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Abstract: Recent advancements in sensor technologies, coupled with signal processing and machine
learning, have enabled real-time traffic control systems to effectively adapt to changing traffic
conditions. Cameras, as sensors, offer a cost-effective means to determine the number, location, type,
and speed of vehicles, aiding decision-making at traffic intersections. However, the effective use of
cameras for traffic surveillance requires proper calibration. This paper proposes a new optimization-
based method for camera calibration. In this approach, initial calibration parameters are established
using the Direct Linear Transformation (DLT) method. Then, optimization algorithms are applied to
further refine the calibration parameters for the correction of nonlinear lens distortions. A significant
enhancement in the optimization process is achieved through the integration of the Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO) into a combined Integrated GA and PSO (IGAPSO)
technique. The effectiveness of this method is demonstrated through the calibration of eleven roadside
cameras at three different intersections. The experimental results show that when compared to the
baseline DLT method, the vehicle localization error is reduced by 22.30% with GA, 22.31% with PSO,
and 25.51% with IGAPSO.

Keywords: camera calibration; traffic surveillance; genetic algorithm; particle swarm optimization

1. Introduction

In the field of artificial intelligence, cameras play an important role as sensors for cap-
turing visual information, enabling machines to perceive and understand their surround-
ings [1–3]. With advancements in machine vision and robot navigation [4], camera-based
vision techniques have become increasingly important for extracting valuable information
from visual data captured by cameras. Camera calibration [5], which is a fundamental pro-
cess in computer vision, ensures precise measurements and reliable analysis by correcting
distortions and estimating intrinsic and extrinsic camera parameters. Accurate camera
calibration is crucial for a wide range of applications, including mobile robot navigation [6],
machine vision [7], biomedical applications [8], and intelligent visual surveillance [9–11].
For traffic surveillance applications, calibration of roadside cameras has emerged as an
active research topic. Once a roadside camera is properly calibrated, the camera can be
used for vehicle localization [12], vehicle tracking [13], and sensor fusion for efficient traffic
signal controls [14].

Camera calibration methods can be classified into three approaches: direct calibration
methods, self-calibration methods, and calibration based on active vision. First, Direct
Linear Transformation (DLT) is a widely used traditional calibration method [15]. The DLT
establishes a relationship between points in the physical world and their corresponding
points in the captured images. This approach is notable for its simplicity and limited
number of parameters that can be easily calculated. However, it does not consider the
presence of nonlinear distortion issues. Second, self-calibration methods leverage image
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properties to enable a camera to calibrate itself without the need for external objects [16].
This approach is especially useful in situations where manual calibration is challenging or
impractical, such as in virtual reality. However, it might be less accurate than traditional
calibration methods. Finally, active vision-based calibration offers an alternative to the
labor-intensive process of traditional methods by enabling linear solving and ensuring
robustness [17]. However, its applicability might be limited in the case of unknown or
unpredictable scenarios.

To overcome not only the limitations of the traditional methods, which often neglect
nonlinear distortion issues, but also to achieve higher accuracy than both self-calibration
and active vision-based calibration methods, another camera calibration method utilizing
graphic templates has been proposed [18]. This method utilizes the orthogonal condition of
the rotation matrix and employs nonlinear optimization techniques. Although straightfor-
ward and adaptable, this method requires multiple planar template images captured from
various perspectives to use as the calibration reference object. However, these template
images cannot be obtained by fixed roadside cameras in traffic applications. To alleviate the
need for advanced equipment in typical traffic scenarios while maintaining accuracy levels
comparable to traditional methods, it is crucial to consider the effects of lens distortion.
Accordingly, the current study aims to develop a method that maintains accuracy and ef-
fectively mitigates nonlinear distortion through the application of optimization algorithms.
In the field of camera calibration, especially within the context of traffic surveillance and
related applications, Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO)
are widely used due to their distinct advantages. These include their rapid convergence
rates, robustness against being trapped in local optima, and proficiency in navigating the
intricate, nonlinear optimization landscapes typical of camera calibration tasks. Based on
these facts, GA and PSO are applied first to refine the camera calibration parameters in this
paper. Then, to develop a robust optimization methodology that leverages the strengths of
both methods, these two methods are ingeniously combined to form a new Integrated GA
and PSO (IGAPSO) method.

