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Abstract: This article presents the development of a vision system designed to enhance the au-
tonomous navigation capabilities of robots in complex forest environments. Leveraging RGBD and
thermic cameras, specifically the Intel RealSense 435i and FLIR ADK, the system integrates diverse
visual sensors with advanced image processing algorithms. This integration enables robots to make
real-time decisions, recognize obstacles, and dynamically adjust their trajectories during operation.
The article focuses on the architectural aspects of the system, emphasizing the role of sensors and the
formulation of algorithms crucial for ensuring safety during robot navigation in challenging forest
terrains. Additionally, the article discusses the training of two datasets specifically tailored to forest
environments, aiming to evaluate their impact on autonomous navigation. Tests conducted in real
forest conditions affirm the effectiveness of the developed vision system. The results underscore the
system’s pivotal contribution to the autonomous navigation of robots in forest environments.

Keywords: vision system; image processing algorithms; autonomous mobile robot; YOLOv5;
object detection

1. Introduction

The quest for technological solutions capable of handling challenging environments
has driven significant advancements in the fields of mobile robotics and computer vision.
Efficient employment of computer vision presupposes meeting certain requirements such
as good lighting and appropriate brightness in the environment being worked on. Thus,
applying cameras with good definition allows for capturing images to proceed with their
processing. It is common to preprocess images, such as their segmentation, which will
provide additional information, allowing for the extraction of valuable and critical informa-
tion for their classification, fulfilling the objective of obtaining the desired output from a
system [1].

Using different types of cameras, it is possible to implement detailed visual perception
of a particular environment, thereby acquiring capabilities to be applied in the domain
of autonomous driving [2]. For perceiving a specific environment, various functions are
involved, such as recognition, object extraction, and segmentation, with cameras. This
type of method involves the use of deep learning algorithms such as single shot detector
(SSD) [3], region-based convolutional neural networks (R-CNN) [4], and you only look
once (YOLO) [5].

Specifically, the ability of robots to navigate autonomously in forest environments
requires systems and algorithms that provide safety during their autonomous navigation,
making computer vision a fundamental topic for decision making. This type of decision
making can be scaled in different aspects in a forest environment, depending on the

Sensors 2024, 24, 1475. https://doi.org/10.3390/s24051475 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24051475
https://doi.org/10.3390/s24051475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2275-3508
https://orcid.org/0000-0001-9283-4093
https://orcid.org/0000-0002-2204-6339
https://doi.org/10.3390/s24051475
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24051475?type=check_update&version=2


Sensors 2024, 24, 1475 2 of 16

different types of objects that may be present. For example, detecting static objects in a
forest environment can be considered an object by which a certain robot can steer clear;
however, dynamic objects such as people or animals must consider the unpredictability
and thus immobilize the operation of a forest robot.

This article proposes an auxiliary technological system for the autonomous navigation
of a robot in a forest environment, grounded in the integration of computer vision and
an image processing algorithm (in this case, the YOLOv5 algorithm), to enable a robot
to move safely in forest environments. The goal is to endow the robot with the ability to
make real-time decisions based on accurate interpretation of visual information, allowing
for the detection and identification of obstacles, and, based on these procedures, change
its operational state. We intend to present in detail the architecture of the vision system,
emphasizing the purpose of each visual sensor and the strategies used, which will be
experimentally validated under real field conditions, thus demonstrating the impact of this
vision system during the autonomous navigation of a forest robot. Additionally, parallel
to this, we aim to train two datasets for detecting tree trunks and vegetation in order
to analyze the impact, they may have on the navigation of the forest robot in question.
Therefore, the main contributions of this work include:

• Development of an architecture for a vision system that adapts to forest environments,
emphasizing the importance of applying the proposed sensors.

• Development of an algorithm that ensures safety during the autonomous navigation
of the robot by detecting people and measuring distances to them.

• Training of two datasets for object detection in forest environments and analysis of the
impact these datasets can have during robot navigation.

