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Abstract: Cracks are common defects that occur on the surfaces of objects and structures. Crack
detection is a critical maintenance task that traditionally requires manual labor. Large-scale manual
inspections are expensive. Research has been conducted to replace expensive human labor with
cheaper computing resources. Recently, crack segmentation based on convolutional neural networks
(CNNs) and transformers has been actively investigated for local and global information. However,
the transformer is data-intensive owing to its weak inductive bias. Existing labeled datasets for
crack segmentation are relatively small. Additionally, a limited amount of fine-grained crack data
is available. To address this data-intensive problem, we propose a parallel dual encoder network
fusing Pre-Conv-based Transformers and convolutional neural networks (PCTC-Net). The Pre-Conv
module automatically optimizes each color channel with a small spatial kernel before the input of
the transformer. The proposed model, PCTC-Net, was tested with the DeepCrack, Crack500, and
Crackseg9k datasets. The experimental results showed that our model achieved higher generalization
performance, stability, and F1 scores than the SOTA model DTrC-Net.

Keywords: crack; segmentation; CNN; transformer; PCTC-Net; Pre-Conv

1. Introduction

Cracks in materials such as asphalt, concrete, and metals are of significant inter-
est in many industrial fields. Fine-grained cracks not detected early can develop into
coarse-grained cracks. These coarse-grained cracks result in serious human casualties and
functional losses in areas like roads, buildings, ships, and aircraft. Particularly, asphalt and
concrete, which are the primary materials for roads, are highly vulnerable to rain and mois-
ture, making it difficult to completely prevent cracking. Therefore, early detection of minor
cracks in paved roads is crucial for preventing human casualties and enhancing durability.
Crack detection methods are classified as human visual inspections and computer vision.

Human visual inspection is variable in cost, time consumption, and reliability because
it depends on the operator. It cannot ensure consistently reliable quality for industrial
applications [1]. Earlier studies on the replacement of human resources with reliable
computing resources were based on computer vision algorithms [2]. However, these
algorithms also depend on experience and are not only inherently ambiguous but also
highly specialized for specific cracks [3], as introduced by Koch et al. [4], Spencer et al. [5],
Ye et al. [6], and Hu et al. [7]. Owing to these limitations, end-to-end deep-learning-based
computer vision is advancing.

In deep learning, the processing of crack images evolves into two stages: object
detection and segmentation. Object detection enables the detection of objects by delineating
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their boundaries using bounding boxes and classifying targets. For example, faster R-
CNNs, YOLO, MobileNet, and SDDNet, etc. are generally lightweight and can quickly
infer information from cracks [8–11]. In the field of crack detection, the challenge lies in the
lack of standardized definitions for cracks, unlike more easily identifiable objects such as
humans or vehicles, which affect the performance of detection methods.

Accordingly, recent studies have focused on segmentation models that can detect
cracks at the pixel level. Convolutional neural networks (CNNs) are widely used in crack
segmentation to extract local information. However, the convolution layer is constrained
by the fixed receptive fields. Therefore, multiscale crack detection is challenging for small-
scale CNN. To detect multiscale segmentation, effectively stacked CNN models (Fully
Convolutional Networks (FCN) [12], Unet [13], and SegNet [14]), such as encoder-decoder
and skip connections, have been researched. These models also demonstrate acceptable
performance in crack segmentation. However, the challenge of expanding receptive fields
remains a significant obstacle to effectively extracting global information from intricate
images of cracks [15].

Transformers are a promising method for extracting global information to address
receptive field limitations. Incorporating a transformer with its independent attention
mechanism as a distinct encoder allows the utilization of global features unique to trans-
formers [15]. Simultaneously, it maintains the local information that is intrinsic to a CNN
encoder. SegFormer [16] and DTrC-Net [17] showed that the use of transformers signifi-
cantly improved global information capture. Most segmentation research, including cracks,
relies on high-quality, large-scale public datasets. However, it is difficult for the transformer
to learn from a small dataset because of its weak inductive bias. Inductive bias is a set
of assumptions inherent in the model architecture. CNNs have strong inductive biases
such as translation invariance and locality [18]. However, transformers do not have strong
inductive biases like CNNs, which is why transformers learn inductive biases implicitly
from large amounts of data [19]. However, the currently available public crack datasets
are relatively small [20]. Moreover, these public datasets are not suitable for learning fine-
grained cracks. The fine-grained images are small and easily confused with the background,
leading to their exclusion from datasets owing to perceived low quality or non-detection
amidst numerous images. Constructing a large labeled dataset of fine-grained cracks re-
quires significant time and cost. It is crucial to enforce learning from available fine-grained
crack data in public datasets. However, due to the low inductive bias of transformers, they
require large datasets, making it difficult to learn fine cracks. Therefore, research is needed
to improve the inductive bias of transformers.

