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Table B1: Summary of articles for healthy human subjects with time-series analysis techniques 

Article Aim of the 
Study 

Demographics & Experimental 
Conditions 

Physiological Data 
& Measurement 
Methods 

Data 
Resolution 

Method(s) 
of  
Time-Series 
Modelling 

Study Results and Conclusions Regarding 
Cerebral Physiologic Signal Modelling 

Frequency-Domain Analysis Studies 
Brown et 
al., 2004 
[1] 

The effects of 
periodical 
gravitational 
stress on the 
CBFv 
regulations via 
application of 
LBNP were 
assessed. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 16 
Subject demographics: 8 male/8 
female 
Age range: 25-30 years 
Mean age: 27 years 
 
Experimental conditions: 
The subjects refrained from caffeine 
and food 3 hours prior to the study. 
The subjects did not have any history 
of neurological or cardiovascular 
disorders. The data was recorded 
during steady state LBNP at -15 and 
-40 mmHg as well as during 
oscillating 0.1 (0 to -15 mmHg, LF) 
and 0.2 Hz (0 to -40 mmHg, HF) 
LBNP at supine position. 

Cerebral 
Physiology:  
CBFv was recorded 
via TCD 
ultrasonography. 
ECG 
 
Other:  
BP was recorded 
with non-invasive 
radial arterial 
tonometry. EtCO2 
was recorded with 
infrared absorption 
via nasal cannula. 
MABP 

1.25 Hz,  
LF: 0.03-
0.14 Hz, 
HF: 0.15-
0.40 Hz 

Cross-
spectral 
analysis (for 
comparison 
of 
oscillating 
signal pairs) 

• It was observed that during LF oscillatory 
LBNP, there was no difference in the phase 
shift of MABP-CBFv compared to steady-
state LBNP indicating no change in the 
autoregulatory response despite reduced 
buffering ability of cerebral vessels (p-value 
<0.01).  

• MABP-CBFV oscillations were 
approximately in phase, with a phase relation 
close to zero, whereas gain was lower during 
oscillatory LBNP but not significantly 
different in the HF range. 

• Significant coherence between MABP and 
CBFv oscillations were observed in majority 
of the subjects at both LF and HF ranges, 
while the MABP-CBFv gain was 
significantly higher (p-value<0.01) for HF 
oscillatory LBNP suggesting further 
impairment of buffering ability of the 
cerebral vessels during high frequency 
fluctuations in BP. 

• It was concluded that the regulatory effect of 
cerebral vessels to reduce physiological LF 
BP fluctuations during steady state was 
diminished with increasing orthostatic stress 
oscillations. 

Katsogrid
akis et al., 
2016 [2] 

The effect of 
multivariate 
representation 
of dynamic CA 
modelling on 
the changes of 
CBFv 
oscillations was 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 30 
Subject demographics:  NA  
 
Experimental conditions: 
The subjects did not have a history 
of any known cardiovascular and 

Cerebral 
Physiology:  
CBFv was recorded 
with TCD from the 
MCA. CrCP and 
RAP were 
estimated from 
CBFv and ABP 

5 Hz,  
VLF: 0.02-
0.07 Hz, 
HF: >0.07 
Hz 
 

Welch 
method (for 
estimating 
power and 
cross-power 
spectral 
densities), 
multiple 

• Statistically significant increase in power 
spectral densities was observed in the VLF 
with CO2 administration (p-value<10-4). 
• Correlation between ABP and CBFv 
estimated by first- and second- partial 
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analyzed in the 
VLF range. 

neurological disorders. The testing 
was performed at a supine position. 
The thigh cuff method combined 
with administration of 5% CO2 was 
followed. The subjects wore face 
masks for CO2 administration. 
pseudorandom binary sequence 
fluctuations method was employed 
to increase ABP and EtCO2 
variability during simultaneous 
administration of CO2. 

using the first 
harmonic method.  
ECG 
 
Other:  
ABP was recorded 
with a finger 
photoplethysmogra
phy device. EtCO2 
was measured with 
a capnograph 
connected to the 
face mask. HR was 
estimated from 
ECG signal. 

coherence 
estimation 
with matrix 
approach 
(for input-
to-output 
signal 
quantificatio
n) 

coherence was observed to be weak in the VLF 
range and strong above that. 
• First- and second- partial coherence estimates 
between EtCO2 and CBFv showed a strong 
correlation only in the VLF range indicating 
strong frequency dependent characteristics 
between the two variables referred to CVR. 
• It was concluded that CVR should be treated 
as a frequency dependent phenomenon similar 
to dynamic CA. 

Kuo et 
al., 1998 
[3] 

The 
spontaneous 
fluctuations in 
the CBFv were 
analyzed for 
classification, 
and the 
underlying 
mechanism was 
examined. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 33 
Subject demographics: 14 male/19 
female 
Age range: 22-59 years 
Mean age: 36.7±9.7 years 
 
Experimental conditions: 
The subjects did not have a history 
of diabetes or cardiovascular 
diseases. The data was collected in 
supine position at rest. 

Cerebral 
Physiology:  
CBFv was recorded 
with TCD from the 
MCA. 
 
Other: 
ABP was 
monitored with 
finger 
plethysmography. 