2. Related Work

Computer vision has played a crucial role in image processing and the integration of
systems involving the acquisition, transmission, processing, and understanding of visual
information from images. This one has a wide range of applications in robotics, such
as planetary exploration. For instance, the Institute of Robotics and Mechatronics of the
German Aerospace Center (DLR) developed a prototype called the Lightweight Rover
Unit (LRU) dedicated to planetary exploration. The LRU uses a stereo camera to identify
unknown objects [6]. Another application is in search and rescue, where the Centre for
Automation and Robotics (CAR) at the Polytechnical University of Madrid implemented a
method based on thermal image processing and the application of convolutional neural
networks (CNN) to identify victims in post-disaster environments (PDE). This is achieved
with the assistance of a robotic system that moves through a legged system [7]. Visual
Simultaneous Localization and Mapping (Visual SLAM) is another use of computer vision
in robotics. Using images of an environment allows a robot to self-localize on a given map
and participate in its construction [8].

In agriculture, computer vision on robotic platforms has been gaining increasing
relevance and experiencing significant development. Within agriculture, vision has been
applied to various operations such as weed detection, crop inspection, harvesting, spraying,
and more [9]. The integration of machine vision technologies in agricultural robots is pivotal
for addressing navigation challenges, enhancing adaptability, and ensuring the efficiency
of smart agriculture in meeting the escalating demands of a growing global population [10].
Finally, in forestry, computer vision has made significant strides, as seen in projects such
as SEMFIRE. This project aims to develop a robotic platform for reducing forest fuel.
By employing computer vision and applying CNN, it becomes possible to identify and
characterize the environment (trees, animals, and people) as well as the vegetation to be
removed [11]. Reference [12] underscores experiments conducted in the UK aimed at
monitoring forests for economic growth and climate regulation. The experiments utilized a
drone equipped with camera sensors, including thermal and RGB cameras, and employed
the YOLOv5 algorithm for recognition.
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When it comes to object detection algorithms, YOLOv5 has proven to be one of the
most widely used applications in forest environments as well as in agriculture. In the work
conducted by Wang H. et al., the YOLOv5 algorithm is utilized to detect lychees along with
the Intel RealSense D435i camera to automate and optimize lychee harvesting [13]. Similarly,
Hofinger P. et al. used the YOLOv5 algorithm to monitor tree diseases where images were
captured by a UAV. Results obtained from this study revealed that the architecture imposed
by the YOLOv5 algorithm is suitable for the proposed task, thus enabling the detection of
damaged black pines with a 95% confidence interval [14]. Lastly, the work carried out by
Niu K. et al. demonstrated that the use of YOLOv5 proves advantageous for fire detection.
Thermal images captured from a UAV are utilized for this purpose [15].

Compared to other object detection algorithms, YOLOv5 has proven to be one with
higher performance. For instance, in the work conducted by Naftali M. et al., a comparison
of five object detection algorithms in outdoor environments, such as SSD MobileNetv2
FPN-lite 320 × 320, YOLOv3, YOLOv4, YOLOv5l, and YOLOv5s, was performed. It was
found that the algorithm that showed the most efficacy was YOLOv5s, thus revealing an
advantage for this type of application [16]. The authors of [17] conducted the detection
of different types of objects in forests using the algorithms Fast R-CNN, YOLOv3 SSD,
and YOLOv5, where it was found that YOLOv5 proved to be lighter and faster in object
detection, achieving better accuracy compared to the other algorithms.

3. Methodology and Algorithms
3.1. System Description

The robotic platform used for this study is a Green Climber LV 600 PRO forest machine
by MDB (manufactured by MDB, Fossacesia, Italy), as depicted in Figure 1. It is a remotely
controlled tractor designed for vegetation cutting in dense forest environments.
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autonomy, defining various subsystems, each with its own architecture, to provide auton-
omous navigation for the robot. The Sentry system is mounted on the rear of the tractor, 
connected to the forest machine, making it possible to control the vegetation-cutting 
equipment. 

