact error during heel strike. The impact signal is typically a non-Gaussian
impulsive signal that will deteriorate the performance of the Kalman Filter [34]. In addition,
the heel strike impact is often too short for the IMU to record [18]. As shown by [35]
in the case of running, the impact signal can cause inaccurate velocity measurement,
with severity depending on how much information is lost. During normal walking, heel
strike impact may still be non-negligible depending on the pattern of walking and the
characteristic of IMU sensor. One goal of this work is to mitigate the accumulated error in
the vertical velocity and position due to unmodeled noise and missing information during
heel strike impact.

In some Inertial Navigation Systems (INS), the stochastic IMU error is modeled as a
white noise term plus a bias term [28,29,36–39]. The second term is sometimes referred
to as bias instability and modeled as a first-order Gauss–Markov process [29,37–39]. The
Kalman Filter can model this bias term by adding extra filter states in its process model;
these added states are called accelerometer bias and gyroscope bias, as shown in [28,36,39].
Building on this error model, and with the hope to estimate the heel strike error mentioned
above without a Kalman Filter, the work presented here harnesses the intuition that we
can separate the effect of acceleration bias on each direction and model the heel strike error
explicitly as a vertical velocity impulse error, and thereby enhance the performance of
widely used integration-based reconstruction [1–3,11–14] by reducing the drift in height.

In this paper, we propose a kinematic model to estimate the acceleration bias and
heel strike vertical velocity error, introduce an enhanced integration method to overcome
this error in reconstructing the foot trajectory, and simultaneously detect ramp, stair, and
level-ground walking, all using only one foot-mounted IMU.

The contributions of this paper are the following:

(1) Propose a model to estimate acceleration bias and heel strike velocity error.
(2) Propose a novel method to detect ramp and stair locomotion (vs. level walking) using

only one foot-mounted IMU.
(3) Propose an enhanced integration reconstruction method with improved accuracy in

the vertical direction.

The structure of this paper is organized as follows: Section 2 states the related work
on detecting ramps and stairs using wearable sensors. Section 3 introduces the kinematic
model for estimating acceleration bias and heel strike velocity error. Section 4 describes
the methods for detecting ramps and stairs. Section 5 states the enhanced integration
reconstruction algorithm. Section 6 shows our human subjects experiment results. Finally,
Section 7 presents the discussion and future work.
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2. Related Work

Integration-based PDR using foot-mounted IMUs has proven very successful for
tracking location in horizontal planar movement (e.g., x/y or latitude/longitude directions).
For example in [1,2], the orientation of the IMU is first estimated by a Kalman Filter,
then used to convert the local IMU acceleration into global acceleration, which is then
double-integrated to obtain position. The orientation can also be estimated by pure strap-
down integration of gyroscope data [11,12], with inclination correction from accelerometer
data [3,10,40]. To bound the drift, the ZUPT is applied on velocity during each stance phase.
However, foot-mounted IMUs are known to suffer from drift in the vertical direction when
using the traditional ZUPT-based reconstruction. Compared to horizontal displacement
errors on the order of 0.5–1% of stride length [11,18,26,41], higher vertical errors around
1–2% are common [11,18,19,21,26]. Vertical error is especially important in interpreting
the reconstructed movement because of the influence of ground incline on biomechanical
outcomes such as limb and joint mechanics [42–46], muscle behavior [47,48], and energetic
cost [49]. Moreover, the direction can be either rising or falling in different circumstances but
tends to be consistent within specific bouts and behaviors. This vertical drift is attributed to
the vertical-direction impact at initial foot contact, which varies in magnitude and frequency
content with speed and other movement characteristics. When locomotion data are known
to take place on level ground, height de-drifting has been used to achieve reasonable
reconstruction based on the assumption that floor height never changes [1,3,10], though
this approach does not match the nature of the error and can cause the unrealistic changes
in the reconstructed height movement. Similarly, if the slope of a ramp or dimensions
of a staircase are known or can be identified in a database, appropriate de-drifting can
also be applied [2,50]. But, in unconstrained, unsupervised real-world locomotion, it is
impossible to know a priori whether certain strides are on level ground, ramps, stairs, or
other terrain. In these cases, distinguishing ramps, stairs, and level walking is necessary to
separate large data sets into different behaviors; however, this task can prove to be very
difficult—particularly differentiating ramps vs. level walking—due to the uncertainty in
vertical movement estimation.

In general, activity recognition is a wider topic than PDR. Based on the sensor infor-
mation used for the classification task, it can be categorized into dynamic-information-
based [51] and trajectory-geometry-based activity recognition. Dynamic information in-
cludes ground reaction force, pressure, acceleration, and velocity. Typical preprocessing
methods such as filtering and detecting gait cycles are applied, then features are extracted
either in the time domain, such as sliding mean and sliding variance [52], peak magnitude,
or histograms [53], or in the frequency domain, such as spectrograms [54]. However, those
dynamic signals are correlated with walking speed [51] and may need assumptions like
steady walking state.

On the other hand, trajectory-based information, which refers to the actual foot trajec-
tory from IMU reconstruction or motion capture or the joint angle movement trajectory
during each gait cycle, are less sensitive to walking speed. Bartlett and Goldfarb [9] classi-
fied activities by defining a phase variable from the thigh angle using a single IMU on the
leg and matching the phase trajectory to the most similar averaged activity trajectory. The
foot-mounted IMU trajectory in the sagittal plane can also be used to classify locomotion
mode into level, stairs, and ramps by evaluating the inclination grade after some displace-
ment from the prior footfall location, e.g., when the foot trajectory crosses an elliptical
boundary [51]. One potential drawback is that imperfect reconstructions lead to overlap
among trajectories from different activities [51]. Improvements to the accuracy of height
trajectory reconstruction would be valuable for improving these methods, with impact on
gait analysis, detection and quantification of impaired conditions, and control of robotic
prostheses and exoskeletons.
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3. Kinematic Model

As a core component of PDR algorithms based on IMU data and Kalman Filter architec-
ture, the IMU error model decides the way of designing the filter states and characterizing
process noise. We adopted the widely used IMU error model shown below as in [28,36].

at = R(am − ab − an) + gt (1)

ωt = ωm − ωb − ωn (2)

Here, the true IMU accelerometer and gyroscope measurement at, ωt is the combi-
nation of measured values am(k), ωm(k) at each sample k, plus white noise term an, ωn
and slow-varying accelerometer bias term ab, ωb. R is the rotation matrix for the IMU’s
orientation in the world reference frame, and gt is the gravitational acceleration in the
world frame.

The kinematic equations which model the linear and angular motion of the IMU sensor
are shown as follows.

p(k) = p(k − 1) + v(k − 1)∆t +
1
2

R(k)(am(k)− ab)∆t2 (3)

v(k) = v(k − 1) + (R(k)(am(k)− ab) + g)∆t (4)

q(k) = q(k − 1) ∗ q{(ωm(k)− ωb)∆t} (5)

where the “∗” operator stands for the quaternion multiplication, and q{∆θ} stands for the
quaternion

[
cos

(∣∣∣∆θ
2

∣∣∣) ∆θ
|∆θ| sin

(∣∣∣∆θ
2

∣∣∣)] mapping from rotation vector ∆θ, represented as

(ωm(k)− ωb)∆t. Vectors p, v ∈ R3 are the position and velocity, and q is the quaternion
associated with the orientation of the IMU, both represented in the world frame.