2 Hz, 
VLF: 
0.016-0.04 
Hz, 
LF: 0.04-
0.15 Hz, 
HF: 0.15-
0.40 Hz 

Cross-
spectral 
analysis, 
TFA (for 
justification 
of CBFv 
classificatio
n in the 
frequency 
domain) 

• Slow fluctuations of CBFv were classified 
into three groups with cross-spectral analysis 
and TFA. 
• Cross-spectral analysis showed high 
coherence in the HF and LF ranges suggesting 
co-linearity between ABP and CBFv 
fluctuations in these two ranges. 
• The transfer phase in the HF range was found 
to be significantly less than LF range (p-
value<0.001). 
• It was concluded that phase shift difference 
between LF and HF ranges suggested that CA 
would operate more efficiently in the LF range 
than in HF range. 

Peng et 
al., 2008 
[4] 

The effects of 
beat-to-beat 
ABP 
fluctuations and 
breath-by-
breath EtCO2 
and EtO2 on 
beat-to-beat 
CBFv 
variations were 
assessed. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 13 
Subject demographics: NA 
 
Experimental conditions: 
The subjects did not have any 
cardiovascular, respiratory, or 
cerebrovascular diseases. The data 
was recorded in supine position at 
rest with normal breathing. 

Cerebral 
Physiology:  
CBFv was recorded 
with TCD from the 
MCA. 
ECG 
 
Other:  
EtCO2 and EtO2 

were acquired with 
a mass 
spectrometer. ABP 
was recorded 

1 Hz 
LF: <0.05 
Hz, 
HF: >0.05 
Hz 

Multiple 
coherence 
function 
 
 
 

• The three multiple coherences were observed 
to be significantly higher than the values 
obtained for univariate coherence of ABP-input 
in the low frequency whereas no significant 
difference was observed between multiple and 
univariate coherences at higher frequencies. 
• It was concluded that at low frequencies, 
EtCO2 and EtO2 fluctuations on CBFv 
variability could be responsible from the low 
values of univariate coherence. 
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noninvasively with 
finger 
photoplethysmogra
phy. 

TFA Studies 
Ainslie et 
al., 2007 
[5] 

The effects of 
acute hypoxia 
on CBF 
dynamics as 
well as the 
responses of 
integrative 
cardiorespirator
y and 
cerebrovascular 
to acute 
hypoxia at rest 
and during 
exercise were 
examined. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 14  
Subject demographics: 6 male/8 
female 
Mean age: 25 years 
 
Experimental conditions: 
The subjects refrained from exercise 
and alcohol 12 hours prior and from 
consuming caffeine 4 hours prior to 
the study. The subjects were rested 
in supine positions during normoxia 
and hypoxia breathing through a 
leak-free respiratory mask. 
Following the resting state, the 
subjects exercised with and without 
induced hypoxia which was followed 
with a resting state with hypoxia and 
normoxic recovery. 
 

Cerebral 
Physiology:  
Δ[HbO], Δ[Hb] and 
Δ[HbTot] were 
measured by a 
NIRS system. 
CBFv was 
measured with 
TCD ultrasound. 
(CVRi= 
MBP/CBFv) 
 
 
Other:  
ABP was recorded 
with a finger 
photoplethysmogra
phy. EtCO2 and 
EtO2 were recorded 
with a gas analyzer. 
SaO2 was measured 
at the finger with 
pulse oximetry. HR 
was calculated 
from ABP. 

2 Hz, 
VLF: 0.02-
0.07 Hz, 
LF: 0.07-
0.20 Hz, 
HF: 0.20-
0.30 Hz 

TFA (for 
identifying 
dynamic 
CA), FFT 
(for 
calculating 
frequency-
domain 
transforms) 

• CBFv was observed to be at a higher level 
than expected for the given hypocapnia level 
during exercise suggesting increased CBF 
demand for a cerebral neurogenic activity (p-
value<0.05). 
• No relationship was observed between CBFv 
and EtCO2 during hypoxic exercise indicating 
less sensitive CA to hypocapnia during hypoxic 
exercise (p-value<0.05). 
• HbO was decreased during rest and exercise 
with hypoxia, while muscle oxygenation was 
maintained (p-value<0.05). 
• The CA was maintained during hypoxic rest 
but not during hypoxic exercise (p-
value<0.05). 
• Phase shift was decreased in the LF range 
during hypoxic exercise (p-value<0.05). 
• A strong relationship between the changes in 
CBFv and Δ[HbO] was detected during 
hypoxic rest whereas during hypoxic exercise, 
Δ[HbO] was reduced and CBFv was 
maintained. 
• The results indicated CA and oxygenation 
could be compromised by the hypoxic exercise 
as it would outbalance the hypocapnia-induced 
CBFv lowering. 

Claassen 
et al., 
2009 [6] 

The dynamic 
relation 
between ABP 
and CBFv was 
quantified by 
analyzing the 
oscillations in 
ABP and CBFv 
resulting from 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 8 
Subject demographics: 4 male/4 
female 
Mean age: 30±4 years 
Mean weight: 72±18 kg 
 
Experimental conditions: 

Cerebral 
Physiology:  
CBFv was recorded 
via TCD 
ultrasonography in 
the MCA. 
ECG 
 
Other:  

2 Hz,  
VLF: 0.02-
0.07 Hz,  
LF: 0.07-
0.20 Hz,  
HF: 0.20-
0.35 Hz 

TFA • Repeated squat-stand maneuvers had larger 
coherence between ABP and CBFv than 
spontaneous oscillations for all subjects. 
• Large changes in ABP and CBFv oscillations 
were observed in all frequency ranges during 
the repeated squat-stand maneuvers allowing a 
comparison of dynamic CA between low and 
high frequencies. 
• It was concluded that the addition of squat-
stand maneuvers to spontaneous oscillation 
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squat-stand 
maneuvers. 