The sensory system has a sensor architecture. Equipped with various sensors, includ-
ing high-resolution cameras, LIDAR, a Global Navigation Satellite System (GNSS) unit, 
IMU, and magnetometer, the Sentry can capture real-time information about the sur-
rounding forest environment. The system is shown in Figure 2. 

Figure 1. Forestry Machine MDB LVB600 PRO.

For its control and sensory perception, an architecture named Sentry was defined, con-
sisting of a “plug and play” sensor box adapted to the specifications of this and other forest
machines. This system incorporates a set of sensors that enable different levels of autonomy,
defining various subsystems, each with its own architecture, to provide autonomous naviga-
tion for the robot. The Sentry system is mounted on the rear of the tractor, connected to the
forest machine, making it possible to control the vegetation-cutting equipment.

The sensory system has a sensor architecture. Equipped with various sensors, in-
cluding high-resolution cameras, LIDAR, a Global Navigation Satellite System (GNSS)
unit, IMU, and magnetometer, the Sentry can capture real-time information about the
surrounding forest environment. The system is shown in Figure 2.

This diverse data combination provides a comprehensive and accurate view of the
terrain, allowing for obstacle detection [18]. The processing unit consists of a minicomputer
called NVidia Jetson Xavier Nx, which has notable features enabling efficient execution
of algorithms, including neural networks, while simultaneously processing data from
high-resolution sensors.
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3.2. Vision System Architecture

The autonomous navigation of a forestry machine such as the MDB LV600 PRO must
consider all the safety issues, such as the detection of people and other obstacles near the
machine. It is necessary to equip the Sentry with a vision system that allows the detection
of these types of obstacles. This architecture consists of four cameras, where two are RGBD
and the other two are thermal, as shown in Figure 3.
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The choice of RGBD cameras went through a rigorous and comparative process,
considering potential cameras such as the Intel RealSense D435I (manufactured by Intel
Corporation, Aloha, OR, USA; Hillsboro, OR, USA) and the ZED 2i (manufactured by
Stereolabs, San Francisco, CA, USA; New York, NY, USA and Paris, France). This selection
was based on the work carried out by Vladimir Tadic et al. in [19], where Table 1 presents a
comparative study between these cameras.
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Table 1. Comparative data between Intel RealSense D435I and ZED2i cameras.

Proprieties Intel RealSense D435i ZED 2i

Resolution 1280 × 720 (RGB) 2 × 1920 × 1080 (RGB)
Depth range 0.2 m–10 m 0.2 m–20 m
Field of view 91◦ × 65◦ × 100◦ 90◦ × 59◦ × 110◦

Tracking 6-DoF Pose Tracking 6-DoF Pose Tracking
IMU Integrated IMU Integrated IMU
Connectivity USB 3.0 USB 3.0
Support Intel RealSense SDK ZED SDK
Compatibility Windows, Linux, macOS Windows, Linux, macOS
Estimated price EUR 479.00 EUR 879.00

The ZED 2i camera demonstrates superior performance in terms of features and
functionalities for robotics applications, as indicated in Table 1. However, due to the
development stage of the Sentry system, the more cost-effective option, Intel RealSense
D435i, was chosen. This camera is designed for depth sensing in various applications,
including computer vision. It has a wide field of view (H × V × D) of 91◦ × 65◦ × 100◦

for the RGB camera, which reduces blind spots in the depth map. The corresponding
depth sensor has an FOV of 85◦ × 58◦ × 90◦. The impressive depth-sensing capability of
the D435i makes it suitable for a variety of uses, such as robotics, virtual reality, and 3D
scanning, among others. It stands out for its accuracy in in-depth measurement, resulting
in more precise mappings and enhanced object localization. With a depth range of up to
10 m, this camera offers a wide range of applications [19].