In this study, we propose a parallel dual encoder model called Parallel Dual Encoder
Network (PCTC-Net), which is a fusion of Pre-Conv based Transformers and convolutional
neural networks to improve the inductive bias of transformers. The Pre-Conv module
automatically optimizes each color channel with small spatial kernels before transformer
input to enhance the transformer’s inductive bias.

2. Related Work
2.1. CNN Models

The traditional segmentation methods divide the entire image into overlapped square
image patches [21,22]. The patches are individually input into the classifier CNNs. For
example, the Sliding Window Convolutional Neural Network (SW-CNN) [23] applies the
convolutional operation at multiple locations across the input image. However, patch-
based approaches must apply convolution operations to many patches. It occurs as a
computational bottleneck [22].

Fully Convolutional Networks (FCN) is the first end-to-end segmentation model that
does not use a fully connected layer, and all layers are composed of CNNs only. FCN
uses the entire image instead of patches to annotate at once. FCN reduced computational
bottlenecks and showed good accuracy compared to traditional patch-based approaches.
The work of Katsamenis et al. [22] that segmented rust on metal in construction infrastruc-
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ture demonstrated processing time per image proximately 102 times and a lower F1-Score
than annotating the entire image in a one-pass architecture, FCN. However, because of the
fixed receptive field, the prediction of small and large objects is inaccurate. DeepCrack [24]
suggests an expansion of FCN by applying deeply supervised nets (DSN) [25] to utilize
both low and high features. DSN is used for direct supervision to train each convolutional
layer effectively. By using DSN, the network can effectively utilize features of various scales
at each convolution layer, potentially improving its performance. However, the loss of
spatial information and the resulting lower resolution make its application in precise crack
segmentation challenging.

U-Net was originally a successful model for medical image segmentation and was
naturally applied to crack segmentation because medical images and crack segmentation
share many similarities, such as large backgrounds and small targets. The work of Hou
et al. [26] is a prime example of early research that utilized U-Net to directly infer crack
segmentation from crack images. SegNet has a simple structure and efficient parameter
reduction using positional information inferred in the encoding and upsampling phases.

R2AU-Net [27] combined attention recurrent residual and standard U-net architec-
ture. The main contribution of R2AU-Net is that it uses the user’s interaction to train the
network. It performed higher scores than other models based on U-Net, but because it
is semi-supervised learning, it requires user intervention, so end-to-end crack learning is
not possible.

However, even when utilizing various scales, CNN models still face limitations be-
cause of their inherent architectural characteristics, which make it challenging to expand
local receptive fields, thereby hindering the capture of global information [15].

2.2. CNN and Transformer Fusion Models

The transformer is a deep learning structure comprising embeddings and self-
attention [28]. The transformer demonstrated excellent performance in extracting global in-
formation for natural language processing [29]. Similarly, the global information-extraction
capacity of transformers is useful in computer vision. The Vision Transformer (ViT) was the
first to use transforms for computer vision, but it is difficult to extract fine spatial informa-
tion because the number of tokens and their dimensions are fixed [30]. The SegFormer [16]
stacks the transformers into a Multi-Scale without a CNN. The global information extracted
for each layer led to high performance. However, it cannot extract local information. To
address the limitations in capturing local information, combining CNN demonstrates im-
proved performance compared with merely increasing the transformer layers [31]. For
example, SegCrack [20] proposed a method using a pyramid structure combining transform-
ers and CNNs to extract both the local and global features of cracks. SegCrack reduces the
sequence length using a reduction factor to lower the computational complexity. However,
shortening the sequence length results in the loss of the original information.

TransUNet [32] has recently been applied to the study of crack segmentation [33].
TransUNet inputs features extracted from the CNN layer (ResNet-50) into the transformer
and utilizes them in the decoder via skip-connection. Although it improves performance, it
is not suitable for fine-grained crack segmentation because it blurs fine-grained cracks.

FAT-Net [34] was originally used in skin lesion segmentation. Similar to U-Net, it was
applied to crack segmentation due to the similarities between medical imaging and crack
segmentation. FAT-Net uses a CNN and transformer dual-encoder methodology. FAT-
Net’s dual encoders are independent of each other until the outputs of the CNN encoder
and transformer encoder are combined. Therefore, FAT-Net lacks the propagation of
global information.