Because of the noise and bias terms in the IMU signal, at the end of each stride, the
computed residual velocity will not be exactly zero. To handle this issue, the Zero Velocity
Update (ZUPT) is used for correcting nonzero residual velocity. The basic idea is to assume
the foot has zero velocity during the foot-flat phase and use this assumption to correct the
drift in the velocity estimation. In integration-based reconstruction, the raw IMU data is
first segmented to different strides, then the PDR states are integrated through each stride
according to Equations (3)–(5). At the foot-flat phase in between each stride, the ZUPT
is used to correct the drift: the residual velocity is modeled as a parameterized growing
term with time since the prior ZUPT and subtracted from the computed velocity to obtain
a zero end velocity [1,3,11–14]. In Kalman Filter-based reconstruction, the drift correction
is implemented as a zero velocity pseudo-measurement update during the foot-flat phase
for the filter, with the correction propagating to position, velocity, and other states based on
the Kalman gain [15,28,50]. Multiple variants of Kalman Filter exist, including Extended
Kalman Filter (EKF), Error State Kalman Filter (ESKF), and Unscented Kalman Filter (UKF).
In the remainder of this paper, ESKF-based PDR [4] is selected for comparison against
the proposed method. Instead of linearizing the nonlinear system dynamics like EKF
and being affected by the linearization error [31], ESKF acts on the small error states of
the system that have linear error propagation dynamics, thus gaining improved accuracy
and robustness [28,31,39]. ESKF maintains a simple estimation of the nominal states and
periodically injects error states into nominal states when filter measurements update is
available, such as ZUPT.

ZUPT is a key component in the PDR as it allows the algorithm to correct the error in
between each stride, thus reducing the drift in the position from cubic in time into growth
of lower order [55]. However, the linear correction still leaves error on the positions and the
height tends to drift along the vertical direction [11,18,21], thus hindering the acquisition
of accurate height information and, consequently, ground slope and stair kinematics and
detailed foot–ground kinematics such as ground clearance estimates. For known level
ground, a zero height change assumption can also be used to de-drift the height error over
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each stride [1,3,10,12], but then some of the key problems include (i) how to accurately
detect the ramps and stairs with a minimal set of sensors, and (ii) how to re-implement
height reconstruction for stairs and ramps, which are not compatible with the added
assumption. The proposed method addresses these two problems at the same time.

3.1. Linear and Impulsive Zero-Velocity Correction

The static bias in the gyroscope signal ωb, which is the main component of gyroscope
bias with the biggest effect on orientation estimation [56], can be easily removed through
estimation during any long stationary period. The accelerometer bias is harder to estimate
from static calibration. In practice, the accelerometer bias often causes a significantly
larger error compared with gyroscope bias, so we keep only the accelerometer bias term
in the error state. We also switch the name and notation of accelerometer bias ab to
acceleration bias b =

[
bx, by, bz

]T to reflect a slightly different meaning—it covers more
than just accelerometer bias in the IMU error model. It also accounts for noise, errors
induced by walking pattern, and imperfections in orientation estimation (see further
discussion in Section 7). The missing information in the heel strike event is modeled as a
vertical velocity impulse, which we call heel strike (HS) vertical velocity error. In the following
section, a kinematic model to estimate the acceleration bias and HS vertical velocity error is
proposed. Note that the acceleration bias is defined in the IMU local frame while the HS
vertical velocity error is defined vertically in the world frame.

Suppose the IMU orientation in each moment is already known (e.g., from any orien-
tation estimation algorithm), and it has been used to transform the measured accelerometer
signal am from the sensor frame into the world frame. After integrating the world frame
IMU acceleration according to (3) and (4), there will be a non-zero residual velocity vector
vresidual as well as residual height hresidual . The idea of the proposed model is to express the
accumulated velocity difference as a function of acceleration bias and HS vertical velocity
error, and then correct for both. This is similar to taking the partial derivative of the velocity
with respect to acceleration bias and HS vertical velocity error, then solving the equations
to ensure that everything satisfies the zero residual velocity condition.

We use v(k) and p(k) to express the velocity and position at sample k. The velocity
starts at zero for each stride. Without the bias term and white noise term in (1), the
velocity v(k) at current sample (k) is related to the prior velocity v(k − 1) and the current
acceleration and rotation,

v(k) = v(k − 1) + [R(k)·am(k) + g] · ∆t. (6)

With the bias term in (3), the corrected velocity v′(k) at current sample (k) is

v′(k) = v′(k − 1) + [R(k) · (a m(k)− b)+g] · ∆t. (7)

We define the velocity difference δv(k) as the difference of the velocity increment dur-
ing sample (k − 1) to (k) due to acceleration bias, and the accumulated velocity difference
∆v(k) up to sample k as the difference between v(k) and v′(k):{

δv(k) = [v(k)− v(k − 1)]− [v ′(k)− v′(k − 1)]
∆v(k) = ∑k

i=1 δv(i) = v(k)− v′(k)
(8)

Similar to taking the partial derivative with respect to acceleration bias, we obtain an
expression for δv(k) as a function of acceleration bias by rearranging and subtracting (6)
with (7):

δv(k) = [v(k)− v(k − 1)]− [v ′(k)− v′(k − 1)] = R(k) · b · ∆t (9)

Notice that this velocity difference is only dependent on the rotation matrix R(k).
Recall that we assumed the rotation matrix R(k) is already computed. We further assume
that the acceleration bias b and timestep ∆t are constant during each stride period. Then,
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the velocity difference δv(k) in (9) is summed up over time to obtain the expression for
accumulated velocity difference ∆v(k) from sample index 1 to sample index k as:

∆v(k) =
k
∑

i=1
δv(i) =

k
∑

i=1
(R(i) · b · ∆t)

=

(
k
∑

i=1
R(i)

)
· b · ∆t = Bv(k) · b · ∆t.

(10)

where the sum of rotation matrices is called Bv(k)

Bv(k) =
k

∑
i=1

R(i). (11)

With this, we can represent the residual velocity ∆v(k) as a numerical function of
acceleration bias b =

[
bx, by, bz

]T . Note that Bv(k) is no longer a rotation matrix; it is a
general matrix made from the sum of several rotation matrices.

Now consider the error that happens at heel strike. For each stride, the heel strike
index khs is detected as the first time the shoe touches the ground (see Section 5 for further
discussion). Heel strike causes an impact opposite to the gravity direction as the foot lands
on the ground. As discussed earlier, this impact might lead to the loss of information in
the data because of limited sensor bandwidth or range. We model the loss of acceleration
information as a discontinuity of velocity in the vertical direction, and call it heel strike
(HS) vertical velocity error ∆vhs,z. It interacts with the system dynamics by adding this
velocity impulse at the instant of heel strike,

vz
′(khs) = vz(khs) + ∆vhs,z (12)

Combining the HS vertical velocity error ∆vhs,z and velocity difference due to acceler-
ation bias in (10), we can obtain the accumulated velocity difference ∆v(k) at sample k (for
k > khs),  ∆vx(k)

∆vy(k)
∆vz(k)

 = Bv(k)

 bx
by
bz

∆t −

 0
0

∆vhs,z

. (13)

To satisfy the zero residual velocity condition for each stride, the acceleration bias and
HS vertical velocity error are computed such that the accumulated velocity difference will
counter the non-zero residual velocity computed from raw data. The equation is simply
a subtraction:

∆v(N) = v(N)− v′(N) = vresidual(N)− v′residual(N) = vresidual(N). (14)

where N is the total number of samples in that stride, vresidual(N) is the non-zero residual
velocity integrated from the raw acceleration data up to sample N, and v′residual(N) is the
corrected residual velocity, which is set to zero to satisfy the ZUPT condition.