The FLIR ADK thermal cameras, developed by the FLIR System, use infrared sensors
to capture thermal images of the surrounding environment. Specifically designed for
object detection and temperature information, the FLIR ADK excels in providing data
in conditions of low visibility, such as darkness, fog, smoke, or other common adverse
scenarios [20]. In addition to the mentioned capabilities, the FLIR ADK can be combined
with other sensors, such as RGB cameras and LIDAR sensors, to create a comprehensive
vision system of the environment around the machine. This sensor fusion provides a
more accurate perception of the scenario, enabling object identification and enhancing
safety during vehicle navigation [20]. The need to integrate FLIR ADK cameras arises in
adverse situations, such as the presence of dust, common in forestry operations. In such
environments, the introduction of dust can impair the performance of certain sensors, such
as RGBD cameras, making infrared cameras a valuable resource for these situations [21]. In
the Sentry, the RGBD cameras will be located at the front and back of the box, while the
thermal cameras will be located at the front of the box. The primary goal of this vision
system is to provide increased safety throughout the operation of the LV600 Pro; thus,
sensor redundancy is desired, to cover all possible scenarios (dust, debris, smoke, multiple
lighting conditions, etc.).

3.3. Interaction between Subsystems

To provide a robust and modular framework for control and coordination among all
subsystems, the ROS (robot operating system) platform was employed. ROS enables and
facilitates communication and synchronization among various robotic components through
its distributed architecture, allowing precise and efficient execution of all components. The
integration of ROS into the Sentry system allows for data acquisition from the environment,
enabling the robot to adapt its capabilities to face a variety of environmental challenges in
forestry settings.

The interaction between ROS and vision systems goes beyond data transfer; it extends
to dynamic decision making as the robot navigates a specific trajectory. Using an image
processing algorithm, this vision system can continuously analyze the environment and
provide critical information to ROS. This capability enables the robot to maintain a safe
trajectory, even in complex and unpredictable situations.
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3.4. YOLOv5—The Object Detection Algorithm

The precise and efficient detection of objects in images within a given scenario is
crucial, spanning from autonomous vehicles to security systems and robotics. The work
conducted placed more emphasis on YOLOv5, the fifth version of the renowned you only
look once (YOLO) architecture. This algorithm belongs to the YOLO family due to its
efficiency and real-time object detection speed. YOLOv5 represents the fifth generation of
this series, offering significant improvements over its predecessors [22]. Its preference in
the scientific community has stood out due to its excellent performance in complex and
noisy data contexts and its simplicity of use with popular programming languages such
as Python.

The architecture of YOLOv5 comprises five sections, as depicted in Figure 4. The input
block divides the image into sections, with each section responsible for detecting a specific
region of the image. The backbone extracts image features, while the neck, an intermediate
part of this architecture, performs fusion to enhance object detection. The detection section
assigns a specific class to the detected objects, and finally, the output generates detection
results such as class, confidence, location, and size [23].
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This system uses a convolutional neural network to extract and organize image features
at various levels and then combines these features, preparing them for the prediction
step [23]. YOLOv5 operates in two distinct phases: training and inference. During training,
the model is exposed to an extensive set of images containing the objects to be detected. In
the inference phase, the previously trained model is fed with new images to perform the
detection of the previously taught objects. YOLOv5 processes the image in a single pass
through various convolutional layers, resulting in quick and highly reliable detection [22].

Compared to its predecessor, YOLOv4, the YOLOv5 algorithm shows significant
improvement. Its accuracy has been enhanced, especially for smaller-sized objects, while
maintaining computational efficiency. The fifth version of YOLO (YOLOv5) introduces
improvements in accelerating the inference process, making it more suitable for real-
time applications [24]. When compared to the Faster R-CNN algorithm, which exhibits
excellent accuracy but operates in multiple successive steps [22], YOLOv5 stands out for
its computational efficiency. While Faster R-CNN functions in several successive steps,
YOLOv5 uses a single-pass approach, analyzing the image only once [22]. This provides
faster inference, making YOLOv5 more suitable for applications requiring low latency.