12 hours prior to the study, the 
subjects refrained from consuming 
alcohol or caffeine. Data was 
recorded during rest in sitting 
position and repeated squat-stand 
maneuvers at various frequencies 
while maintaining normal breathing. 

ABP was recorded 
with a finger 
photoplethysmogra
phy device. 
Intermittent BP was 
recorded with 
electrosphygmoma
nometry. EtCO2 
was measured with 
a capnography. 

analysis could improve the information 
obtained from TFA to assess dynamic CA at 
VLF interval. 

Iwasaki et 
al., 2007 
[7] 

The hypoxia-
induced 
changes in CBF 
oscillations and 
the dynamic 
relationship of 
ABP and CBFv 
oscillations 
were analyzed. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 15  
Mean age: 22±2 years 
Mean height: 172±5 cm 
Mean weight: 52±5 kg 
 
Experimental conditions: 
A day prior to study, the subjects 
refrained from caffeinated or 
alcoholic beverages and heavy 
exercise. Doppler ultrasonography 
transducer was placed on the 
temporal window.  
Data were collected in three 
protocols: 
Stepwise protocol: O2 concentration 
was decreased from 21% to 19%, 
17% and then to 15% while the CO2 
concentration was kept constant in 
each level. Each O2 concentration 
levels were maintained for 10 mins 
by hypoxic generator, and data were 
collected in the last 5 mins. 
Time-control protocol: Stepwise 
protocol was repeated without 
changing the O2 concentration levels 
and using 21% O2 air instead of 
hypoxic air. 
Single-dose protocol: O2 
concentration decreased from 21% to 

Cerebral 
Physiology:  
CBFv was recorded 
with TCD from the 
MCA. 
ECG 
 
Other:  
EtCO2 and SaO2 
were recorded by a 
pulse oximeter. 
Intermittent BP was 
measured by 
oscillometer 
determination using 
sphygmomanomete
r. ABP was 
measured by 
tonometry at the 
right radial artery. 
HR was measured 
by ECG. 
MABP 

2 Hz,  
VLF: 0.02-
0.07 Hz, 
LF: 0.07-
0.20 Hz, 
HF: 0.20-
0.35 Hz 

TFA • CBFv variability didn’t change at LF but 
increased significantly at VLF (p-value=0.002) 
and HF (p-value=0.006) with hypoxia at 15% 
O2. 
• MABP variability increased at LF and HF (p-
value=0.049) and increased significantly at 
VLF (p-value=0.008). 
• Coherence (p-value=0.028) and transfer 
function gain (p-value=0.035) increased 
significantly in the VLF range but did not 
change in the LF and HF ranges with hypoxia 
at 15% O2. 
• It was concluded that ABP oscillations and 
the CBF oscillation dependence on the ABP 
oscillation were affected by the normobaric 
hypoxia. 
• It was also concluded that the CBF 
fluctuations increased in the VLF range while 
the changes were significant only with hypoxia 
at 15% O2 indicating a possibility of threshold 
for such changes. 
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15% directly and data were 
measured for 9 of the 15 subjects. 

Oudegees
t-Sander 
et al., 
2014 [8] 

The effects of 
ABP and EtCO2 
changes in 
different age 
groups on 
dynamic CBFv 
and cortical 
oxygenation 
responses were 
assessed. 

Subject Characteristics: 
Young (Y), elderly (E), and older 
elderly (OE) subjects 
Number of subjects: 20 (Y), 20 (E), 
18 (OE) 
Subject demographics: 9 male/11 
female (Y), 13 male/7 female (E), 15 
male/3 female (OE) 
Age range: 21-28 years (Y), 65-69 
years (E), 74-86 years (OE) 
Mean age: 24±2 years (Y), 66±1 
years (E), 78±3 years (OE) 
 
Experimental conditions: 
The subjects refrained from exercise, 
caffeine, and alcohol 24 hours prior 
to the study. The data was recorded 
in baseline at sitting position at rest, 
during repeated sit-squad maneuvers, 
during hypocapnia induced by heavy 
breathing and 5% CO2 induced 
hypercapnia. 