Therefore, the system of equations for satisfying the zero residual velocity condition
with acceleration bias and heel strike velocity is vresidual,x(N)

vresidual,y(N)
vresidual,z(N)

 =

Bv,11(N) Bv,12(N) Bv,13(N)
Bv,21(N) Bv,22(N) Bv,23(N)
Bv,31(N) Bv,32(N) Bv,33(N)

 bx
by
bz

∆t −

 0
0

∆vhs,z

. (15)

Note that Equation (15) alone has no unique solution, it needs to be combined with
the zero height change condition described in the next section.
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3.2. Zero Height Change Assumption

Much of the time, walking does occur on level ground. Our method leverages this
as a default assumption to ensure a zero height change in stride reconstruction. In a later
step, the appropriateness of this assumption is evaluated to determine whether each stride
was in fact on level ground, or instead on a ramp or on stairs; for these other cases, an
alternative reconstruction is performed.

Without the correction for acceleration bias b, at each sample k, the position p(k) is
computed by Equation (16).

p(k) = p(k − 1) + v(k − 1) · ∆t +
1
2
[R(k) · am(k) + g] · ∆t2 (16)

With the correction for acceleration bias b, the corrected position p′(k) is computed as

p′(k) = p′(k − 1) + v′(k − 1) · ∆t +
1
2
[R(k) · (a m(k)− b) + g] · ∆t2. (17)

Now we define the position difference δp(k) as the difference of position increment
during sample (k − 1) to (k) due to acceleration bias and accumulated position difference
∆p(k) up to sample k as the difference between p(k) and p′(k):{

δp(k) = [p(k)− p(k − 1)]− [p ′(k)− p′(k − 1)]
∆p(k) = ∑k

i=1 δp(i) = p(k)− p′(k)
. (18)

Similar to taking a partial derivative with respect to acceleration bias, the position
difference at time k is found by subtracting (17) from (16):

δp′(k) = ∆v(k − 1) · ∆t + 1
2 R(k) · b · ∆t2

= [B v(k − 1) + 1
2 R(k)] · b · ∆t2

= [B v(k)− 1
2 R(k)] · b · ∆t2.

(19)

Summing up (18) with the expression from (19) across samples, the accumulated
position difference ∆p(k) up to sample k is:

∆p(k) =
k

∑
i=1

δp(i) =
k

∑
i=1

[
Bv(i)−

1
2

R(i)
]
· b · ∆t2 = Bp(k) · b · ∆t2. (20)

We use matrix Bp(k) to represent the sum of matrix Bv − 1
2 R from time 0 to sample k:

Bp(k) =
k

∑
i=1

Bv(i)−
1
2

R(i). (21)

The HS vertical velocity error will also contribute to the position difference. The
velocity impulse ∆vhs,z acts on the vertical velocity at time khs. Propagating its effect on
velocity to the end of the stride at sample N, the position difference due to HS vertical
velocity error will be  ∆px(N)

∆py(N)

∆pz(N)

 = −

 0
0

∆vhs,z

(N − khs)∆t. (22)

Since level-ground walking means zero changes in height, only the position component
in the vertical direction needs to be considered in (20). Expanding the matrix form in (20)
and keeping the third row, we obtain

∆pz(n) =
[
Bp,31, Bp,32, Bp,33

][
bx, by, bz

]T∆t2. (23)
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Combining (22) and (23), we have the following equation to compute accumulated
height difference ∆pz(N) due to acceleration bias and HS vertical velocity error.

∆pz(N) =
[
Bp,31, Bp,32, Bp,33

]bx
by
bz

∆t2 − ∆vhs,z · (N − khs) · ∆t (24)

To satisfy the zero height change condition, acceleration bias and HS vertical velocity
error are computed such that they will counter the non-zero residual height. Similar to
Equation (14), the residual height is connected to the model:

∆p(N) = p(N)− p′(N) = hresidual(N)− h′residual(N) = hresidual(N). (25)

where N is the number of samples for each specific stride, hresidual(N) is the non-zero resid-
ual height double integrated from raw acceleration data, and h′residual(N) is the corrected
residual height and should be zero to satisfy zero height change condition.

3.3. Matrix Model

Combining the accumulated velocity difference Equations (13) and the accumulated
height difference Equation (24) together, the system of equations connecting the acceleration
bias and heel strike velocity error with velocity difference and height difference at the same
time is formulated:

∆vx(N)
∆vy(N)
∆vz(N)
∆pz(N)

 =


Bv,11(N) Bv,12(N) Bv,13(N) 0
Bv,21(N) Bv,22(N) Bv,23(N) 0
Bv,31(N) Bv,32(N) Bv,33(N) −1/∆t

Bp,31(N)∆t Bp,32(N)∆t Bp,33(N)∆t −(N − khs)




bx
by
bz

∆vhs,z

∆t (26)

When a heel strike event is detected and the movement is level-ground walking, we
can solve for a unique set of

[
bx, by, bz, ∆vhs,z

]T as in (27) such that they will compensate
for the non-zero residual velocity and non-zero height change as shown in Figure 1.

∆vx(N)
∆vy(N)
∆vz(N)
∆pz(N)

 =


vresidual,x(N)
vresidual,y(N)
vresidual,z(N)
hresidual,z(N)

 (27)

Putting (26) and (27) together yields the system of equations that guarantee any
assumed residual velocity and height change,

vresidual,x(N)
vresidual,y(N)
vresidual,z(N)
hresidual,z(N)

 =


Bv,11(N) Bv,12(N) Bv,13(N) 0
Bv,21(N) Bv,22(N) Bv,23(N) 0
Bv,31(N) Bv,32(N) Bv,33(N) −1/∆t

Bp,31(N)∆t Bp,32(N)∆t Bp,33(N)∆t −(N − khs)




bx
by
bz

∆vhs,z

∆t, (28)

where the left-hand side is the residual velocity and height integrated from raw acceleration
data for level-ground walking without slipping. Matrix Bv(N) and Bp(N) can be computed
iteratively using the following equations (where Bv(0) and Bp(0) are both zero matrices):{

Bv(k) = Bv(k − 1) + R(k)
Bp(k) = Bp(k − 1) + Bv(k)− 1

2 R(k)
(29)
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Figure 1. Three-axis velocity and horizontal trajectory in the sagittal plane (x forward, z up), with
the instant of heel strike noted as the dashed line and circle. The proposed method de-drifts the
residual non-zero velocity and non-zero height change by estimating acceleration bias and HS vertical
velocity error.

4. Terrain Determination

Walking on ramps and stairs involves different gait patterns compared with level-
ground walking. These alternative terrains are common in both indoor and outdoor
environments, yet they impose extra challenges for people with mobility interventions such
as orthosis and prosthesis users [57,58]. To understand walking performance on ramps
and stairs in real-world settings, it is essential to both identify the ramps and stairs in the
dataset and to reconstruct them accurately.

However, without any assumption or external information about the terrain, both the
KF-based methods [19,26] and integration-based method [11] suffer from drift in height.
One can force the zero height change condition for level-ground walking, but then the
question is how to determine if people are walking on level ground or not, so as to
determine when to apply or not apply the level-ground walking assumption. Much work
has been conducted to detect ramps and stairs activities using different combinations of
wearable sensors signals [59], including motion data from IMUs, muscle activity from
electromyographic sensors (EMG), ground reaction force/moment from pressure insoles
and prosthetic pylons, etc. However, when it comes to practical clinical use, a trade-off
has to be considered regarding accuracy/performance and availability, as some types of
sensors are hard to deploy outside the laboratory environment. This section derives a new
approach to achieve both terrain determination with high accuracy and improved accuracy
of reconstruction using only a single foot-mounted IMU.