In comparison to the SSD algorithm, YOLOv5 surpasses it in terms of accuracy while
maintaining similar efficiency. YOLOv5’s ability to analyze an image at once, instead of
dividing it into multiple regions [25], contributes to more precise and efficient detection.
This is especially crucial when rapid and accurate detection is essential. Thus, YOLOv5
emerges as an ideal choice for object detection, offering a combination of accuracy and
computational efficiency.

3.5. Vision System Tasks

The Sentry vision system, as indicated, comprises two RGBD cameras and two ther-
mal cameras. The work carried out on the Sentry vision system was divided into three
tasks, namely:

• Verification of the operation of YOLOv5 with NVidia Jetson Xavier Nx.
• Development of an algorithm that integrates object detection with their measurement.
• Training of a dataset for object detection in a forest environment.
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3.5.1. Object Detection and Distance Measurement

The work carried out on this topic focused on the analysis of data from RGBD cam-
eras. An algorithm was implemented for object identification and distance measurement.
Emphasis was given to the detection of people, and the algorithm was used to measure
distances to obstacles in the environment to change the robot’s state. For this specific
case, it was decided that when the robot is executing a particular trajectory and detects
a person within a certain distance, the robot should immobilize itself. This method was
proposed because we are dealing with a forest grinding machine, and when it performs the
vegetation grinding function, it sometimes projects forest residues. Therefore, immobilizing
the machine along with all its functions becomes an important aspect for the safety of both
the machine and the surrounding environment during its navigation. The block diagram
presented in Figure 5 illustrates the functioning of the vision system incorporated into the
Sentry system.
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The distance measurement is carried out through RGBD cameras (Intel RealSense). The
RGB cameras capture images of a given environment, while the depth camera measures the
distance of objects using a time-of-flight (ToF) method. The Intel RealSense depth sensors
are equipped with three camera lenses, including an infrared (IR) camera, an RGB camera,
and an infrared laser projector. Therefore, these depth sensors are referred to as active
devices because they incorporate an IR laser projector to enhance depth measurement. By
combining the three lenses, the perception of infrared light reflected by the object in front
of the lenses is achieved. To calculate depth, Intel RealSense sensors use stereo vision by
combining data from the sensor on the right side, one on the left side, and the infrared laser
projector. This projector emits invisible rays that improve the accuracy of depth data in
environments with limited textures. The sensors capture the scene and send information
about the real image to the microprocessor. Based on this data, the processor determines
depth values for each pixel in the recorded image. This involves correlating the values
obtained with the right camera with the image derived from the left camera. The resulting
depth data from each pixel processed in this way forms the depth image [19].

To perform distance measurements, the pyrealsense2 library associated with Intel’s
RGBD cameras was utilized, and its source code is available at [25]. The pyrealsense2
library facilitates data processing to improve the quality of captured information using
filters and preprocessing methods. Thus, it is necessary to develop an algorithm that allows
connecting object detection by YOLOv5 with distance measurement using pyrealsense2.
This algorithm can be observed in the flowchart in Figure 6.

The process begins with importing the model trained by YOLOv5, followed by con-
figuring the parameters of the Intel Realsense camera. Once this step is completed, the
camera acquires images. If people are detected with a confidence rate of 70% (provided by
YOLOv5 each time it detects an object), a location identification process is initiated using
the region of interest. This involves finding the center of this specific area. Based on this
central point, the distance measurement is performed. For this work, it was established
that if the distance is less than or equal to 7 m, the system triggers an emergency stop. This
means that a Boolean signal is sent to the Sentry system, which changes the state of the
machine and puts it in a safety stop state. This Boolean signal needs to be a topic in ROS so
that when the machine is in autonomous navigation in the future, it immediately changes
its state.
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3.5.2. Training Datasets for Forest Environments

To perform object detection in forest environments, a dataset was trained, considering
categories such as tree trunks and forest fuel material. At this stage, the goal is to identify
these classes using a convolutional neural network (CNN) model. Existing and suitable
datasets for the training process were selected. Table 2 provides a summary of the number
of images and their distribution in each of the chosen datasets.