DTrC-Net also uses a CNN and transformer dual-encoder methodology, but fuses
many of the features of the CNN encoder and transformer. It consists of a transformer
encoder, CNN encoder, feature fusion module (FFM) module, RPM module, and decoder.
The FFM was designed to improve the fusion of the information extracted from the two
encoders. The residual path module (RPM) is designed to improve the semantic difference
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between the encoder and decoder. The RPM automatically optimizes the distribution of
the feature map for the effectiveness of the training process. However, models such as
DTrC-Net and SegCrack primarily focus on the fusion of encoders and decoders and pay
less attention to the transformer encoder itself. This leads to the weakening of the inductive
bias of the transformer encoder and an overall contextual understanding, which is critical
in the field of crack segmentation, where datasets are often not extensive. Therefore, it
is necessary to strengthen the inductive bias of the transformer encoder specifically for
crack segmentation.

2.3. Loss Function

Crack segmentation poses a significant challenge owing to the pronounced class im-
balance in crack data [35]. The dataset exhibits an overwhelming prevalence of background
pixels, vastly outnumbering the relatively scarce pixels representing cracks. Therefore,
it is important to design a loss function that can solve the problem of dataset imbalance.
There are two types of losses: those caused by the aforementioned characteristics and those
caused by the segmentation itself.

Segmentation losses can be categorized into four types: distribution-based, region-
based, boundary-based, and compounded [36]. In this study, we focused only on the
common cross-entropy and distribution-based loss functions and the combo loss used in
this experiment. Distribution-based loss is a loss classification that modifies positive and
negative weights based on cross-entropy [37]. Since it is calculated for each pixel, it has the
problem that the background affects the crack more than the crack, so additional weights
are needed to tackle the crack [38,39]. However, the convergence was fast, and the loss
was stable.

The region-based loss is calculated by directly transforming a metric into a loss to
maximize a metric that measures the similarity between two samples. An example is dice
loss [40]. The disadvantage is that even a small difference from the correct answer has
the same effect as missing a large object in distribution-based loss; therefore, learning is
unstable and takes longer to converge. To solve this problem, combo loss [41] has been
proposed, which is generally a combination of distribution- and region-based methods.
Typically, it combines cross-entropy with ice. It is useful for solving the class imbalance
problem because it can utilize both the flexibility of the dice loss and the stability of the
cross-entropy loss. Therefore, in this study, we designed a suitable combination loss for the
proposed PCTC-Net through experimental verification.

3. Methodology
3.1. PCTC-Net

In this study, we proposed the parallel dual encoder network fusing Pre-Conv-based
Transformers and convolutional neural networks (PCTC-Net). Figure 1 shows the overall
structure of the proposed PCTC-Net. The structure of PCTC-Net is based on that of
DTrC-Net, which comprises an encoder and a decoder. The encoder is a dual-encoder
network that fuses a convolutional neural with a transformer that incorporates our Pre-
Conv module. The transformer encoder of PCTC-Net was designed to extract the global
features of the crack images. First, the raw image is input to the Pre-Conv module to
strengthen the inductive bias of the transformer. Next, the feature image output from the
Pre-Conv module is divided into patches to be fed to the transformer encoder. The size of
the patch is 16 × 16 without overlapping. Since the patched image is a 2D patch, flattening
is performed in one dimension. Then, the patches flattened into a 1D array are linearly
projected into a sequence of tokens. Finally, positional embedding is added to the patch
tokens to maintain the relative position of the patches. The formula for the positional
embedding (PE) operation [28] is as follows:

PE(pos,2i) = sin

(
pos

10, 000
2i
d

)
(1)



Sensors 2024, 24, 1467 5 of 16

PE(pos,2i+1) = cos

(
pos

10, 000
2i
d

)
(2)
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pos represents the position where the sequence length is located, d represents the
dimension of the vector, and i represents the feature dimension corresponding to each
sequence. For example, the sin at even positions and the cos at odd positions for features.
Each transformer layer contained Multi-Head Attention (MHA). MHA is a variant of the
standard attention mechanism that calculates attention scores using Q, K, V matrices in
parallel. These Q, K, V represents Query, Key, Value, respectively. MHA transforms Q, K,
V transforms linear projections.

Q, K, V = QWQ, KWK, VWV (3)

where WQ, WK, WV denote parameter matrices. These matrices of weights are optimized
to obtained the suitable weights to fit the true values. The Attention Score is calculated
based on the following formula:

Attention (Q, K, V) = softmax
(

Q·KT
√

dk

)
(4)

The value dk calculated as d
h , where h is the number of heads in the Multi-Head

Attention (MHA). The MHA calculations based on the following formula:
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MultiHead (Q, K, V) = Conact(head1, . . . , headh)W0

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

) (5)

The matrices WQ
i , WK

i , WV
i represent the projections of Q, K, V onto the i-th subspace.