The contribution of this paper is twofold. Firstly, it simplifies the transformation
matrices for camera calibration, specifically tailored for traffic applications. Secondly, it
introduces a novel integrated optimization algorithm, IGAPSO, aimed at enhancing the
performance of both GA and PSO.

The rest of the paper is organized as follows: Section 2 reviews the relevant liter-
ature; then, the principles of traditional camera calibration are presented in Section 3;
Section 4 describes the application of GA, PSO, and IGAPSO methods for camera cali-
bration; subsequently, Section 5 provides validation results obtained from eleven traffic
cameras located at three consecutive intersections; finally, Section 6 concludes the paper
with an in-depth discussion.

2. Related Work

To address the nonlinear distortion issue, a two-step calibration process was pro-
posed [19]. In the first step, the internal and external parameters of a camera model are
determined by establishing and solving linear equations. In the second step, optimization
methods are employed to refine the parameters utilizing the previously obtained parame-
ters as initial values. Although this approach effectively addresses the distortion problem
enhancing the calibration accuracy, it presents a couple of issues. First, although the tradi-
tional method can be simplified by using a limited number of parameters, it still requires
the construction of three distinct matrices: the intrinsic, rotation, and translation matrices.
To accurately calculate all the parameters within these matrices, a complex process of
calculation and derivation is required, which is not ideal for simplified camera calibration.
Second, nonlinear optimization methods, such as the gradient descent algorithm [20], can
be intricate and time-consuming. If the iterative nature of the process is not well-suited,
the optimization process can become unstable, leading to an inaccurate result. Thus, the
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key challenges lie in simplifying the calibration process and selecting the most effective
optimization method.

Most studies aimed at enhancing camera calibration through optimization focus pre-
dominantly on optimizing the internal and external parameters in the intrinsic, rotation,
and translation matrices [21,22]. To further simplify the calibration procedure, a more
effective strategy would involve directly optimizing the parameters in the ultimate transfor-
mation matrix, which encompasses those three matrices. This approach is straightforward
and integrates well with applications involving traffic cameras. In recent years, various
optimization algorithms have been widely used for camera calibration [23,24]. While ef-
fective at finding local minima, gradient-based methods can be inefficient and slow when
searching for the global minimum. If the initial estimate is not close to the optimal val-
ues, the optimization process may become unstable or get trapped in a local minimum.
To mitigate this issue, intelligent global optimization algorithms, such as GA [25,26] and
PSO [27,28], have been applied to achieve accurate camera calibration. While these methods
have been successfully applied in other research fields, such as electromagnetics [29–31]
and medicine [32], they have also shown promise in the area of camera calibration. The GA
is inspired by the process of natural selection and genetics, employing genetic operators
such as selection, crossover, and mutation to evolve better solutions over generations. On
the other hand, PSO is based on the social behavior of flocking birds, with the position of
the population adjusted based on the best positions found by individual members and by
the population as a whole.

In order to effectively address multimodal problems and leverage the unique strengths
of both GA and PSO, a hybrid technique known as Hybrid Genetic Algorithm and Particle
Swarm Optimization (HGAPSO) has been introduced [33]. This approach aims to im-
prove the diversity of solutions by incorporating GA’s crossover and mutation operations
alongside PSO’s optimization mechanism. However, it is essential to acknowledge that the
hybridization process can be complex, particularly when applied to various engineering
applications. In an effort to simplify this hybridization process while maintaining a high
level of optimization performance, a novel algorithm termed Integrated Genetic Algorithm
and Particle Swarm Optimization (IGAPSO) is proposed in this study by combining the
benefits of both GA and PSO. By introducing random mutations to all solution particles, this
integrated approach aims to enhance global search capabilities and speed up convergence.
The paper compares the performance of the three optimization algorithms, GA, PSO, and
IGAPSO, in camera calibration for the traffic surveillance application. Using real-world
traffic data captured by eleven cameras at three consecutive intersections, these algorithms
are compared for their ability to fine-tune camera calibration parameters and achieve the
most accurate results.

3. Camera Calibration

Camera-based traffic monitoring requires determining vehicle locations in world
coordinates using coordinate transformations. This section provides a summary of the
process involved in camera coordinate transformation.

3.1. Coordinate Transformation

The goal of camera calibration is to establish an accurate correspondence between
the 2D coordinates in an image and their respective 3D coordinates in the real world. To
achieve this goal, three distinct coordinate systems are utilized: the 2D image, 3D camera,
and 3D world coordinate systems, as depicted in Figure 1.
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Figure 1. 2D image, 3D camera, and 3D world coordinate systems used in the camera calibration.