Cerebral 
Physiology:  
CBFv was recorded 
with TCD from the 
MCA. [HbO] was 
recorded with 
NIRS. 
(CVRi = 
MABP/CBFv) 
ECG 
 
Other:  
EtCO2 was 
acquired by a 
capnograph via 
nasal cannula. ABP 
was measured 
noninvasively with 
finger 
plethysmography. 
MABP 

2 Hz, 
VLF: 0.02-
0.07 Hz, 
LF: 0.07-
0.20 Hz, 
HF: 0.20-
0.35 Hz 

TFA • Decreased CBFv and increased CVR were 
observed with age (p-value<0.05 for both). 
• In hypocapnia and hypercapnia, significant 
changes of EtCO2 were observed in all groups 
(p-value<0.01) causing significant changes in 
MABP, CBFv, CVRi and HbO. 
• Percentage changes in CBFv, CVRi and HbO 
were similar in all age groups whereas absolute 
changes CBFv and CVRi were higher in the 
young group during measurements. 
• No differences were observed between 
different age groups for phase and coherence, 
while the gain and normalized gain observed 
higher in elderly compared to older elderly, and 
for normalized gain compared to young (p-
value=0.05) in the VLF range. 
• For the elderly group, phase shift between 
CBFv and HbO was found to be lower 
compared to young elderly (p-value=0.003). 
• For the older elderly group, the normalized 
gain was slightly higher compared to the 
elderly group young (p-value=0.05). 
• It was concluded that dynamic CA and CVR 
retained normal function while CBFv and HbO 
were not compromised in the older elderly 
group. 

Panerai et 
al., 2021 
[9] 

The effects of 
dynamic CA 
and subject 
demographics 
on step 
responses of 
CrCP and RAP 
were examined.  

Subject Characteristics: 
Healthy subjects 
Number of subjects: 194 
Subject demographics: 104 male/90 
female 
Age range: 20-82 years 
Mean age: 51.7±15.2 years 
 
Experimental conditions: 
Data was extracted retrospectively 
from a database. The subjects did not 
have any cardiovascular, respiratory, 
or neurological diseases. The 

Cerebral 
Physiology: 
CBFv was recorded 
with TCD from the 
MCA. CrCP and 
RAP were 
estimated from BP-
CBFv relationship 
for each cardiac 
cycle. 
ECG 
 
Other:  

5 Hz TFA • A decrease in ARI was observed with 
increasing age in men but not in women. 
• ARI had a strong influence (p-value<0.0001) 
on the temporal patterns of step responses of 
ABP-CBFv, ABP-CrCP, and ABP-RAP which 
were not influenced by sex. 
• Step responses of CBFv and RAP were also 
influenced by age. 
• It was concluded that the age affected 
dynamic ARI with men but not with women 
while the dynamic responses of RAP and CrCP 
to a step change in MABP were strongly 
influenced by ARI but not by gender. 
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subjects were asked to refrain from 
heavy exercise and consuming 
alcohol caffeine, or nicotine 4 hours 
prior to the study. The data was 
recorded in supine position at rest 
with normal breathing. 

ABP was measured 
by arterial volume 
clamping of the left 
middle finger. HR 
was derived from 
ECG. EtCO2 was 
measured via nasal 
prongs with 
capnography. SBP 
and DBP were 
obtained by 
sphygmomanomete
r. 

Smirl et 
al., 2014 
[10] 

The dynamic 
relationship 
between CBF 
and ABP were 
assessed for 
heart transplant 
recipients under 
spontaneous 
conditions and 
during squat-
stand 
maneuvers and 
compared with 
healthy and 
donor control 
groups. 

Subject Characteristics: 
Healthy group (control), heart 
transplant recipients (HTR), donor 
controls (donor) 
Number of subjects: 9 (control), 8 
(HTR), 10 (donor)  
Subject demographics: all male 
Mean age: 63±8 years (control), 
62±8 years (HTR), 27±5 years 
(donor)  
 
Experimental conditions: 
The data was recorded in baseline in 
a seated position during resting state, 
and during repeated squat-stand 
maneuver performance at 0.05 Hz 
and 0.10 Hz frequencies. 

Cerebral 
Physiology: 
CBFv was recorded 
with TCD from the 
MCA. 
(CVRi = 
MABP/CBFv) 
ECG 
 
Other: 
HR was obtained 
from ECG. ABP 
was recorded with a 
finger 
plethysmography. 
EtCO2 was 
measured with an 
online gas analyzer.  
MABP 

4 Hz, 
VLF: 0.02–
0.07 Hz, 
LF: 0.07–
0.20 Hz 

Linear TFA, 
power 
spectrum 
analysis (for 
the cross-
spectrum 
between 
MABP and 
CBFv) 

• LF gain was significantly higher for donor 
group compared to HTR (p-value<0.01) and 
control (p-value<0.01) groups. 
• MABP and CBFv power spectrum were not 
different between the groups whereas 
significantly increased power spectrum density 
of MABP and CBFv was observed for all 
groups. 
• In both squat-stand frequencies, there was no 
significant difference in TFA phase and 
normalized gain of any groups. 
• It was concluded that there was no relation 
between cerebrovascular complications and 
cerebral pressure-flow dynamics after heart 
transplant. 