Table 2. Number of images in each dataset and their respective distribution.

Dataset Number of Images Train/Val/Test Distribution

Trees_dataset 2895 2026/579/240
Vegetation_detection 199 174/17/8

For the detection of tree trunks, the Trees_dataset, created by Silva et al. [26], where
the source code is available at [27], was utilized. This dataset consists of 2895 images,
including 2029 RGB images and 866 thermal images. In the detection of forest fuel, the
Vegetation_detection dataset, created by Mendes et al. [28], where the source code is
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available at [29], was employed, comprising 199 RGB images. To assess the performance
of the training of each dataset, the mAP50, mAP50:95, precision, and recall metrics were
utilized. The mAP50 metric evaluates how accurate the model is in detecting objects when
there is an overlap of at least 50% with the true bounding box. The mAP50:95 metric
provides a more comprehensive perspective on how well the model performs over a wide
range of overlap levels. The precision metric is a measure that indicates how many objects
were correctly detected concerning the total detections made by the model, thus assessing
the model’s ability to avoid misidentifications. Finally, the recall metric indicates how many
true objects were correctly identified concerning the total number of true objects present
in the image, thus evaluating the model’s competence in identifying most of the objects
present in the image.

4. Experimental Tests

To assess the performance of the vision system algorithm to be integrated into the
robot, three distinct tests were conducted:

• The first test, conducted in the laboratory, aimed to evaluate the capability of the
YOLOv5 algorithm to function on the Jetson Xavier Nx, using two thermal cameras
and the RGB camera from Intel, along with the depth camera.

• The second test was performed in a forested area, with the forestry machine opera-
tional, to evaluate the performance of the developed algorithm, as shown in Figure 6.

• The third test aimed to demonstrate the training of a dataset for the identification of
tree trunks and vegetation using YOLOv5.

4.1. YOLOv5 Performance with NVidia Jetson Xavier Nx

Regarding the first test, as shown in Figure 7, the setup with the cameras and the
operation of YOLOv5 in each of them is presented. For this test, the official YOLOv5 model
was used, specifically the yolov5s version. The main objective of this test was to verify
the performance of the YOLOv5 algorithm with the Nvidia Jetson Xavier Nx in order to
evaluate the Jetson’s performance in object detection.
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It was observed that object detection at a rate of 100 ms allows for effective obstacle de-
tection when the machine is in autonomous mode. This validates the operation of YOLOv5,
where relevant information can be extracted for use when the machine is autonomously
navigating a trajectory.

4.2. Validation of the Proposed Algorithm for Object Detection and Distance Measurement Fusion

In order to verify the performance of the proposed algorithm in Figure 6, an exper-
imental test was conducted, specifically, the verification of distance measurement when
a person is detected (this information comes from YOLOv5, as demonstrated in the test
conducted in Section 4.1). To conduct this test, markers were placed on the ground at
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strategic distances, as illustrated in Figure 8. A person occupied each of these positions
at the markers, providing real distance data, which were then compared with the camera
readings. The markers were placed at intervals of 3, 6, 9, 10, and 12 m. The variance be-
tween the camera data and the actual values obtained from these markings was calculated.
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To validate the setup in the field, a person moved to each of the strategic marks,
staying at each one for approximately 3 s, and thus, approximately 20 points were collected
for each position. Figure 9 shows a person’s position at one of the marks, and the vision
system performed detection with distance measurement.
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the Sentry.

Table 3 presents a comparison between real measurements and those provided by the
camera. There is a discrepancy between real measurements and the measurements taken
by the vision system. These results may be influenced by vibrations transmitted by the
forestry machine, generated by the combustion engine, which can in some way affect the
performance of the cameras. However, it is observable that as the distance increases, the
variance also increases. Despite this, the obtained values seem promising.