The 3D world coordinates can be converted to 3D camera coordinates through the
utilization of an extrinsic matrix, Mex based on the following relationship:xc

yc
zc

 = Mex


xw
yw
zw

1

, (1)

where (xc, yc, zc) and (xw, yw, zw) represent the 3D camera coordinates and the 3D world
coordinates, respectively. The 3D camera coordinates can be transformed into the 2D image
coordinates using an intrinsic matrix, Min as shown in Equation (2):

s

u
v
1

 = Min

xc
yc
zc

, (2)

where (u, v) is a pixel location in the 2D image coordinate system and s is a scaling factor.
Finally, the transformation between the 2D image pixel coordinates and the 3D world

coordinates can be obtained by combining Equations (1) and (2) as:

s

u
v
1

 = P


xw
yw
zw

1

, (3)

where the 3 × 4 transformation matrix P is defined by:

P = Min Mex. (4)

3.2. Camera Parameters

The intrinsic matrix, Min, transforms the 3D camera coordinates into 2D image coordi-
nates. The intrinsic parameters represent the camera’s optical and geometrical characteris-
tics, which include the image center, focal length, radial lens distortion, and others. The
mathematical model for the camera’s internal parameters is represented by a 3 × 3 matrix:

Min =

 fx γ cx
0 fy cy
0 0 1

, (5)

where fx and fy denote the focal lengths, γ represents the axis skew, and
(
cx, cy

)
specifies

the center of the image coordinate system. For the extrinsic matrix, Mex, the 3D world
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coordinates and the camera coordinates are related by a rotation matrix, R, and a 3-element
translation vector, T, as:

Mex =
[
R3×3 T3×1

]
= [Ro|T]. (6)

Based on Equations (5) and (6), the transformation matrix P in Equation (4) can be
rewritten as:

P =

 fx γ cx
0 fy cy
0 0 1

[Ro|T] =

p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12

, (7)

where pis represent the parameters in the resultant transformation matrix following the multipli-
cation of the intrinsic and extrinsic matrices. Using pis, Equation (3) can be rewritten as:

s

u
v
1

 =

p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12




xw
yw
zw

1

. (8)

Expanding Equation (8) yields the following three linear equations:
u = (p1xw + p2 yw + p3zw + p4)/s
v = (p5xw + p6 yw + p7zw + p8)/s
s = p9xw + p10 yw + p11zw + p12

. (9)

For the current application of traffic surveillance, all target objects in the world co-
ordinates lie on the road, which simplifies the formulation with zw = 0. Consequently,
the parameters, p3, p7, and p11, are omitted from Equation (8), resulting in the following
equation with a 3 × 3 matrix:

s

u
v
1

 =

p11 p12 p13
p21 p22 p23
p31 p32 p33

xw
yw

1

, (10)

where pij represents the element in the ith row and jth column. To solve for the parameters
in the transformation matrix, a set of homogeneous linear equations are set up and then
solved by using the Singular Value Decomposition (SVD) method [34], as detailed in a prior
work [12].

4. Optimization Algorithms

The camera calibration parameters, obtained by solving the homogeneous equations,
do not adequately account for the optical distortion of the camera. Refining these param-
eters further through an optimization process will enhance the accuracy of coordinate
transformations and minimize errors caused by optical distortion. In the field of camera
calibration, various nonlinear optimization methods have been employed to achieve this,
yielding improved accuracy. In this study, two commonly used global optimization algo-
rithms, Genetic Algorithm and Particle Swarm Optimization, are used along with a newly
developed integrated optimization algorithm based on the two former algorithms. These
three algorithms are detailed in this section.

4.1. Genetic Algorithm

The GA is a stochastic optimization algorithm inspired by Darwin’s theory of evolution.
It operates on a population composed of a set of solutions, where the population size
corresponds to the number of solutions. Each solution in the GA consists of a set of genes,
with each gene representing a parameter in the coordinate transformation matrix for the
current application. A fitness function evaluates the quality of these solutions, determining
the optimal candidates. During the selection process, superior solutions are identified to
form the mating pool, from which parent solutions are chosen. Selected pairs of parents
from this pool produce two offspring. This pairing of high-quality parents is expected to
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yield offspring potentially superior to their predecessors. The reproductive process, where
offspring inherit genes from their parents, is known as crossover. However, crossover
alone may regenerate existing limitations of the parents by not introducing new genetic
material. To address this issue, some genes undergo random alterations in a process known
as mutation. This can result in offspring of superior quality, who may then replace some
parents in the mating pool, influencing the subsequent generation. Figure 2 provides a
flowchart detailing these steps of the GA.