Zhang et 
al., 1998 
[11] 

The effect of 
ABP on the 
spontaneous 
changes in CBF 
and the 
frequency-
dependency of 
CA were 
assessed. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 10 
Subject demographics: 4 male/6 
female 
Mean age: 33±7 years 
Mean height: 171±12 cm 
Mean weight: 69±14 kg  
 
Experimental conditions: 

Cerebral 
Physiology: 
CBFv was recorded 
with TCD from the 
MCA. 
ECG 
 
Other: 
ABP was recorded 
with a finger 

1 Hz, 
VLF: 0.02–
0.07 Hz, 
LF: 0.07–
0.20 Hz, 
HF: 0.20–
0.30 Hz 

TFA • Substantial increase in gain and gradual 
decrease in phase was observed with increasing 
frequency from LF to HF. 
• Similar measured and predicted CBFv was 
observed during thigh cuff deflation implying a 
strong relation between the changes in CBFv 
and ABP in the 0.07-0.30 Hz frequency range. 
• It was concluded that the TFA could model 
the short-term regulation of CBF as a result of 
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The subjects did not have any 
cardiovascular, pulmonary, and 
cerebrovascular diseases. The 
subjects refrained from consuming 
caffeine or alcohol 12 hours prior to 
the study. The data was recorded in 
supine position during spontaneous 
uncontrolled breathing, and during 
two inflated and deflated thigh 
pressure cuffs. Only three subjects 
were given 5% CO2 to induce 
hypercapnia during steady-state data 
collection. 

plethysmography. 
Intermittent blood 
pressure was 
collected with 
electrosphygmoma
nometry. EtCO2 
was monitored with 
a mass 
spectrometer. 

changes in ABP in the 0.07-0.30 Hz frequency 
range. 

Wavelet Analysis Studies 
Addison, 
2015 [12] 

The stable 
phase coupling 
behavior of 
ABP and rSO2 
was analyzed in 
the time-
frequency 
domain. 

Subject Characteristics: 
Healthy subject 
Number of subjects: 1 
Subject demographics:  NA 
 
Experimental conditions: 
No information was given regarding 
the experimental conditions. 

Cerebral 
Physiology:  
rSO2 was recorded 
with NIRS system. 
COx 
 
Other: 
ABP was recorded 
with a finger 
photoplethysmogra
phy device. 

0.0033 Hz Synchro-
squeezed 
cross-
wavelet 
transform 
(CWT) 
method (for 
obtaining 
energy 
related to 
phase term), 
wavelet 
analysis 
(Morlet, for 
obtaining 
phase 
difference 
map) 

• Relatively constant phase difference between 
ABP and rSO2 signals were indicated in the 
synchro-CWT plot. 
• It was concluded that the proposed wavelet 
model could be utilized in analyzing 
relationships of complex signals to illustrate 
the strength of correlation between them. 

Bu et al., 
2016 [13] 

The effect of 
long-term 
offshore work 
on the cerebral 
oxygenation 
oscillations 
were assessed. 

Subject Characteristics: 
Healthy sailors and control group 
Number of subjects: 30 (sailor), 30 
(control) 
Mean age: 26.3±6.8 years (sailors), 
26.1±6.4 years (control) 
Mean height: 174.5±8.5 cm (sailor), 
172.1±6.1 cm (control) 

Cerebral 
Physiology:  
Δ[HbO] was 
recorded by NIRS 
system. 

2 Hz, 
I: 0.6-2 Hz, 
II: 0.145-
0.6 Hz,  
III: 0.052-
0.145 Hz, 
IV: 0.021-
0.052 Hz, 

Wavelet 
analysis (for 
evaluation 
of the 
correlation 
of a signal 
pairs), 
amplitude-
adjusted 

• The results showed that the sailors had 
significantly lower wavelet amplitude in the I 
(p-value=0.004) and III (p-value=0.034) 
frequency intervals compared to control group. 
• The WPCO values in the III (p-value=0.039), 
IV (p-value=0.036) and V (p-value=0.03) 
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Mean weight: 71.6±9.9 kg (sailor), 
70.3±10.2 kg (control)  
 
Experimental conditions: 
24 hours prior to study, the subjects 
refrained from consuming alcohol. 
The subjects were free of 
hypertension, diabetes, subarachnoid 
hemorrhage and other symptoms of 
stroke and any disease of heart, 
kidney, liver, lung, etc. The fatigue 
level of the subjects was assessed 
with a short questionnaire. The data 
was collected in sitting position at 
rest. 

V: 0.0095-
0.021 Hz, 
VI: 0.005-
0.0095 Hz 

Fourier 
transform 
(AAFT) (for 
calculation 
of mean 
surrogate 
WPCO 
value) 

frequency intervals were significantly lower for 
sailors. 
• It was concluded that the sailor fatigue could 
be caused by long-term offshore work leading 
to the insufficient oxygen supply to the brain. 

Bu et al., 
2017 [14] 

The effects of 
sleep 
deprivation on 
the phase 
synchronization 
were examined 
to assess the 
physiological 
mechanism 
behind the 
decline in the 
cognitive 
function. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 20 
Subject demographics: 10 male/ 10 
female 
Mean age: 25.5±3.5 years 
Mean height: 167.8±7.2 cm 
Mean weight: 58.7±11.2 kg 
Right-handed  
 
Experimental conditions: 
The subjects did not have any history 
of neurological or psychiatric 
diseases and were not currently on 
any drug treatments. 24 hours prior 
to the study, the subjects refrained 
from consuming caffeine or alcohol. 
Data was collected at resting, task 
and post-task periods for each 
subject as group A (without sleep 
deprivation) and group B (24 hours 
sleep deprivation). A week was 
allocated between the two test 
sessions. The subjects kept their eyes 
closed and relaxed during the resting 
state recordings. Following the task 
period, the subjects performed a 

Cerebral 
Physiology:  
Δ[HbO] was 
recorded by NIRS 
system. 