Table 3. Values obtained from the test performed on the vision system.

Real Distance (m) Mean (m) Variance (m) Maximum Value (m) Minimum Value (m)

3 2.855429 0.007638455 3.02 2.66
6 6.675714 0.141206818 7.34 5.7
9 9.778095 0.136692562 11.68 9.17
10 10.61905 0.331344628 11.68 9.5
12 12.17095 0.202512603 13.04 11.41



Sensors 2024, 24, 1475 11 of 16

4.3. Benefits of the Proposed Dataset for a Forest Environment

This test aims to demonstrate the importance of the Trees_dataset and Vegetation_
detection datasets for detecting trunks and vegetation in a forest environment. The valida-
tion of these two datasets involved two stages:

• Data collection.
• Results obtained from training.

4.3.1. Data Collection

Data were collected in a forest environment using an RGBD Realsense D435i camera
(manufactured by Intel Corporation, Aloha, OR, USA; Hillsboro, OR, USA) and a thermal
camera Flir ADK (manufactured by Teledyne FLIR, Wilsonville, OR, USA, EUA) mounted
on a support, as shown in Figure 10.
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Figure 10. Sensor configuration for data collection.

The data collected in a forested area involved recording the output produced by the
sensors for 120 s, with the sensor support positioned 5.5 m away from a group of trees
and vegetation.

4.3.2. Results Obtained

The YOLOv5s model was trained using a local computer equipped with a six-core
AMD Ryzen 3600 processor (manufactured by AMD, Santa Clara, CA, USA), 16 GB of
DDR4 RAM, and an NVIDIA GTX 1660 SUPER GPU (manufactured by Nvidia, Santa Clara,
CA, USA) with 6 GB of video memory. After the training was completed, the evaluation
metric values for each dataset were obtained, and these can be viewed in Table 4.

Table 4. Metric values for each dataset.

Train Dataset mAP:50 mAP50:95 Precision Recall

Trees_dataset 0.923 0.611 0.901 0.893
Vegetation_detection 0.779 0.478 0.796 0.713

We can observe that the Trees_dataset has a high mAP:50 score, indicating that the
model is highly accurate in detecting tree trunks. This means that, on average, it can
recognize the location of tree trunks with great precision, even in scenarios with overlap
with other elements in the environment. The mAP50:95 metric demonstrates a good ability
to detect tree trunks in different scenarios. The precision metric of 0.901 indicates that the
model has a very high rate of correct detection of tree trunks, which is crucial in scenarios
where the precise identification of tree trunks is a fundamental aspect. Finally, the recall
metric of 0.893 indicates the efficiency of the model in identifying most tree trunks in each
environment. Figure 11 shows an example of correct tree trunk detection, where Figure 11a
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shows an example taken by the RGBD camera and Figure 11b shows an example taken by
the thermal camera.
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Figure 11. Images taken from the qualitative test regarding the Trees_dataset. (a) Image taken by the
RGBD camera; (b) image taken by the thermal camera.

In Figure 12, the behavior of all evaluation indices during the training process is visible
(in this figure, it is noteworthy that the metrics train/cls_loss and val/cls_loss are zero
because the model class was changed to only one, in this case, the trunk).
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Finally, regarding the Vegetation_detection dataset, the value given by the mAP:50
metric indicates the good accuracy of the model in detecting vegetation. This means that,
on average, the model can accurately locate areas with vegetation even when there is
overlap with other elements. The value obtained by the mAP50:95 metric indicates that
the model may have a somewhat more challenging performance when the overlap with
other features (i.e., other elements in the scene) is greater or less than 50%. Regarding the
precision metric of 0.796, it indicates that the model has a high rate of correct detection of
vegetation, which is extremely important because the model will be able to identify most
areas with vegetation. The obtained recall metric indicates that the model can correctly
capture most regions with vegetation, suggesting that the model is not missing areas with
vegetation. Figure 13 shows an example of the correct detection of areas with vegetation,
where the images are provided by the RGBD camera.
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In Figure 14, the training behavior on the “Vegetation_detection” dataset is depicted
along with its indicators presented in the graphs.
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5. Discussion of the Work Conducted