Equation (27) is derived by imposing both a zero velocity assumption and zero height
change assumption at the same time. These assumptions are only correct for level-ground
walking. However, this equation can still be solved for data from ramp and stair walking,
and by examining the solution vector

[
bx, by, bz, ∆vhs

]
, it can be determined whether each

stride is indeed walking on level ground, or alternatively on a ramp or stair.
To achieve this ramps and stairs determination, for each stride i, the first step is to double

integrate the raw acceleration data in the world frame to obtain residual velocity and residual
position, then apply Equation (27) to obtain the solution vector

[
bx(i), by(i), bz(i), ∆vhs(i)

]T

and collect these solutions into a stride-by-stride array.
Figure 2 shows the solution vector

[
bx, by, bz, ∆vhs

]T across all strides on a 7-min trial
with ramps, stairs, and level-ground walking. The top figure shows each component of
the acceleration bias solution, and the bottom figure shows the heel strike vertical velocity
error, with a magnified view on the left.
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Figure 2. Acceleration bias and HS vertical velocity error among all strides in an example trial.
All large deviations in both figures belong to ramps/stairs strides. Additionally, the direction of
deviation of HS vertical velocity error indicates the ascent/descent direction on ramps and stairs.

Any obvious deviation from the average value of the solution vector belongs to the
strides on ramps/stairs. To remove the baseline effect of level-ground walking, in each
trial the mean of the 2nd and 3rd quartile of the acceleration bias and HS vertical velocity
error data are subtracted from those respective signals, then two different thresholds
are applied to separate level ground/ramps/stairs. By empirical tuning for a proper
threshold that encourages the most separation, level ground, stairs, and ramps can be
cleanly distinguished as long as the effect of sensor noise, errors in orientation estimation,
and walking pattern (for example, magnitude of heel strike) will not blur the effect of
violating the level-ground condition, which is true for most of our trials in Section 6. In
practice, the HS vertical velocity error is used to separate level ground vs. ramps vs. stairs.
The acceleration bias is only used to separate non-stairs vs. stairs. More details on choosing
thresholds are discussed in Section 6 Experiments and Section 7 Discussion. As shown
later in the paper, the ramp in the test data set has only 3.7-degree inclination angle, yet
this method accurately captures the deviation in solution vectors. When walking on ramps
with steeper inclination angles, the solution vector should only become easier to separate.

The magnitude of deviation is significantly larger on stairs than on ramps, enabling
each category to be separated individually. Moreover, the sign of the HS vertical velocity
error corresponds to the direction of height change, either going up or down. This behavior
makes sense because when Equation (27) is used to force a stride with height change to be
reconstructed as level-ground walking, the algorithm will compute a large acceleration bias
and velocity error to compensate for the height change. Since the heel strike velocity error
is expressed in the world frame, an HS vertical velocity error ∆vhs,z in the same direction
as true height change in the stride is found, so that it can eliminate the height change.
In contrast, the acceleration bias b is expressed in the IMU local frame, the direction of
which is less intuitive. Both acceleration bias and HS vertical velocity error show stable
distribution among the strides on level ground, which confirms that specific patterns exist
in steady level-ground walking. The fluctuation of the solution vector is a result of the
unmodeled sensor noise or imperfections in the orientation estimation.

The proposed method is good at separating level-ground walking from non-level-
ground walking. One challenge in practice is that the boundary between ramps and stairs
can be vague in terms of only height change. For example, the first stride on stairs often
only rises one stairstep, resulting in a lower height change compared with the strides in the
middle of the stairs that cover two stairsteps. To improve the detection accuracy, a final
check on the detection results can be performed using the following conditions:
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(1) Strides on ramps have larger forward distance and less height change than strides
on stairs.

(2) Strides on ramps or strides on stairs are usually consecutive.

The forward distance can be extracted from the trajectory reconstructed from the raw
acceleration data which are used to compute vresidual and hresidual ; thus, there is no need to
recompute anything.

Occasionally, heel strike events are not detected for some strides. An average heel
strike timing is assigned to the undetected stride only for the purpose of ramps and stairs
detection, not for the trajectory reconstruction in Section 5.

The terrain determination method is summarized as the following Algorithm 1:

Algorithm 1: Terrain Determination.

Input: acceleration data, orientation data, ZUPT index, heel strike index.
for each stride j do:

double integrate world − frame acceleration to obtain vresidual and hresidual
if no khs do

assign an average value to khs
end if
solve Equation (27) to obtain

[
bx(j), by(j), bz(j), ∆vhs,z(j)

]T

end for
obtain mean ∆vmean = mean of 2nd and 3rd quartile of ∆vhs,z
obtain mean bmean = mean of 2nd and 3rd quartile of b
for each stride j do:

if
∣∣∆vhs,z(j)− ∆vmean

∣∣ > V_THRESHOLD_RAMP do
RampStairIndicator(j) = RAMP

end if
if |b(j)− bmean| > B_THRESHOLD_STAIR or

∣∣∆vhs,z(j)− ∆vmean
∣∣ >

V_THRESHOLD_STAIR do
RampStairIndicator(j) = STAIR

end if
direction = sign

(
∆vhs,z(j) )

end for
for strides that are ramps/stairs do

clean wrong determination by forward distance and height change criterion
clean wrong determination by consecutive ramps/stairs criterion

end if

5. Reconstruction Method

The core idea of this paper is to simplify the error states to acceleration bias and HS
vertical velocity error, build a new model in Section 3 to estimate them, and apply this
model to develop a new form of integration-based motion reconstruction method to reduce
the drift and error during reconstruction. The proposed method is different from the widely
used ZUPT-based integration reconstruction because it does not simply assume the drift is
linear; instead, it views the error from the perspective of an IMU error model—specifically,
discrete loss of information in the heel strike impact. The method is also different from
ESKF reconstruction because it is a deterministic approach in computing the bias and error
terms instead of a probabilistic approach.

5.1. Preprocessing

The preprocessing step includes computing the orientation information from raw IMU
data, then extracting basic gait information such as heel strike index and ZUPT index,
which will be used in reconstruction. There are several steps:

(1) The orientation of the IMU sensor can be obtained from any suitable algorithm,
for example, direct quaternion integration with gravity correction during stance phase [1]
or Kalman Filter for only orientation if the goal is to reconstruct IMU motion, or even the
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orientation from the ESKF-based PDR if the goal is to improve the reconstruction results.
Results presented here use the orientation quaternion from the ESKF method, because the
orientation itself is not affected by HS impact as much as position and velocity. We also
provide results using orientation data without Kalman Filter (i.e., using direct quaternion
integration of gyro data) in Appendix A.

(2) The orientation data are used to transform the acceleration data from the IMU local
frame to the global frame.

(3) The heel strike detector will look for the first high peak in the difference of vertical
acceleration [18,60,61].

(4) The ZUPT index indicates whether the foot is in the “foot-flat” phase (i.e., heel and
forefoot both contacting the ground), so that the zero velocity assumption is satisfied. The
ZUPT index is a Boolean defined as “true” when both acceleration and angular velocity
indicate low movement:

ZUPT(k) =
∣∣∥∥a(k)

∥∥− g
∣∣ < Ta &

∥∥ω(k)
∥∥ < Tω

Ta, Tω are the thresholds for acceleration and angular velocity. This defines a finite
period of time in each stride, similar to the ZUPT index in most PDR literature. The ZUPT
index is subsequently smoothed to remove any small stance phase and high motion periods
that might be wrong, and then each contiguous period of the ZUPT index is reduced to
its central portion by trimming off the ends, to ensure only the most stationary period is
identified. Throughout the ZUPT period, the velocity is held as zero to eliminate stance
phase drift and thereby reduce displacement errors further. In the limit, the ZUPT period
can be reduced to a single index.