Figure 2. Genetic Algorithm (GA) flowchart.

Since the focus of this research is on localizing vehicles on the road surface, impos-
ing zw = 0 leads to nine parameters, p11 − p33, to be optimized in the transformation matrix.
Accordingly, the configuration of the GA assigns nine genes per solution. Through multiple
experimental iterations, considering both model size and operational speed, it has been
determined that a population size of one hundred solutions is optimal. During the mating
process, mutation occurs randomly at a rate of 30%.

4.2. Particle Swarm Optimization

The PSO allows for the fast exploration of the search space and often exhibits compu-
tational efficiency across a wide range of optimization problems. In the PSO framework,
a set of solutions, represented by particles, traverses the search space. They refine their
positions by considering both their best individual positions and the best position found by
the entire population. Each particle moves with a velocity that enables position updating
over iterations to find the global minimum. The equations for updating the velocity, Vt

i ,
and position, Pt

i , of the ith particle at time t, can be expressed as follows:
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Vt+1
i = wVt

i + c1r1

(
Pt

pbest(i) − Pt
i

)
+ c2r2

(
Pt

gbest − Pt
i

)
, (11)

Pt+1
i = Pt

i + Vt
i ∆t, (12)

where w is the inertia weight balancing between the exploration and exploitation of the best
solutions found so far. r1 and r2 are stochastic weights, representing unique values for each
particle and iteration, and c1 and c2 are acceleration weights, adjusting the impacts of the
best individual solution and global solutions, respectively. Also, Pt

pbest and Pt
gbest represent

the best individual position and the best global position at time t, respectively. Figure 3
shows a flowchart that outlines the steps involved in the PSO.

Figure 3. Particle Swarm Optimization (PSO) flowchart.

According to the literature, a set of benchmarks has been established to determine stan-
dard control parameters for PSO [35,36]. Notably, the best static parameters are determined
to be w = 0.72984 and c1 + c2 ≥ 4. Based on these principles and various experiments,
the parameters are adjusted so that c2 increases linearly from 0.5 to 3.5 while c1 decreases
from 3.5 to 0.5 to ensure c1 + c2 = 4. Simultaneously, w is initialized with 0.8 and gradually
decreases to 0.4.

4.3. Integrated Algorithm Based on Genetic and Particle Swarm Optimization

In this paper, the proposed integrated algorithm starts with the PSO phase, where a
swarm of particles systematically explores the search space, each adjusting its trajectory
based on the best individual and global positions. This stage sets the foundation for initial
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solution discovery, emphasizing rapid coverage of the search domain to identify promising
regions. Following the PSO phase, the proposed algorithm transitions to leveraging GA’s
evolutionary strategies, introducing a selective process where solutions undergo genetic
operators, crossover, and mutation. Crossover combines features from pairs of solutions,
while mutation introduces slight, random changes, simulating the evolutionary concept
of variation. This dual mechanism enables a diversified search beyond the initial PSO
findings, aiming to refine solution quality by probing previously untouched areas within
the search space.

During the local search procedure, if the particles find better solutions through GA-
inspired operations, these improved solutions are retained, ensuring the algorithm con-
tinuously improves towards the optimal solutions. This integration of GA’s evolutionary
strategies with PSO’s social behavior is termed IGAPSO. Therefore, the proposed algorithm
can enhance search efficiency and solution accuracy, presenting a robust framework for
complex optimization challenges such as those encountered in camera calibration. The
proposed algorithm is detailed in Figure 4.

Figure 4. Integrated Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).

To achieve optimal results while maintaining computational efficiency, systematic
experiments were conducted to tune some key parameters. Specifically, the GA was applied
with a 10% probability to refine the particles, generating offspring over just ten generations.
This approach effectively increased result accuracy from 0% to 10%. Further adjustments,
increasing the probability to 20%, did not significantly change the outcomes. Additionally,
incorporating GA into the local search process of the PSO method enhanced the quality
of particles with minimal time and computational resource usage. The decision to limit
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GA to a maximum of ten generations was based on the observation that extending it to
twenty or more generations did not substantially improve accuracy but notably increased
the duration of the optimization.