2 Hz, 
I: 0.6-2 Hz, 
II: 0.145-
0.6 Hz, 
III: 0.052-
0.145 Hz, 
IV: 0.021-
0.052 Hz, 
V: 0.0095-
0.021 Hz, 
VI: 0.005-
0.0095 Hz 

Wavelet 
analysis (for 
evaluation 
of the 
correlation 
of a signal 
pairs), 
AAFT (for 
calculation 
of mean 
surrogate 
WPCO 
value) 

• WPCO was lower in Group B in III (p-
value=0.02) and V (p-value=0.037) intervals in 
the rest period, in III (p-value=0.029) and IV 
(p-value=0.039) intervals in the task period and 
in III (p-value=0.02) interval in the post-task 
recovery period. 
• Within the vigilance task stage, the longer the 
reaction time and a lower accuracy rate was 
observed. 
• A decline in the phase synchronization 
between left and right prefrontal 
oxyhemoglobin oscillations was observed after 
sleep deprivation indicating diminished 
cognitive function. 
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vigilance task in the task stage. In 
the post-task recovery stage, the 
subjects again kept their eyes closed 
and remained relaxed. 

Bu et al., 
2018 [15] 

The phase 
synchronization 
in the resting 
and task states 
was examined 
with Δ[HbO] 
data analyzing 
the effects of 
poor sleep 
quality. 

Subject Characteristics: 
Elderly group with poor sleep quality 
(PSQ) and elderly healthy control 
group 
Number of subjects: 15 (PSQ), 14 
(control) 
Subject demographics:  6 male 
(PSQ), 7 male (control) 
Mean age: 64.67±1.72 years (PSQ), 
63.36±1.74 years (control) 
 
Experimental conditions: 
The subjects did not have any 
neurological or psychiatric diseases. 
The subjects were seated 
comfortably with eyes closed and 
relaxed during the resting state 
recordings. Following the resting 
state recordings, 1-back task 
performances were recorded. 

Cerebral 
Physiology:  
Δ[HbO] was 
recorded by NIRS 
system. 

0.08 Hz,  
0.01-0.08 
Hz 

Wavelet 
analysis 
(Morlet) 

• PSQ group had significantly lower WPCO of 
LPFC-RPFC (p-value=0.002), LMC-RMC (p-
value=0.024), LPFC-RMC (p-value=0.017), 
LPFC-LOL (p-value=0.012), RPFC-LOL (p-
value=0.018), LMC-LOL (p-value=0.045) and 
RMC–LOL (p-value=0.022) in the resting state 
and LPFC-RPFC (p-value<0.001), LPFC-RMC 
(p-value=0.022), LPFC-ROL (p-value=0.04), 
RPFC-LMC (p-value=0.009), RPFC-RMC (p-
value=0.003) and RPFC-ROL (p-value=0.018) 
in the task state. 
• In the PSQ group, the wavelet amplitude of 
LPFC (p-value=0.033), RPFC (p-value=0.005) 
and LOL (p-value=0.005) were significantly 
higher in the resting state. Similarly, the 
wavelet amplitude of LPFC (p-value=0.028), 
LOL (p-value=0.001) and LMC (p-value=0.01) 
were significantly higher in the PSQ group in 
the task state. 
• The study findings indicated that the reduced 
phase synchronization resulting in diminished 
cognitive function of the subject group was 
caused by poor sleep quality. 

Cui et al., 
2014 [16] 

The effects of 
aging on the 
dynamic 
changes in 
Δ[HbO] and 
ABP 
oscillations 
were analyzed. 

Subject Characteristics: 
Healthy elderly and young subjects 
Number of subjects: 33 (elderly), 27 
(young) 
Subject demographics: 27 male/7 
female (elderly), 20 male/7 female 
(young) 
Mean age: 70.7±7.9 years (elderly), 
25.2±3.7 years (young)  
 
Experimental conditions: 
The subjects did not have any heart 
diseases or smoking and drinking 
habits. The data were recorded in 
sitting position. 

Cerebral 
Physiology:  
Δ[HbO] was 
recorded with 
NIRS at the frontal 
lobe. 
 
Other: 
ABP was recorded 
by a transducer 
attached to the 
wrist. 

2 Hz,  
I (0.4-2 
Hz), 
II (0.15-0.4 
Hz), 
III (0.05-
0.15 Hz), 
IV (0.02-
0.05 Hz), 
V (0.0095-
0.02 Hz), 
VI (0.005-
0.0095 Hz) 

Wavelet 
analysis 

• The study results identified significant 
WCPO in the I frequency interval for the 
elderly group (p-value=0.015). 
• The WCO was significantly different 
between the elderly and young subjects in the 
frequency intervals I and V. 
• The WPCO of ABP and Δ[HbO] was 
significant in the I, II and IV frequency 
intervals for the elderly subjects and in the III 
and VI intervals for the young subjects. It was 
significantly different between the two subject 
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groups in the IV frequency interval (p-
value=0.028). 
• It was concluded that the difference in 
WPCO between the young and elderly subjects 
indicated an altered CA resulted by aging. 

Li et al., 
2014 [17] 

The coherence 
between 
Δ[HbO] signals 
of healthy and 
elderly subjects 
with 
hypertension 
was analyzed 
during resting 
state. 