(5) Use Algorithm 1 to obtain the ramps and stairs indicator. The ramps and stairs
indicator will determine how each stride is reconstructed based on whether or not the zero
height change condition applies.

5.2. Reconstruction

For each stride, the reconstruction algorithm is also run on the raw IMU data first
to obtain residual velocity vresidual and residual height hresidual , followed by the model
developed in Section 3. When the stride is on level ground, both zero velocity and zero
height change assumptions are applied to solve for a unique solution of

[
bx, by, bz, ∆vhs,z

]
according to Equation (27). When the stride is on ramps and stairs, the zero height change
assumption does not apply, so instead the reconstruction reverts to a traditional ZUPT
algorithm through Equation (15), assuming a HS vertical velocity error of zero to generate
a unique solution. This is necessary because there is no fourth equation to separate the
effects of b and ∆vhs.

After determining
[
bx(j), by(j), bz(j), ∆vhs,z(j)

]
for the stride (j), the acceleration is

corrected by subtracting the acceleration bias, and is then rotated into the world frame and
double integrated into v(k) and p(k). When the current time is the heel strike moment,
the HS vertical velocity error ∆vhs,z is added to v(k) according to (12) (having no effect on
ramps and stairs when ∆vhs,z is set to zero).

Considering that there are unmodeled noise and bias in the system and that sensors
could have different levels of noise, we introduce an extra correction parameter C to account
for the uncertainty of noise. C will decide the portion of residual velocity that is corrected
using the error model. For better, more accurate IMU sensors, C can be set close to 1. For
sensors with higher noise levels, C should be set to a lower value, for example 0.9. The
intuition for parameter C is that, for better sensors, the unmodeled noise contributes less to
the residual velocity and height; thus, we can attribute all residual velocity to acceleration
bias and HS vertical velocity error (C = 1). For noisier or less accurate IMU data, the
unmodeled random noise contributes a non-negligible portion of the residual velocity
and height; thus, not all of the error estimated by the error model should be used for a
correction. The reconstruction algorithm is shown as the Algorithm 2 below.
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Algorithm 2: Trajectory Reconstruction.

Input: acceleration data, orientation data, ZUPT index, heel strike index.
Use Algorithm 1 to detect all ramps and stairs.
Convert raw acceleration data to global acceleration data accel(k)
for each stride j do

double integrate the raw acceleration to obtain vresidual and hresidual
scale vresidual with parameter C
if RampStairIndicator(j) = false do

solve Equation (27) to obtain
[
bx(j), by(j), bz(j), ∆vhs,z(j)

]T

else do
solve Equation (15) to obtain

[
bx(j), by(j), bz(j)

]T

set ∆vhs,z = 0
end if
accel(1..N) = accel(1..N) −

[
bx(j), by(j), bz(ij)

]T

for k = 1:N do
v(k) = v(k − 1) + accel(k) ∗ ∆t

ifk = khs do
v(k) = v(k) + ∆vhs,z(j)

end if
p(k) = p(k) + p(k) ∗ ∆t + 1

2 accel(k)∆t2

end for
end for

6. Experiments

The proposed algorithm was tested for 15 trial records (duration 8.01 ± 1.63 min)
across both feet of 6 subjects (4 female, 2 male, age 27 ± 3 years old, height 1.74 ± 0.07 m,
weight 83.1 ± 14.4 kg), including 5 able-bodied subjects and 1 person with unilateral
transtibial amputation. Participants gave their written informed consent according to
procedure approved by the University of Wisconsin–Madison Health Sciences Institutional
Review Board (HS-2017-0678), in accordance with the Declaration of Helsinki. We used
Opal wearable IMUs (APDM Wearable Technologies, OR, USA) and attached them to the
distal portion of the shoelaces with a tight-fitting fabricated pouch. These sensors collect
gyroscope and accelerometer data at 128 Hz. Although the sensor measures magnetic data
and barometric pressure data at the same time, the algorithm does not use these signals.
In the testing, the subjects walked a route in an academic building three times, including
long periods of level walking, short ramps, a short stairway, and a long stairway to the next
floor of the building. They visited the long stairway exactly 3 times but visited the short
ramps and short stairway in random order and random number of times. The ramp has a
3.7-degree incline angle, and both the ramps and the short stairs have a height of 0.6 m; the
main staircase is 4.5 m tall with a landing in the middle. The height of individual stairs in
the short staircase is 0.15 m, and in the main staircase 0.18 m. The numbers of stairs are 4
for the short stairway and 25 for the long stairway. These characteristics of the building
terrain define ground-truth for quantifying the accuracy of the results.

After collecting the dataset, the IMU trajectory was reconstructed using Algorithm 2,
which contains the usage of Algorithm 1 to detect all the ramps and stairs in the dataset.
For the algorithm settings, the ZUPT period was reduced to the central 80 percent of each
contiguous period of ZUPT index and the correction parameter was set to 1 (full correction).
Results of the reconstruction were evaluated by the height error at the beginning and
end of each terrain segment, according to the ground truth of building geometry. For
level ground, the reference height change was zero; for ramps and the short stairway, the
reference height is 0.6 m; for the long stairway, the reference height is 4.5 m. The results
from the proposed method were compared against an ESKF reconstruction [4,15,28] as
well as integration reconstruction with ZUPT that de-drifts error linearly [1,11,13,14]. Note
that both the proposed method and integration reconstruction with ZUPT are forms of
integration-based reconstruction.
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6.1. Results: Terrain Determination

Figure 3 shows an example reconstruction of the algorithm. The results of terrain
determination and the following height error were compared against the manual segmen-
tation of the known structured indoor environment. All the stairs and ramps segments
are correctly detected and the total height error at the end point is less than 0.2 m. It is
worth mentioning that the short turning space at the landing in the middle of the staircase
is also correctly detected, showing the fine resolution of the terrain determination. Terrain
determination Algorithm 1 was run on all 15 trials, which counted 6009 strides in total. The
detected number of strides on ramps was 433 and the number of strides on stairs was 1268.
The determination results are summarized in Table 1. The overall accuracy for all three
terrains is 99.7%. The accuracy of each terrain is 99.9% for level ground, 96.0% for ramps,
and 100% for stairs. Out of the 18 strides on ramps that were misclassified as level ground,
17 were the transition strides on the edge of ramps. Those transition strides are hard to
detect [51] as they have shorter height change that approaches the limit of the proposed
fixed-thresholds method, meaning some strides on ramps are determined as level ground
due to minimal height change. The magnitude of the computed acceleration bias and the
heel strike vertical velocity error are plotted in normalized histograms in Figure 4. Three
clusters are formed, for level ground, ramps, and stairs. In the histogram for HS vertical
velocity error, a clear separation between the level ground and ramps can be observed. The
empirical way of finding potential thresholds can be achieved by examining the outputs as
shown in Figure 2 and choosing the velocity thresholds that encourage the most separation
between level ground/ramps and ramps/stairs. The thresholds remain the same for all
15 trials, with the thresholds V_THRESHOLD_RAMP set to 0.2 m/s, V_THRESHOLD_STAIR
set to 1 m/s, and B_THRESHOLD_STAIR set to 1.2 m/s2. The height change and forward
swing distance for separating ramps and stairs are 0.3 m and 1 m.