W0 is the matrix used for the linear transformation of the attention head. The CNN encoder
was designed based on ResNet [42] to ignore the background and extract the local features
of the cracks. To mitigate the vanishing-gradient problem, the encoder uses a shortcut with
a residual block. The residual block had multiple convolutions, batch normalization, and
ReLU layers. The first module had single convolution, batch normalization, and ReLU
layers. The other modules had three, four, six, and three residual blocks, respectively. Two
submodules were used in the PCTC-Net. First, a feature fusion module (FFM) was designed
for adaptive weight assignment. The fusion features of the CNN and transformer are also
important for preventing information loss and maintaining local information. Therefore,
we do not only fuse the outputs of the final layer. Second, the residual path module (RPM)
is designed to reduce the semantic gap between the encoders. The semantic gap refers
to the disparity between low-level image features captured by algorithms and high-level
semantic concepts (keywords and categories) interpreted by humans. The decoder was
designed to reach the target resolution by upsampling the layers. The input of the first
upsampling layer fuses the feature maps from the two parallel encoders via the FFM
module. The other layer uses a fusion feature map from each FFM, RPM, and the previous
layer. Subsequently, the information processed through the fusion modules for the features
extracted from the two encoders is hierarchically stacked as an additional input in each
upsampling module. The proposed model is modified by focusing on the transformer layer.
Maximize the learning of the global features of crack images to capture fine-grained cracks.

3.2. Pre-Conv Module

The original transformer module used in the encoder receives the input in the form
of raw or patch data. However, the Transformer has a weak inductive bias and requires
a substantial amount of data for effective learning. Obtaining a large, labeled dataset
is challenging because of crack characteristics. Insufficient data can lead to overfitting,
hindering the learning process. This weak inductive bias makes it difficult to make the
model lightweight. A reduction in the number of transformer layers also led to a reduction
in the number of parameters. This makes the already difficult training even more difficult.
Therefore, we required light layers to compensate for the reduced number of layers.

However, ViT typically employs convolution with an equal kernel size and stride of
1 × 16 × 16 when patching an input image. The patching operation did not inject any
information into the transformer. In this study, we propose a visual processing method
suitable for crack segmentation.

Our “Pre-Conv” is an alternative approach to raw image patches for injecting inductive
bias into transformers. Figure 2 shows a schematic of the proposed Pre-Conv module. Pre-
Conv is a stem color emphasis layer that maximizes the color difference. It is purposefully
simple and is not designed to maximize model accuracy. The Pre-Conv module is a single
1 × 1 kernel CNN layer. The Pre-Conv operates sequentially. Initially, convolutional
operations are applied to each color channel (R, G, and B) of the input image using the
respective 1 × 1 kernels. Subsequently, the resulting feature maps are amalgamated
by transforming them back into a unified image, which is fed into the transformer for
further processing.
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Generally, deep CNN approaches extract high-level local feature maps using more
than one kernel. However, the convolution operations blur the pixels. Blurred pixels
are a critical disadvantage in crack segmentation, and the color transition of fine-grained
cracks is important. Furthermore, high-level local feature maps cause a local bias in the
representation of the transformer. CNNs enhance the local inductive bias, but transformers
require enhancement of the global inductive bias for the effective segmentation of fine-
grained cracks. A single-layer 1 × 1 kernel CNN approach is advantageous for injecting a
global inductive bias into a transformer. Additionally, the use of Pre-Conv is advantageous
because it employs a kernel size of 1, eliminating the need for square operations and thereby
significantly reducing the computational load.