Subject Characteristics: 
Normotensive control group, elderly 
group with hypertension 
Number of subjects: 26 (control), 24 
(elder) 
Subject demographics: 20 male/6 
female (control), 17 male/7 female 
(elder) 
Mean age: 70.6±7.9 years (control), 
70.7±8.4 years (elder)  
 
Experimental conditions: 
The data was collected in 
comfortable sitting position. 

Cerebral 
Physiology: 
Δ[HbO] and Δ[Hb] 
were calculated 
from Beer-Lambert 
law using signals 
from NIRS. 

2 Hz, 
I: 0.4 - 2 
Hz, 
II: 0.15 - 
0.4 Hz, 
III: 0.05 - 
0.15 Hz, 
IV: 0.02 - 
0.05 Hz 
 
 

Wavelet 
analysis 

• Significantly high WCO of Δ[HbO] 
oscillations were found in intervals I (p-
value=0.000) and III (p-value=0.014) for the 
control group, and significant variations in 
WCO were observed between control and elder 
groups in interval III (p-value=0.014). 
• WPCO of Δ[HbO] oscillations were 
significant for control group in intervals from I 
to IV, and significant difference was observed 
between the subject groups in interval III (p-
value=0.007). 
• It was concluded that the lower WCO values 
in interval III implied a decreased neural 
control synchronization between left and right 
PFC implying weakened brain functional 
connectivity in the elderly group with 
hypertension. 

Saleem et 
al., 2016 
[18] 

The role of 
sympathetic 
neurovascular 
control on 
cerebral 
autoregulatory 
dynamics was 
identified by 
assessing 
cerebral 
pressure-flow 
relations. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 18 
Subject demographics: 7 male/11 
female 
Age range: 21-26 years 
 
Experimental conditions: 
The subjects advised to refrain from 
caffeine and heavy exercise 12 hours 
prior to the study. The subjects were 
randomly divided into two groups: 
control group with an oral placebo 
pill or active treatment group with 
oral 0.05 mg/kg Prazosin. The data 
was collected in supine position. 

Cerebral 
Physiology:  
CBFv was recorded 
with TCD from the 
MCA. 
ECG 
 
Other:  
HR was obtained 
from ECG. ABP 
was recorded 
noninvasively with 
a finger 
plethysmography. 
EtCO2 was 
acquired from a 
nasal line. 

2 Hz, 
VLF: 0.02-
0.07 Hz, 
LF: 0.07-
0.20 Hz, 
HF: 0.2-0.4 
Hz 

Wavelet 
phase 
synchronizat
ion analysis, 
TFA (to 
characterize 
cerebral BP-
CBF 
dynamic), 
multiple 
coherence 
function 

• A significant increase was observed with 
admission of sympathetic blockade in gain in 
the VLF range (p-value<0.05), and in 
coherence in the VLF and LF ranges (p-
value<0.05) whereas there was no significant 
change between pre- and post-sympathetic 
blockade for phase and power spectral 
densities. 
• Wavelet phase synchronization index values 
were increased with sympathetic blockade at 
VLF range (p-value<0.05) for both single- and 
dual-input systems whereas no change was 
observed with placebo administration. 
Additionally, it was observed that treatment 
responses dependent on frequency and EtCO2 
corrected phase synchronization index values. 
• It was concluded that fluctuations in CBF 
was altered strongly at VLF by sympathetic 
activity.   
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Tan et al., 
2016 [19] 

The phase 
synchronization 
of Δ[HbO] 
signals in the 
left and right 
prefrontal 
tissues were 
analyzed. 

Subject Characteristics: 
Healthy elderly and young subjects 
Number of subjects: 43 (elderly), 40 
(young) 
Subject demographics: 22 male/21 
female (elderly), 27 male/13 female 
(youth) 
Mean age: 69.6±8.4 years (elderly), 
24.5±1.7 years (youth)  
 
Experimental conditions: 
Subjects did not have smoking or 
drinking habits. Subjects were seated 
in a comfortable position that 
minimized the head and wrist 
movements during data 
measurements. Sensors were placed 
on the participants’ forehead. 

Cerebral 
Physiology:  
The left and right 
prefrontal Δ[HbO] 
signals were 
recorded through 
NIRS. 

2 Hz,  
I: 0.6 - 2 
Hz, 
II: 0.145 - 
0.6 Hz, 
III: 0.052 - 
0.145 Hz, 
IV: 0.021 - 
0.052 Hz, 
V: 0.0095 - 
0.021 Hz, 
VI: 0.005 - 
0.0095 Hz 

Wavelet 
analysis 

• The wavelet amplitude of the elderly was 
significantly lower in intervals III (p-
value=0.001) and V (p-value=0.023) in the left 
prefrontal cortex, and interval III (p-
value=0.028) in the right prefrontal cortex. 
• The results showed that WPCO of the 
Δ[HbO] oscillations were significantly lower in 
the left and right prefrontal regions in the 
intervals 1-IV in both subject groups. In 
intervals I (p-value=0.010) and III (p-
value=0.016), the WPCO in the elderly group 
was significantly lower. 
• It was concluded that a declined cognitive 
performance could be induced by the weakened 
prefrontal functional connectivity as a result of 
normal aging. 

Wang et 
al., 2016 
[20] 

The changes in 
brain functional 
connectivity as 
a result of 
posture change 
was assessed in 
elderly 
subjects. 