Figure 3. The example reconstruction results from one trial with 3 long stairways, 2 short stairways,
and 4 ramps. The whole path includes a 0.6 m ramp with 3.7-degree inclination angle, 4.5 m stairs to
the upper floor, and short 0.6 m stairs. The horizontal trajectory is plotted on the true floor plan of the
Mechanical Engineering Building 3rd floor. The Height vs. Time figure labels 3 terrains with unique
colors. All the strides on the turn between long stairs ascent and descent are correctly detected as
level ground.
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Table 1. Confusion matrix of terrain determination results for 15 trials.

Terrain Types
Predicted

Level Ground Ramps Stairs

Ground Truth

Level ground 4290 1 0

Ramps 18 1 432 0

Stairs 0 0 1268
1 Seventeen of eighteen strides are transition strides on the edge of ramps.
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Figure 4. Histogram of acceleration bias (magnitude of b) and heel strike vertical velocity error
(magnitude of the ∆vhs,z) among all 15 trials, including 4308 strides on level ground, 433 strides on
ramps and 1268 strides on stairs. The histogram is normalized so that the probability of strides sums
up to 1 for each terrain type, and the mean of the 2nd and 3rd quartiles of ∆vhs,z is subtracted to
remove base effect on level ground. A clear separation is shown on HS vertical velocity error between
level ground vs. non-level ground strides.

6.2. Reduced Height Error

The accuracy of height information can be characterized by computing the accu-
mulated height error on each terrain (Figures 5 and 6). The average height error on a
terrain is the total height error divided by the number of strides on that terrain. The mean
height errors per stride are 0.03 ± 0.08 cm on level ground, 0.95 ± 0.37 cm on ramps, and
1.27 ± 1.22 cm on stairs. The statistical significance of the differences in mean height error
per stride from the three methods (ESKF vs. ZUPT, ESKF vs. Proposed, ZUPT vs. Proposed)
are computed using two-tail two-sample Student’s t-tests on each terrain; the results are
presented in Figure 6. The proposed method shows greatly improved accuracy on level
ground in terms of height error because it explicitly imposes the zero height change con-
ditions. It demonstrates similar or slightly better accuracy on ramps and stairs compared
with the ZUPT method.

6.3. Accuracy

The accuracy of the reconstruction from the proposed method is compared to the other
two methods on a stride-by-stride basis in Figure 7, where we compute the stride length and
maximum relative stride height from all three methods for the same stride on level-ground
walking. Strides from the compared methods have nonzero residual height, because in
the compared methods themselves, terrains cannot be determined accurately, and thus
cannot be applied with the zero height change condition confidently. As shown in Figure 7,
both integration-based methods have similar stride length and maximum stride height in
terms of mean and distribution. The ESKF method shows slightly shorter stride length and
slightly higher maximum stride height. Figure 7 also shows reconstructed IMU trajectories
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on stairs and ramps, which are clearly delineated into rising and falling trajectories. Both
stairs and ramps have substantial variation, depending in part on the kinematics of each
specific stride, such as foot placement at the very beginning or end of a ramp, or stepping
onto the first vs. second step of a staircase from different approach distances.

Figure 5. Height trajectory and error analysis of the example reconstruction result. Left: height–time
plots reconstructed using three methods: ESKF, ZUPT, and proposed. Right: Total height error and
mean height error per strides on 3 terrains. The proposed method removes 99% of the error on level
ground while achieving similar performance on ramps and stairs.

Figure 6. Overall error analysis for all 15 trials. The proposed method removes 99% of the error
on level ground while achieving slightly improved performance on ramps and stairs (t-test values:
* p < 0.05; ** p < 0.01; *** p < 0.001).
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Figure 7. Stride lengths and stride heights of proposed method compared with the ZUPT method
and ESKF method, in one example trial. (Left): sagittal view of reconstructed strides for level
walking using each method. (Center-left): distribution of stride length. (Center-right): distribution
of maximum IMU height during each stride. (Right): sagittal view of reconstructed strides for ramps
(green) and stairs (purple), dash line indicating the kinematic boundary for separating ramps vs.
stairs by trajectory. Further separation is achieved by the consecutive ramps/stairs criterion.

7. Discussion
7.1. Implementation of Terrain Determination

This paper proposed an integration-based Pedestrian Dead Reckoning (PDR) algo-
rithm that can achieve accurate terrain determination and reconstruction of IMU trajectory
with improved accuracy in height estimation using a single foot-mounted IMU. The key
advancement is the introduction of a kinematic model that estimates both acceleration
bias and heel strike vertical velocity error by leveraging the zero velocity condition and
zero height change condition on level-ground walking. By applying the level ground
assumption to strides from all terrains, the algorithm generates large differences in model
outputs for strides on ramps and stairs due to violation of the level-ground condition. With
a proper threshold, these differences, specifically the HS vertical velocity error, yield a
clear separation of level-ground walking from non-level-ground walking, which indicates
that the proposed method is sensitive enough to separate the non-level ground from level
ground. Considering the fact that the ramp incline is only 3.7 degrees, this level of sep-
aration is already very good. However, depending on the sensor capability, orientation
estimation accuracy, and walking pattern, the separation could be sub-optimal as the effect
of errors mentioned above surpass the effect of the violation level-ground condition. In this
situation, the strides connecting level ground with non-level-ground terrain will be less
distinct; therefore, it is important to use a good-quality sensor to ensure good results.

The most critical threshold is V_THRESHOLD_RAMP that separates level ground
from ramps. The height change on ramps can be quite small, and in such cases it will
not create a large deviation in model outputs. If the threshold value is too small, false
positive detection may happen on ramps; if it is too high, ramps may be ignored. In our
dataset, a value between 0.2 m/s to 0.22 m/s generated robust results on all 15 trials. If the
application allows tuning to individual subjects, the optimal thresholds may vary across
a larger range, thus being more robust to different thresholds. One of the prosthetic foot
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trials is slightly sensitive to this threshold, because of the increased error in both velocity
and orientation estimation induced by significantly larger heel strike impact (see below).

The thresholds for stair detection, V_THRESHOLD_STAIR and B_THRESHOLD_STAIR,
are less sensitive as the height change on the staircase is larger. Though the region of HS
vertical velocity errors between the clusters of ramps and stairs is slightly blended, as
shown in Figure 4, further separation of ramps from stairs is achieved using a rectangular
kinematic boundary (Figure 7 right column) and a consecutive ramps/stairs criterion.
Other available strategies include using an elliptical boundary on IMU trajectory [51],
or using stance phase pitch angle of the foot to distinguish ramps from both stairs and
level ground [19,50]. The proposed method can also be applied to any framework where
a limited number of IMU sensors are available for ramp and stair detection. Note that
the proposed method is tested on structured indoor environments, while in real-world
settings, the baseline level-ground effect may change as the walking patterns change due
to factors like hardness of the ground, fatigue during long bouts of walking, or different
footwear. Uneven terrain may also add more difficulty because zero height change becomes
an approximation and no longer holds true.