5. Experiments

To evaluate the performance of the three different optimization algorithms for camera
calibration, a total of 151 data points were collected with 3D world coordinates and their
corresponding 2D image coordinates. Among these data points, 101 were used to calculate
the transformation matrix, while the remaining 50 were used to assess the performance of
the optimization algorithms. Based on previous research [12], the position of the camera,
affixed to the traffic light pole, is designated as the origin of the 3D world coordinate system.

5.1. Experimental Setup

A network camera with a resolution of 1920 × 1080 pixels was used to capture images
as shown in Figure 5. Also, to test the robustness of the proposed algorithm across various
traffic surveillance scenarios, the data points were acquired from eleven different cameras,
installed at various angles across three consecutive traffic intersections. To ensure the
precision of the measurement points as a reference in world coordinates, a high-precision
Differential Global Positioning System (DGPS) was utilized. The DGPS is capable of
achieving centimeter-level accuracy in the Real-Time Kinematics (RTK) mode.

Figure 5. One of the network cameras installed on a traffic pole.

5.2. Experiment Using a Single Traffic Camera

To assess the effectiveness of the proposed integrated optimization algorithm, IGAPSO,
compared to the two baseline algorithms, GA and PSO, the performances of the three
algorithms were evaluated based on physical data points with DGPS reference. The
data points for calibration and validation, obtained from a roadside camera, are shown
in Figure 6.
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Figure 6. Data points collected by a single roadside camera for camera calibration. The red dots are
used for the transformation matrix calculation, while the blue dots are used for validation purposes.
(a) Data points shown on an image plane. (b) The corresponding data points on a Google Map.

Using the selected roadside camera, 10 data points (red) are obtained in a traffic scene
to calculate the transformation matrix, and an additional 5 data points (blue) are chosen to
test the optimization algorithms. The transformation matrix obtained by the DLT method
is as follows:

PDLT =

 −0.0057 −0.1211 0.1147
−0.0220 0.0082 −0.9686

0.0521 −0.0028 −0.1750

. (13)

The parameters in the transformation matrix calculated by the DLT method serve
as the initial values for the optimization algorithms. When further refined using the GA,
PSO, and IGAPSO algorithms, the initial transformation matrix yields results shown in
Equations (14)–(16). It can be seen that the three resulting matrices contain very similar
values, with an average difference of 1.3%, except for the parameter in the third row and
the second column, which exhibits a maximum difference of 118% due to their relatively
small values.

PGA =

 −0.0057 −0.1216 0.1312
−0.0224 0.0085 −0.9755

0.0542 0.0005 −0.1048

, (14)

PPSO =

 −0.0056 −0.1203 0.1302
−0.0223 0.0085 −0.9718

0.0537 −0.0002 −0.1041

, (15)

PCGAPSO =

 −0.0057 −0.1222 0.1324
−0.0224 0.0084 −0.9761

0.0543 0.0011 −0.1067

. (16)

The camera calibration errors, calculated as the average Euclidean distances between
the world coordinates of the data points obtained by the DGPS and those obtained by the
calibrated camera, are presented in Table 1. For these calculations, the world coordinates
obtained by the DGPS are regarded as the ground truth against which the coordinates
determined by the different algorithms are compared. In the table, it is shown that the
average error obtained by the initial DLT is 0.87 m, while the three optimization algorithms
further reduce the error. Specifically, the GA, PSO, and IGAPSO show improvements of
13.8%, 12.6%, and 14.9% over the baseline DLT method, respectively. Additionally, the
proposed integrated optimization algorithm exhibits a faster convergence rate compared to
the other two optimization algorithms, as shown in Figure 7.
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Table 1. Comparison of camera calibration errors by DLT, GA, PSO, and IGAPSO for data points
obtained by a single roadside camera (best result shown in bold).

Linear Transformation
(DLT)

Genetic Algorithm
(GA)

Particle Swarm
Optimization (PSO)

Integrated GA and
PSO (IGAPSO)

Error (improvement) 0.87 m 0.75 m (13.8%) 0.76 m (12.6%) 0.74 m (14.9%)

Figure 7. Comparison of convergence rates of GA, PSO, and IGAPSO for the corresponding traffic
scenes shown in Figure 6.