4. Dataset and Experiment Environment

We used the public datasets DeepCrack [24] and Crack500 [43] to evaluate the perfor-
mance of PCTC-Net in detecting cracks in paved roads made of asphalt and concrete. We
also utilized the public dataset Crackseg9k [44] to evaluate whether PCTC-Net performs
well in detecting cracks in a variety of materials, including ceramic, glass, and masonry.
The dataset sizes were 539 for DeepCrack, 3020 for Crack500, and 9255 for Crackseg9k.
The DeepCrack dataset contains 539 images depicting cracks of various pixel sizes, with
300 images designated for training and 239 images for testing. This dataset encompasses
diverse road crack images with a notable presence of smooth background data. The Deep-
Crack dataset enables the learning of features, such as crack length and width, through
a comprehensive set of data. The Crack500 dataset comprises 500 images of road cracks
captured using mobile phones at a resolution of 2000 × 1500 pixels at Temple University.
Through cropping, the dataset was divided into 1896 training and 1124 testing images for
the analysis. Crack500 has a high resolution and a substantial amount of rough background
data, enabling the learning of detailed features of road cracks. The Crackseg9K dataset
comprises 9255 diverse crack images, adjusted to a resolution of 400 × 400 pixels. This
dataset is a composite of ten datasets, including Sdnet, Cracktree, and Ceramic, and encom-
passes various types of cracks. The DeepCrack dataset exhibited an average crack coverage
of approximately 3.58% per image, whereas the Crack500 dataset showed a percentage
of 6.03% and the Crackseg9k dataset comprised 5.09%. To evaluate the performance of
the proposed model, it was implemented on three datasets: DeepCrack, Crack 500, and
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Crackseg9k. The experiments were conducted using an RTX 4090. For each dataset, the
input images were standardized to 256 × 256 pixels.

Applying data augmentation to mitigate overfitting in the learning model, a combi-
nation of transformations, including Flip, Rotate, HorizontalFlip, and RandomRotate90
with a ratio of 0.7, a variable ratio of VerticalFlip, brightness contrast with a ratio of 0.3,
and random gamma with a ratio of 0.5, were employed. The optimization utilized AdamW,
with a loss function comprising 0.5 dice and 0.5 focal loss. The model was trained with a
batch size of 3, over 300 epochs, and StepLR with an initial learning rate of 0.0001 and a
gamma of 0.1. The segmentation performance of the proposed model was quantitatively
evaluated using precision, recall, and F1-score as the assessment metrics.

Precision represents the proportion of predicted cracks that are actually cracks, and a
higher precision indicates fewer false positives (FP). Precision is defined as follows:

Precision =
TP

TP + FP
(6)

The recall denotes the proportion of actual cracks that were correctly predicted, and a
higher recall indicates fewer false negatives (FN). Recall is defined as

Recall =
TP

TP + FN
(7)

The F1-score serves as the harmonic mean of precision and recall, effectively capturing
the importance of both metrics when crucial. The F1-score is defined as

F1 score =
2 × Precision × Recall

Preicision + Recall
(8)

Precision, recall, and F1-score serve as metrics for evaluating and optimizing the
performance of a model by assessing how effectively it classifies pixels.

To analyze the optimized loss function for the proposed PCTC-Net, the experimental
environment was configured with three types of loss functions: dice loss, BCE loss, and
focal loss. The dice, BCE, and focal losses were calculated as follows:

DiceLoss(P, G) = 1 − 2 × |P ∩ G|+ smooth
|P|+ |G|+ smooth

(9)

BCE(P, G) = −
[
G′log(s(P)) + (1 − G)log(1 − s(P))

]
(10)

FL(pt) = −αt(1 − pt)
rlog(pt) (11)

P and G in each formula represent pred and ground truth, respectively. In dice loss,
smoothing is set to 1, and in BCE loss, it refers to the sigmoid function. For focal loss, r was
set to 0.25, and Pt is the model’s prediction probability for a crack image.

5. Experimental Results

In this study, to determine the optimal parameters for the proposed PCTC-Net, ex-
periments were conducted to compare the kernel size of Pre-Conv, batch size, and loss
function. Furthermore, to evaluate the potential of model lighting, experiments were
performed to reduce the number of transformer layers. In addition, to verify the flexibility
of the model, comparative experiments with the DTrC-Net were conducted using three
datasets: DeepCrack, Crack500, and Crackseg9k. In the experiments involving the Pre-
Conv kernel size, batch size, learning rate, loss function, and number of transformer layers,
a 1 × 1 Pre-Conv, batch size of 3, and loss function of 0.5 dice + 0.5 focal were used, and the
learning rate was set using StepLR with an initial value of 0.0001. For the experiments to
verify the model’s flexibility, the DTrC-Net’s baseline settings were a batch size of 16, a loss
function of 0.75Dice + 0.25BCE, and the learning rate was the same as that of PCTC-Net.
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Experiments were conducted based on the kernel size of Pre-Conv, and the results
are presented in Table 1. The 1 × 1 kernel size exhibited the highest performance with an
F1-Score of 87.31%, recall of 88.01%, and precision of 86.62%.

Table 1. Pre-Conv size experiment results. The best performances for each metric across different
Pre-Conv sizes are indicated in bold font.