7.2. Physically Meaningful De-Drifting Leads to Improved Accuracy

After determining the terrain type, the reconstruction is performed again, applying
the full model or reduced model to estimate the acceleration bias and (for level ground
only) the HS vertical velocity error, to remove the drift in the IMU trajectory reconstruction.
In human subject experiments, the reconstruction results demonstrate improved accuracy
in the vertical direction on all three terrains compared with ESKF-based reconstruction and
traditional integration reconstruction with ZUPT. Some past work has shown that linear
detrending can eliminate the remaining height error [10,12], but this can also generate
unrealistic stance-phase foot movements, leading to efforts to detrend with other curves
such as sigmoidal fits [3]. Moreover, these are purely empirical and are not based on known
physical error sources. A comparison of the reconstruction of an example real-world stride
on level ground with large heel strike impact is shown in Figure 8. For the ZUPT method,
the zero height change condition is enforced by linear de-drifting the residual velocity,
which is reflected as a fixed velocity offset in vertical velocity [10]. The final trajectory of the
ZUPT method demonstrates unrealistic negative height at the beginning of the motion and
reduced height throughout the forward swing. The proposed method is conceptually better
because it de-drifts the velocity and position with a physically meaningful model of impact
of the foot with the ground, instead of assuming linear or otherwise parameterized drift.
Thus, the height trajectory is accurate not only at the final position, but also throughout the
whole swing phase. This approach can therefore improve the metrics of the swing phase
movement that depend on accurate vertical movement.

It is not surprising to see that the proposed method and ZUPT demonstrate similar
stride length and height for level-ground walking and similar per-stride error on ramps
and stairs (Figure 7), as they are both integration-based reconstruction methods and the
proposed method does not use any additional information for these terrains. Compared
with the ESKF method, both integration-based reconstructions show higher accuracy on
all terrains. That being said, in practice, the strength of the filter-based method lies on
the sensor fusion side (for IMU orientation), not the reconstruction accuracy side. The
orientation of the IMU sensor at each moment is assumed to be obtained by any orientation
estimation methods as discussed in Section 2 from gyroscope and accelerometer data. In
Appendix A, we provide the results using a non-Kalman Filter-based orientation estimation
approach. To mitigate the common heading drift issue, it is also possible to improve
the heading estimation by enabling magnetometer data and using other sensor fusion
algorithms [56].
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Figure 8. Reconstruction of an example stride with large heel strike impact, comparing trajectory
reconstructed from Raw integration, traditional ZUPT, ZUPT combined with linear height de-drifting
(modeled as a constant bias in velocity z), and the Proposed method. (Top left) plot is the raw
acceleration data in the IMU local frame. (Top right) plot is the vertical velocity in the world frame.
(Bottom plot) is the IMU trajectory in the sagittal plane (x forward, z up), with the instance of heel
strike noted as a dashed line and circle. Note the flaws in the comparison methods: Raw integration
leaves drift during the following stance phase; traditional ZUPT generates substantial height error;
and ZUPT with linear height de-drifting yields negative height at the beginning of the movement
and reduced height during forward swing.

7.3. Exploring and Quantifying Heel Strike Error

The estimation and correction of impact-induced HS vertical velocity error is the new
advancement of the proposed kinematic model. As observed in Figure 4, the distribution of
HS vertical velocity error on level ground and ramps seems to follow a normal distribution,
while on stairs it does not show a normal distribution. The distribution for stairs may be
bimodal, reflecting one-stair and two-stair strides. It is important to note that the HS vertical
velocity error computed for ramps and stairs does not have the same physical meaning
as in the level-ground condition, because the terrain determination forces all strides to
satisfy the zero height change assumption. It is only useful in the sense of determining
terrains. However, an understanding of the probabilistic distribution of the parameters
may be useful in supporting future work.

The HS vertical velocity error turns out to be different for each subject depending on
the way they walk; for example, how they land on heel strike or how heavily or gently they
walk on stairs. We characterized the high-frequency impact in the acceleration data (mainly
due to heel strike) by computing the peak value of acceleration in each stride and the high-
frequency acceleration signal energy (percentage of total energy in the power spectrum
between 40 Hz and 64 Hz, through the whole stride), then plotting the mean height error
per stride with respect to these two values as shown in Figure 9a,b. An observation is
that the average height error is related to the level of heel strike, indicating that a higher
heel strike impact leads to higher mean height error. This observation coincides with our
hypothesis about heel strike error that bigger impact leads to more information loss, not
only in velocity, but also in orientation estimation, and therefore larger error. It also helps
explain the trial with large heel strike impact that needs slightly different thresholds for
terrain determination.
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Figure 9. The magnitude of heel strike is quantified by the maximum peak acceleration magnitude
and acceleration energy percentage above 40 Hz in accelerometer signals. (Top): median peak and
energy percentage with respect to mean height error on stairs for all 15 trials. As an observation,
the mean height error on stairs increases as both peak acceleration and energy percentage increases.
(Bottom): peak and energy percentage for all strides on level ground and stairs. The distribution of
both acceleration peak and energy percentage differs on the two terrains.

The acceleration signal peak value and high-frequency acceleration energy percentage
are also plotted as two groups of histograms in Figure 9c,d. The separation into two groups
indicates that the heel strike signal on stairs is quite different than that on level ground,
usually larger, meaning people land on the staircase harder than on level ground. This
observation also demonstrates that it would not be appropriate to simply use the HS
vertical velocity error on level ground to estimate that on stairs, when the fourth equation
(known residual height) is not available to enable a unique solution for both acceleration
bias and HS vertical velocity error.

7.4. Multiple Meanings of Acceleration Bias

As mentioned in Section 3, the acceleration bias in this model covers more than just
accelerometer bias in the IMU error model. It also accounts for noise, error in sensor signal,
and uncertainty in orientation estimation. The stable values of acceleration bias and HS
velocity error on the level-ground walking demonstrate the existence of certain patterns
in the parameters of the kinematic model. These parameters are likely a combination of
true sensor errors and errors due to the repetitive gait motion. It is worth mentioning that
the APDM sensor demonstrated good accuracy in static calibration, but still both the ESKF
method and integration method generated non-zero acceleration bias. This is consistent
with the assumption that the acceleration bias term is more than just the accelerometer bias.
Other imperfections like bandwidth limitations and faulty detection of ZUPT can both
contribute to the error. The multiple components lead to a wider, more blended distribution
of acceleration bias in Figure 4 compared with HS vertical velocity error.
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7.5. Limitations

Although the proposed method showed good performance in our testing, some limita-
tions remain. First, the proposed algorithm is a deterministic approach for reconstruction
from IMU data that contains random noise; it may perform worse on sensors with higher
noise levels. Although we do provide a parameter for handling different levels of sensor
noise in the proposed algorithm, it may perform less effectively on sensors with increased
noise, particularly if the noise is significantly greater than the bias term. Second, terrain
determination relies on empirical selected fixed thresholds. It correctly classifies all terrain
segments but is not sensitive enough to reliably detect the transition strides between level
ground and ramps. Moreover, when applied on larger populations or on specific patient
groups, patterns on those model outputs may vary and need adaptive thresholds. Third, the
algorithm includes an assumption of zero height change that is appropriate for true level-
ground walking, but it is violated for other terrains. The lack of information to estimate
the error on non-level-ground walking led to using an assumed zero value of HS vertical
velocity, which is not strictly correct. Other types of models for the proposed HS vertical
velocity error were tested, including modeling the error as a Gaussian random variable or
simply assigning the mean magnitude from other strides on level ground. However, these
did not work well, for multiple potential reasons: the characteristic of heel strike event on
ramps and stairs is different from that on level-ground walking as shown in Figure 9; thus,
it does not make sense to approximate them with the data from level-ground walking; and
moreover, HS vertical velocity error may simply be non-Gaussian. Additional consideration
of how the different conditions of gait could generate valid assumptions to constrain the
equations and generate measured, rather than assumed, values for HS vertical velocity
error could lead to further improvement. Fourth, the algorithm as implemented assumes
the HS vertical velocity error is an impulse in vertical velocity at a specific heel strike
moment, while in reality it might be spread out over a short period of time. Alternative
models for a distributed application of this impulse may also improve the reconstruction.
Finally, the experiments used mostly a young and healthy test population, with only one
case from a person with lower limb amputation using a prosthesis, in structured real-world
indoor environments. Additional testing on populations with different characteristics
will help verify that the method is generalizable and may further inform the selection of
classification thresholds for general or population-specific use. There is also ongoing work
to apply the proposed method to estimate real-world foot clearance in a clinical population
with gait impairments—an application in which accuracy of the whole trajectory in the
vertical direction is critical.