5.3. Experiment Using Multiple Traffic Cameras

In this study, a total of eleven roadside cameras are employed to capture multiple traffic
scenes from various viewing angles at three consecutive intersections. The traffic scene
presented in Section 5.2 serves as an illustrative example, captured by one of the cameras, to
demonstrate the performance of three distinct optimization algorithms utilized for camera
calibration. The dataset collected from the remaining ten cameras comprises a total of
136 data points, with 96 of these points being used for the calculation of the transformation
matrix. The remaining 40 data points were allocated for testing the performance of the
three optimization algorithms. Aside from the scenario detailed in Section 5.2, Figure 8
illustrates six out of ten traffic scenes, each depicting a unique scenario. In the figure, red
and blue dots represent data points used for the calculation of the transformation matrix
and for validating the results of the optimization algorithms, respectively. The images on
the left show the data points in the 2D camera image plane, while those on the right present
the corresponding data points on Google Maps.

Figure 8. Cont.
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Figure 8. Subfigures (a–f) display data points from images captured by 6 different roadside traffic
cameras on the left, alongside corresponding visualizations on Google Maps on the right, illustrating
a variety of traffic scenes.
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The convergence performances of the three different optimization algorithms are
graphically presented in Figure 9 for the corresponding six different traffic scenes shown
in Figure 8. In these figures, the green, blue, and red curves represent the calibration
errors for the GA, PSO, and IGAPSO algorithms, respectively. Due to the stochastic
nature of optimization algorithms, the outcomes can vary with each execution, leading to
different convergence trajectories and potentially sub-optimal results in some instances. To
mitigate this variability, each algorithm is executed five times, and the results are averaged
across these runs. This approach helps mitigate the impact of inherent randomness in
stochastic optimization processes, yielding a more reliable and compelling set of results.
As shown in Figure 9, the proposed integrated optimization algorithm consistently exhibits
faster convergence rates compared to the other two conventional optimization methods in
most cases.

Figure 9. Subfigures (a–f) show convergence performances of three different optimization algorithms
for the corresponding traffic scenes shown in Figure 8a–f.
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In Table 2, the camera calibration errors, calculated as the average Euclidean distances
between the world coordinates of the data points obtained by the DGPS and those obtained
by the camera calibration, are presented. The optimization results for certain cameras show
significant enhancements, while others exhibit only modest improvements. This disparity
can be attributed to varying degrees of distortion in each camera. Overall, the optimization-
based refinement resulted in substantial improvements in average performance: 22.30%
with GA, 22.31% with PSO, and 25.51% with IGAPSO.

Table 2. Comparison of camera calibration errors by DLT, GA, PSO, and IGAPSO in all eleven distinct
traffic scenes (best results shown in bold).

Camera
Calibration Errors (Performance Improvement over Baseline DLT)

Linear Transformation
(DLT)

Genetic Algorithm
(GA)

Particle Swarm
Optimization (PSO)

Integrated GA and
PSO (IGAPSO)

Cam 1 0.64 m 0.42 m (34.38%) 0.42 m (34.38%) 0.41 m (35.94%)
Cam 2 0.33 m 0.24 m (27.27%) 0.24 m (27.27%) 0.23 m (30.33%)
Cam 3 0.48 m 0.29 m (39.58%) 0.28 m (41.67%) 0.27 m (43.75%)
Cam 4 0.87 m 0.75 m (13.79%) 0.75 m (13.79%) 0.74 m (14.94%)
Cam 5 0.56 m 0.53 m (5.36%) 0.52 m (7.14%) 0.52 m (7.14%)
Cam 6 0.46 m 0.35 m (23.91%) 0.35 m (23.91%) 0.34 m (26.09%)
Cam 7 0.41 m 0.29 m (29.27%) 0.29 m (29.27%) 0.28 m (31.71%)
Cam 8 0.60 m 0.48 m (20.00%) 0.48 m (20.00%) 0.47 m (21.67%)
Cam 9 0.31 m 0.25 m (19.35%) 0.25 m (19.35%) 0.25 m (19.35%)

Cam 10 0.50 m 0.42 m (16.00%) 0.42 m (16.00%) 0.41 m (18.00%)
Cam 11 0.79 m 0.66 m (16.46%) 0.69 m (12.66%) 0.54 m (31.65%)