Pre-Conv Size Precision Recall F1-Score

X 85.46% 87.16% 86.11%
1 × 1 86.62% 88.01% 87.31%
3 × 3 85.48% 87.68% 86.57%
5 × 5 86.53% 87.59% 87.06%

Using Pre-Conv with 3 × 3 or 5 × 5 kernels can affect the performance of the Trans-
former Encoder, which is designed to extract global information because the inductive
bias of the CNN plays a role in extracting local features. Additionally, there is a risk of
losing the important features of the crack boundaries, leading to a decrease in performance.
Therefore, a 1 × 1 convolution was selected as the kernel size for Pre-Conv to improve the
inductive bias of the transformer.

The batch size influences the training time and model performance [45]. Therefore, to
determine the optimal batch size, experiments were conducted with three different batch
sizes (3, 5, and 10), and the results are presented in Table 2. In PCTC-Net, the highest
performance was observed with an F1-score of 87.31% when the batch size was 3. However,
an increase in batch size resulted in a decreasing trend. This trend is linked to the issue of
crack segmentation, where there is a significant difference in the area between the crack
and background in most images, causing a class imbalance. The batch size experimental
results for both models indicate that a smaller batch size can positively impact specific
datasets and environments.

Table 2. Comparison results of PCTC-Net and DTrC-Net [17] with different batch sizes. The best
performances for each metric across different batch sizes are indicated in bold font.

Model Batch Size Precision (%) Recall (%) F1-Score (%)

PCTC-Net
3 86.62 88.01 87.31
5 85.88 88.03 86.94

10 85.33 86.30 85.81

DTrC-Net [17]
3 85.20 87.10 86.14
5 85.08 87.82 86.43

10 83.55 87.40 85.43

Owing to the severe class imbalance problem between the background and cracks
in the crack dataset, a suitable loss function that can alleviate this issue is necessary.
Therefore, to find the optimal loss function for our proposed model and the crack dataset,
we conducted comparative experiments on five loss function combinations using
three different loss functions (dice, BCE, and focal). The results are shown in Table 3.
Analysis of the results trained with each loss function revealed that 0.75Dice + 0.25BCE
achieved the highest performance with an F1-score of approximately 87.36%. However, in
crack segmentation, recall is a more critical metric than precision from a safety perspective.
As shown in Table 3, 0.5Dice + 0.5Focal, although approximately 0.05% lower in F1-score
than 0.75Dice + 0.25BCE, was approximately 5.22% higher in recall. Therefore, the loss
function for the proposed PCTC-Net was set to 0.5Dice + 0.5Focal.
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Table 3. Results of PCTC-Net trained with different loss functions. The best performances for each
metric across different loss function are indicated in bold font.

Loss Function Precision (%) Recall (%) F1-Score (%)

Dice 92.21 81.43 86.48
0.75Dice + 0.25BCE 92.47 82.79 87.36
0.5Dice + 0.5Focal 86.62 88.01 87.31

0.75Dice + 0.25Focal 86.10 87.48 86.78

Experiments were conducted to verify the improvement in the inductive bias of the
transformer and to examine the potential for model lighting. The results are shown in
Table 4. As shown in Figure 3, each of the four blocks of the transformer contains three
layers. Experiments were performed by reducing the number of transformer layers in each
block by one, resulting in the use of 12, 8, and 4 layers. When the number of layers was
reduced from 12 to 4, the DTrC-Net showed a performance decline of approximately 2.71%
in terms of the F1-score, whereas the PCTC-Net only exhibited a decline of approximately
0.9%. This indicates that the Pre-Conv strengthens the inductive bias of the transformer
and suggests its potential for model lighting. Moreover, PCTC-Net exhibited a performance
difference of approximately 8.46% in recall compared with DTrC-Net. In addition to main-
taining performance despite reducing transformers, it also made a significant contribution
by increasing FPS from 215 to 244.

Table 4. Comparison results of PCTC-Net and DTrC-Net [17] with different transformer layers.
The best performances for each metric across different numbers transformer layers are indicated in
bold font.

Model Transformer Layer Precision (%) Recall (%) F1-Score (%) FPS

PCTC-Net
4 86.83 85.99% 86.41% 244
8 86.81 86.82% 86.82% 224

12 86.61 88.03% 87.31% 215

DTrC-Net [17]
4 89.82 78.96% 84.04% 244
8 89.39 78.36% 83.51% 224

12 87.23 86.27% 86.75% 215
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Experiments were conducted to compare the performance, computational cost, and
timing between models with a single encoder structure and those with a dual-encoder
structure, as illustrated in Table 5. In terms of accuracy, the dual-encoder structured PCTC-
Net demonstrated the highest performance with an F1-score of approximately 87.31%.
In contrast, the single-encoder-structured FCN and U-Net showed lower performances,
with F1-scores of approximately 85.71% and 85.91%, respectively, when compared to the
dual-encoder structures of PCTC-Net and FAT-Net.