8. Future directions

One category of potential improvements is to handle the sensor noise better by model-
ing it probabilistically. For example, it may be possible to express the states’ uncertainty by
a covariance matrix like a Kalman Filter, so that the algorithm could evaluate the contribu-
tion of the error model in the residual velocity and residual height adaptively, rather than
with the fixed parameter C. Another possibility is to use the proposed error model as a
plug-in for a Kalman Filter-based method to improve the performance of the Kalman Filter
by providing estimation of HS vertical velocity error and acceleration bias. In either case,
it may be appropriate to correct different amounts in the x, y, and z directions by using
separate values of C or Kalman gains. Additionally, it may be worthwhile to study the
distribution of acceleration bias and HS vertical velocity error and model the kinematics
using statistically derived values for the unknown parameters on ramps and stairs.

Another category of possible improvements is to find additional constraint equations
to allow measurement-derived HS vertical velocity errors on non-level terrain, instead of
an assumed zero value or a statistical value. As discussed in Section 5, the lack of additional
information forbids a unique solution for the error states on these terrains. However, it
may be possible to use the kinematics of the foot and shoe to generate another kinematic
constraint, such as a relationship between linear and angular motion between heel strike
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and foot-flat, or between foot-flat and toe-off. For example, suppose the geometry of the
shoe can be obtained with a 3D scanner, and the deformation of the shoe can be handled
properly; then the motion of the foot-mounted IMU can be estimated using shoe geometry
and angular motion as long as it is in contact with the ground during heel strike phases [18].
If the IMU’s height can be recorded just before heel strike, before it has been polluted
by heel strike error, and then recorded again as a final height during stance phase, then
this motion of the shoe “tipping down” from foot strike to foot-flat could create another
kinematic constraint equation, and we can compare the computed height change of the
IMU with its estimated motion from shoe geometry and angular motion. Figure 10 shows
an example implementation of this relationship: a graph of the change in IMU height
with respect to changes in pitch angle from foot strike to foot-flat. We use “foot strike”
here because when walking on stairs, subjects may either strike the staircase with heel or
forefoot. The slope on the right line should be the posterior distance between the end of
the shoe to the position of the IMU. The left line is a similar computation around the time
of forefoot strike, e.g., for some stair strides; the slope of the line should be the anterior
distance from the tip of the shoe to the position of the IMU. These and other sources of
constraint equations related to foot motion could be topics for further exploration.

Figure 10. The change of height from foot strike to foot-flat phase vs. pitch angle change from foot
strike to foot-flat. The angular motion of the foot and the linear motion of the IMU should be related
through the kinematics of the foot lever. Both positive values of pitch angle (typical heel strike) and
negative values (forefoot strike, mainly from down-stairs strides) show evidence of the expected
linear scaling.

In addition, the new method could be expanded to incorporate additional information
about known terrain or terrain consistency. The ramps and stairs reconstruction here
reverted to a simple elimination of acceleration bias because it assumed no knowledge of the
ground. However, past work has shown utility in assuming specific terrain characteristics
such as the height of each stair [2], if known. Because the final height of the footfall is
precisely the information needed to perform the HS vertical velocity error estimation, the
same information could be incorporated into the proposed method. Ramps of known slope
could be handled similarly, with final height determined by known slope and calculated
stride length, perhaps by separating horizontal and vertical correction steps in the algorithm.
It may also be possible to relax the assumption of known terrain and instead assume only
internal consistency. Most ramps and stairs in the built environment have constant slope
or stair height, so it may be feasible to separate them into different bouts or locations
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and back-correct distinct sets of strides to satisfy an assumption of constant slope or fixed
increments of stair height, even if the value of this slope or stair height is not known
a priori.

Finally, the proposed method in general assumes strides to be independent except
when verifying the consecutive ramps/stairs condition in terrain determination. This
feature makes it easy to speed up data processing using parallel computing techniques.
Unlike the Kalman Filter-based method, which is naturally a sequential algorithm, our
method breaks down the data dependency into a stride-by-stride level. For post-processing
type of task, for example, gait analysis after in-field data collection, all strides can be
reconstructed with CPU-based parallel computing for Algorithms 1 and 2 before entering
the next stage in the pipeline. This capability of speeding up is of great importance as data
are becoming more available than ever before. On the other hand, in some circumstances it
might be beneficial to incorporate temporal connection of the model outputs like the state
machine in [9] that adopt adaptive thresholds based on the current and next terrain type,
after quantifying the model outputs with more thorough understanding.

9. Conclusions

To improve the reconstruction accuracy in the height direction and determine terrain
types using only one foot-mounted IMU, this work proposed a kinematic model that
estimates a constant acceleration bias and impulsive heel strike vertical velocity error by
assuming zero residual velocity and zero height change as if on level ground. By examining
the violation of the zero height change assumption, the proposed method can determine
whether an individual stride occurred on level ground, ramp, or stair terrain by simply
thresholding the output HS vertical velocity error. Compared with ESKF method and ZUPT
method, the proposed method can explicitly estimate the error caused by heel strike impact
on level-ground walking. The new approach achieves significant improvement in height
drift on level ground and moderate improvement on ramps and stairs as well.
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Appendix A. Reconstruction Results with Orientation Computed Using a
Non-KF Method

The IMU orientation information used in the proposed method can be obtained from
any proper orientation estimation algorithm. In this appendix, the reconstruction results
using a non-Kalman Filter-based orientation method are presented, and the height error on
three terrains is compared using the proposed reconstruction method compared against
the ESKF method and ZUPT method.
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The orientation estimation has two components: quaternion-based strap-down integra-
tion [11], and inclination correction using accelerometer data [3,10,40,62]. The strap-down
integration simply follows integration equations derived from the quaternion kinematics,
as shown in Equation (5). When the IMU is considered under small motion, we can assume
that the accelerometer measures only gravity; thus, the accelerometer reading can be used to
correct the quaternion by computing the misalignment of the inclination angle. In practice,
we add a small gain to the inclination correction to increase robustness, similar to method 3
in [40].

The mean value and the statistical significance of the differences in mean height error
per stride among the three methods based on two-tail two-sample Student’s t-tests are
shown in Figure A1. The height error in both integration-based methods increases, due
to the reduced accuracy of the non-Kalman Filter-based orientation estimation method
compared with the Kalman Filter-based method. However, the proposed method still
performs the best among three methods, demonstrating robustness to the orientation
estimation results. In contrast, the height error of the ZUPT method increased significantly,
and became the worst among the three methods. Because the ESKF version includes
orientation estimation that cannot readily be separated out, nothing changed in the ESKF
method here and the height error of ESKF remained the same as in Figure 6.

Figure A1. Total height error and mean height error per strides from reconstruction without Kalman
Filter-based orientation estimation (t-test values: * p < 0.05; ** p < 0.01; *** p < 0.001).
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