As explained in Section 3, the original camera coordinate transformation matrix of
12 parameters is reduced to a 3 × 3 matrix of 9 parameters for the traffic surveillance
application by ignoring the vertical coordinate of the data points. To ensure the robustness
of the proposed approach in diverse traffic scenarios, 151 data points were collected using
eleven different roadside cameras offering various view angles to the traffic scenes. The re-
sulting matrix parameters for the six cases depicted in Figures 8 and 9, labeled (a) to (f), are
presented as bar graphs in Figure 10. In the figure, the transformation matrix parameters
for DLT and three different optimization algorithms are presented for each of the six cases.
Due to the large disparity in the magnitude of the values, two vertical axes are used for each
plot. The nonlinear optimization algorithms refine the transformation matrix parameters
obtained by DLT to rectify distortion issues stemming from uncertain internal and external
camera calibration parameters. Consequently, although the differences in individual pa-
rameters for the same camera may seem minor, modifying the parameters of the simplified
transformation matrix leads to noticeable improvements in the vehicle localization.

Figure 10. Cont.
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Figure 10. Bar plot representation of the nine parameters comprising the 3 × 3 transformation
matrix, denoted as Pij where i represents the row and j represents the column. Subfigures (a–f),
corresponding to Figures 8a–f and 9a–f, illustrate the results obtained from DLT and three other
algorithms, each represented by a distinct color bar. The horizontal axes denote the parameters Pij,
while the vertical axes show their corresponding values.

Note that the presented method for refining the transformation matrix through opti-
mization requires ground truth data, which is typically obtained using advanced equipment
such as a DGPS. In situations where acquiring ground truth data is challenging or impracti-
cal, QR decomposition, as demonstrated in the authors’ previous work [12], offers a viable
method for estimating the ground truth data without the need for advanced equipment.
The approach provides a convenient and computationally efficient means of determining
the world coordinates of locations with an acceptable level of error.

6. Conclusions

This paper presents an optimization-based camera calibration approach for accu-
rately determining the 3D world coordinates of ground points, a crucial factor for ac-
curate vehicle localization in traffic monitoring applications. Initially, the conventional
Direct Linear Transform (DLT) method is utilized to compute the coordinate transfor-
mation matrix using 151 data points, collected using eleven different roadside cameras.
Subsequently, using the results of the DLT method as initial parameters, three differ-
ent optimization algorithms—the Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), and the newly proposed Integrated Genetic Algorithm-Particle Swarm Optimization
(IGAPSO)—are applied to further refine the transformation matrix. IGAPSO leverages the
advantages of GA and PSO to enhance both the convergence rate and optimization per-
formance. The optimization-based approach shows a significant reduction in the average
localization errors by 22.30% with GA, 22.31% with PSO, and 25.51% with IGAPSO com-
pared to the baseline DLT method. Among these, IGAPSO not only demonstrated superior
results compared to GA and PSO, but also exhibited faster convergence in most cases.
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This study presented a refinement process for the transformation matrix by applying
optimization algorithms, bypassing the need for intricate geometric models and complex
mathematical derivations associated with internal and external camera parameters. By
evaluating the proposed algorithm using data collected from eleven roadside cameras
capturing diverse angles at three consecutive intersections, the robustness of the approach
has been demonstrated across a wider range of traffic scenarios. The introduction of a
more efficient and effective roadside camera calibration method significantly contributes to
advancements in the field of traffic surveillance for data analysis and control purposes.

Although it has successfully demonstrated the effectiveness of the proposed approach,
there are limitations in this study. This study relies on data collected from eleven roadside
cameras capturing diverse angles at three consecutive intersections, which may limit the gener-
alizability of the findings to other environments or conditions. Additionally, while the proposed
IGAPSO algorithm shows promising results, further comprehensive evaluation across a broader
range of datasets and scenarios is necessary to validate its effectiveness in diverse real-world
applications. Moreover, the simplifications and assumptions made in the optimization-based
approach may affect the accuracy and applicability of the results in certain scenarios.

For future work, extending data collection efforts to include larger and more diverse
datasets from various traffic environments would be beneficial to validate the performance
and robustness of the proposed algorithm under different conditions. Additionally, con-
tinual refinement and optimization of the IGAPSO algorithm could improve its efficiency,
accuracy, and scalability, possibly through hybridization with other optimization tech-
niques or the incorporation of adaptive strategies. Furthermore, conducting field tests and
the real-world deployment of the optimized camera calibration approach would be essen-
tial to assess its performance and feasibility in practical traffic surveillance applications,
considering factors such as real-time processing, scalability, and hardware constraints.
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