Table 5. Average computational time per image for models with 1-path structure (FCN [12], U-Net
[13]) and those with a 2-path structure(PCTC-Net, FAT-Net). The best performances for each metric
across different model are indicated in bold font.

Type Model Precision (%) Recall (%) F1-Score (%) Model
Parameters (M) Times (ms)

Single-encoder FCN [12] 85.66 85.75 85.71 13.334 1.113
U-Net [13] 87.66 84.24 85.91 31.037 2.728

Dual-encoder
PCTC-Net 86.61 88.03 87.31 66.162 4.642

FAT-Net [35] 85.85 86.16 86.01 36.543 3.609

This suggests that the dual-encoder structure, utilizing both CNN and Transformer
encoders, effectively combines global and local features to achieve superior performance.
In terms of computational cost and timing, the dual-encoder structured PCTC-Net and
FAT-Net did not exhibit superior model parameters and inference time compared to the
single-encoder-structured models FCN and U-Net. However, as indicated in Table 4, the
maintenance of performance despite a reduction in the transformer layers of PCTC-Net
suggests the possibility of lightening the model and reducing inference time through
fine-tuning of Pre-Conv and parameter combinations.

To observe the training convergence speed and stability of PCTC-Net, the change in
the loss values at each epoch is visually represented, as shown in Figure 3. The training
was divided into early, middle, and late stages, using every 100 epochs as a benchmark
for comparison. When calculating the epochs in which PCTC-Net showed lower losses
compared to DTrC-Net in each stage, it was found that in the early stage, PCTC-Net
had better losses in 68 epochs, in the middle stage in 47 epochs, and in the late stage in
99 epochs. These results suggest that PCTC-Net demonstrated faster convergence in the
early stages of training. Additionally, while PCTC-Net and DTrC-Net showed similar
learning trends during the middle stage, PCTC-Net continued more stable training in the
late stage. This suggests that the use of Pre-Conv enhanced the training convergence speed
and stability of the transformer encoder. Therefore, it was demonstrated that the use of
Pre-Conv contributed to the convergence speed and stable training of the model.

To verify whether the proposed PCTC-Net performs well in various scenarios and is
not optimized for a specific dataset, experiments were conducted using the three afore-
mentioned datasets. The performance of each model was evaluated using Precision, Recall,
and F1-Score, and the results are listed in Table 6. The PCTC-Net model showed an av-
erage improvement of 0.82% in the F1-Score compared with the DTRC-Net model. In
the DeepCrack dataset, PCTC-Net exhibited higher performance in terms of precision,
recall, and F1-score. For the Crack500 dataset, PCTC-Net showed slight improvements in
precision and F1-score of 1.24% and 0.31%, respectively. Finally, in the Crackseg9k dataset,
PCTC-Net demonstrated slight improvements in all aspects. Consequently, the PCTC-Net
model consistently showed better performance improvements across various datasets than
the DTrC-Net.
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Table 6. Comparison results from DeepCrack, Crack500, and Crackseg9k using PCTC-Net and
DTrC-Net [17].

Model Dataset Precision (%) Recall (%) F1-Score (%)

PCTC-Net
DeepCrack 86.62 88.01 87.31
Crack500 64.92 85.83 73.92

Crackseg9k 72.23 87.38 79.08

DTrC-Net [17]
DeepCrack 85.20 87.10 86.14
Crack500 63.68 87.21 73.61

Crackseg9k 71.98 85.33 78.09

Figure 4 illustrates the crack detection results for the six test images to visually compare
the predictive performances of the PCTC-Net and DTrC-Net. Each set of six images was
extracted from the DeepCrack, Crack500, and Crackseg9K datasets, with two images from
each dataset.
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As shown in Figure 4a, PCTC-Net represents cracks more accurately, whereas DTrC-
Net tends to detect cracks incorrectly. Figure 4b categorizes the cracks into two types based
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on their brightness: bright and dark. The DTrC-Net failed to detect bright cracks accurately,
whereas the PCTC-Net managed to detect some cracks. These observations suggest that the
ability of the Pre-Conv layer to extract features from various types of cracks and feed them
into the transformer leads to improved performance. Moreover, as shown in Figure 4c, the
DTrC-Net failed to detect bright cracks, whereas the PCTC-Net successfully detected them.