This work presents the development of an integrated vision system for the operation
of an autonomous forestry machine, along with a multimodal sensor system called Sentry.
The architecture of the vision system was presented, including a comparative analysis and
the design logic behind this system. Additionally, two datasets were separately trained
for forest environments using the six-core AMD Ryzen 3600 processor (manufactured by
AMD, Santa Clara, CA), 16 GB of DDR4 RAM, and an NVIDIA GTX 1660 SUPER GPU
manufactured by Nvidia, Santa Clara, CA, USA) with 6 GB of video memory.

Regarding the architecture of the Sentry vision system, it incorporates an object detec-
tion algorithm, specifically YOLOv5, chosen for its versatility and effectiveness, making
it an asset for the robot’s operation in forest environments. The Sentry system is in a
prototyping phase, and its first iteration with the vision system focuses on ensuring safety
during the robot’s autonomous operation. A model/algorithm (Figure 6) was created,
allowing the measurement of distances to objects (in this case, people) and changing the
robot’s state while navigating. The proposed algorithm integrates with the ROS framework
and is processed by a minicomputer, in this case, the NVidia Jetson Xavier Nx. The test
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conducted within the proposed model indicated efficiency in detecting people and their
distance from the robot, ensuring safety during the robot’s autonomous operation.

The training of YOLOv5 on two datasets, Trees_dataset and Vegetation_detection, was
also presented for the detection of tree trunks and vegetated areas. Based on these datasets,
the main goal is to analyze the advantages they can bring during the robot’s navigation.
Finally, the results obtained from the training on the proposed datasets have a positive
impact on object detection in forest environments. The ability to identify tree trunks is vital
because it allows the robot to project them as objects on a specific map to navigate around
them if they are in its trajectory. Additionally, vegetation detection is essential for the robot
to identify areas with vegetation that need to be cleared for forestry purposes.

6. Conclusions and Future Work

The Sentry vision system aims to provide a set of advantages during the autonomous
navigation of the robot, such as obstacle detection and distance measurement. As shown in
Section 4.2, the detection of people, along with distance measurement, adds an extra layer
of security to the robot when it is executing a trajectory.

The trained datasets yielded good results, allowing for the detection and characteriza-
tion of tree trunks and vegetation, common objects in forest environments.

However, for future work, improvements in the Sentry vision system can be con-
sidered. The vision system, composed of RGBD cameras and thermal cameras, needs to
be enhanced. Regarding RGBD cameras, in this case, the Intel RealSense D435i, despite
its stable performance, it is believed that the application of the Zed 2i camera could be
advantageous for the Sentry system, given its good measurement capability of up to 20 m,
proving to be a valuable resource. Concerning infrared cameras (FLIR ADK), the detection
of some objects can be improved by fusing the data obtained from the RGBD camera
and the infrared camera to provide more robustness to the Sentry vision system. The
algorithm developed to provide security to the robot during its trajectories can be further
enhanced and optimized by integrating it with Visual SLAM (simultaneous localization
and mapping) algorithms, thereby enabling the detection and characterization of objects in
each environment.

Regarding the trained datasets, future work may consider enhancing robot navigation
by integrating the trained datasets into the NVidia Jetson Xavier Nx. For instance, upon
detecting tree trunks, the robot could navigate around them, and in the case of vegetation
detection, it would recognize the need to clear that area. Additionally, expanding object
detection in forest environments to include animals and rocks can further enhance the
robot’s ability to distinguish between different objects encountered during its navigation
and adapt its behavior to optimize its trajectories.
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