In the image shown in Figure 4f, PCTC-Net demonstrates a better understanding
of the characteristics of the cracks than DTrC-Net. Overall, PCTC-Net tended to detect
cracks more accurately in various environments and conditions. However, the accuracy
of the DTrC-Net for crack detection may be compromised under certain conditions. This
comparison helps understand the strengths and weaknesses of each model and emphasizes
the importance of utilizing them in appropriate environments.

6. Discussion

This paper proposes the PCTC-Net to improve the low Inductive bias in crack segmen-
tation models using transformers. Additionally, to assess the performance of PCTC-Net,
experiments were conducted to optimize four hyperparameters: pre-conv size, batch, loss
function, and transformer layer. The performance was compared using three datasets
(DeepCrack, Crack500, Crackseg9k) against the DTrC-Net.

The experimental results showed that the 1 × 1 size pre-conv had better performance
than the 3 × 3 and 5 × 5 sizes. This is interpreted as CNN’s Inductive bias playing a
role in extracting local features when using 3 × 3 or 5 × 5 size pre-conv, thereby affect-
ing the performance of the transformer encoder. In the batch size experiment, the best
performance was observed with a batch size of 3, with performance tending to decrease
as batch size increased. However, the optimal batch size can vary depending on specific
datasets and environments, so it should be carefully selected. For the loss function, 0.5Dice
+ 0.5Focal showed about 0.05% lower F1-score but about 5.22% higher Recall compared
to 0.75Dice + 0.25BCE. Since the main objective of this study is to improve model per-
formance for the enhancement of structural and human safety, 0.5Dice + 0.5Focal with
higher Recall was adopted. Experiments conducted to examine the improvement of low
Inductive bias in the transformer encoder and the possibility of model lightening showed
that PCTC-Net, even after reducing the transformer layers from 12 to 4, only showed about
0.9% performance degradation. Additionally, FPS increased from 94 to 110. This is in-
terpreted as the Pre-Conv improving the low Inductive bias of the Transformer encoder
and also contributing to the model’s lightness. Observing the Loss Graph of PCTC-Net
and DTrC-Net, PCTC-Net showed fewer loss peaks in the initial epochs and better loss
convergence in the later epochs compared to DTrC-Net. Therefore, the use of Pre-Conv is
interpreted as contributing to the improvement of the initial learning speed and later learn-
ing ability of the transformer encoder. In experiments conducted to compare PCTC-Net
and DTrC-Net across various datasets, PCTC-Net showed good performance in all datasets,
indicating consistent performance across different datasets. However, a drawback was that
in the Crack500 dataset, PCTC-Net’s Recall was about 1.4% lower than DTrC-Net.

Overall, the Pre-Conv of PCTC-Net improved the low Inductive bias of the Trans-
former encoder, leading to enhanced performance. Generally, crack segmentation models
using transformer encoders require large datasets, but the use of Pre-Conv contributed
to mitigating this drawback. Especially, PCTC-Net has the significant advantage of not
showing a substantial decrease in performance despite reducing the number of layers in
the Transformer Encoder.

7. Conclusions

In this study, we proposed PCTC-Net to improve crack segmentation performance
through the fusion of CNN and transformers. In experiments using three datasets, Deep-
Crack, Crack500, and Crackseg9k, PCTC-Net showed an average increase of 0.82% in the
F1-Score compared to DTrC-Net. PCTC-Net was optimized by experimenting with the
batch size, loss function, and kernel size of the Pre-Conv. When the transformer encoder is
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fed a Feature Map that has passed through CNN instead of raw images, the transformer
can more effectively detect cracks and facilitate efficient learning. By feeding the Feature
Map, which is enriched with pixel-level features through CNN, into the transformer en-
coder, the inductive bias of the transformer is enhanced. As seen in Figure 3, PCTC-Net
demonstrates a better learning convergence speed compared to DTrC-Net. The results
demonstrate that the proposed network architecture is highly suitable for crack segmenta-
tion using Pre-Conv instead of directly using image patches with transformers. PCTC-Net
showed a minimal performance decline of only 0.9% in the F1-Score even when reducing
the layers in the transformer blocks, whereas DTrC-Net showed a decline of 3.2%. This
indicates that the Pre-Conv improves the inductive bias of the transformer and suggests
its potential for model lighting. Our future plans focus on developing data augmentation
and semi-supervised learning techniques for crack segmentation, aimed at maintaining
robust performance against various types of cracks and complex backgrounds within a
single image. We also plan to construct and test experimental datasets to evaluate crack
segmentation performance under diverse conditions. Furthermore, we intend to conduct
cross-domain research in medical imaging. This will expand the applicability of PCTC-Net
to diverse environments beyond its limited conditions.
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