Subject Characteristics: 
Young subjects (control), elderly 
subjects (elderly) 
Number of subjects: 22 (control), 39 
(elderly  
Subject demographics: 14 male/8 
female (young), 13 male/16 female 
(elderly) 
Mean age: 24.4±1.6 years (young), 
70.5±7.7 years (elderly)  
 
Experimental conditions: 
The data was collected in sitting 
position with subjects’ eyes closed at 
rest and at standing position. 

Cerebral 
Physiology:  
Δ[HbO] was 
measured by a 
NIRS system.   

2 Hz, 
I: 0.6–2 
Hz, 
II: 0.145–
0.6 Hz, 
III: 0.052–
0.145 Hz, 
IV: 0.021–
0.052 Hz, 
V: 0.0095–
0.021 Hz 

Wavelet 
analysis 

• Significant relation between posture change 
and age with PFC and LMC connectivity in V 
frequency interval (p-value=0.028). 
• Significant variation was observed between 
left and RPFC in I frequency range, LMC and 
RMC connectivity in IV frequency ranges, and 
connectivity between RPFC and RMC, LPFC 
and LMC, RPFC and LMC in the V frequency 
range for elderly subjects (p-value<0.05) as a 
result of posture change. 
• It was concluded that the results could be 
useful in examining the risk of postural 
instability in elderly people. 

AAFT, amplitude-adjusted Fourier transform; ABP, arterial blood pressure; ARI, autoregulation index; BP, blood pressure; CA, cerebral autoregulation; CBF, cerebral 
blood flow; CBFv, cerebral blood flow velocity; CrCP, critical closing pressure; COx, cerebral oximetry; CVR, cerebrovascular reactivity; CVRi, cerebrovascular reactivity 
index; CWT, cross-wavelet transform; DBP, diastolic blood pressure; E, elderly ; ECG, electrocardiography; EtCO2, end-tidal carbon dioxide; EtO2, end-tidal oxygen; FFT, 
fast Fourier transform; HbO, oxyhemoglobin concentration; HF, high frequency; HR, heart rate; HTR, heart transplant recipients; Hz, Hertz; LBNP, lower body negative 
pressure; LF, low frequency; LMC, left sensorimotor cortical; LOL, left occipital lobe; LPFC, left prefrontal cortex; MABP, mean arterial blood pressure;  MCA, middle 
cerebral arterial; NA, not available; NIRS, near-infrared spectroscopy; O, older; OE, older elderly; PSQ, poor sleep quality; RAP, resistance-area product; RMC, right 
sensorimotor cortical; RPFC, right prefrontal cortex; ROL, right occipital lobe; rSO2, regional cerebral oxygenation; SaO2, arterial oxygen saturation; SBP, systolic blood 
pressure; TCD, transcranial Doppler; TFA, transfer function analysis; VLF, very low frequency; WCO, wavelet coherence; WPCO, wavelet phase coherence; Y, young; 
Δ[Hb], change in deoxyhemoglobin concentration; Δ[HbO], change in oxyhemoglobin concentration; Δ[HbTot], change in total hemoglobin  
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Table B2: Summary of articles for healthy human subjects with time-series models 

Article Aim of the 
Study 

Demographics & Experimental 
Conditions 

Physiological Data & 
Measurement 
Methods 

Data 
Resolution 

Method(s) 
of  
Time-
Series 
Modelling 

Study Results and Conclusions Regarding 
Cerebral Physiologic Signal Modelling 

ARMA Studies 

Clough et 
al., 2022 
[21] 

The changes in 
CBF and 
dynamic CA 
were analyzed 
with respect to 
step responses 
of CrCP and 
RAP during 
PHPV. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 75 
Subject demographics: 39 male/36 
female 
Age range: 21-82 years 
Mean age: 52.3±17.2 years 
 
Experimental conditions: 
The data was collected following 
two protocols. For one of the 
protocols, the recordings included 
baseline and PHPV. In the second 
protocol, the recordings were 
applied only for baseline and 
hypocapnia phases. 

Cerebral Physiology: 
CBFv was recorded 
via TCD 
ultrasonography in 
bilateral MCA. CrCP 
and RAP were 
estimated from the 
first harmonic method 
via BP-CBFv 
relationship. 
ECG 
 
Other: 
EtCO2 was recorded 
with an infrared 
capnography. BP was 
recorded with a finger 
photoplethysmograph
y device. 

5 Hz ARMA • There was a change in CBFv, EtCO2, HR 
and RAP with PHPV (p-value<0.01 for all) 
but MABP, CrCP and SBP and DBP were not 
affected. 
• Time-varying ARI was significantly 
different in PHPV compared to poikilocapnia 
(p-value<0.0001). 
• Step-responses of percent changes of RAP 
(SRVRAP) greatly increased during PHPV 
compared to poikilocapnia (p-value=0.0026). 
The change in SRVCrCP was not significant 
between the PHPV and poikilocapnia (p-
value=0.6). 
• The study results showed that the dynamics 
of RAP controlled the changes in CBFv and 
dynamic CA during hypocapnia. 

Edwards 
et al., 
2004 [22] 

The 
simultaneous 
effects of BPMCA 
and EtCO2 on 
the dynamic CA 
and CO2 
responsiveness 
were analyzed. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 8 
Subject demographics: 4 male/4 
female 
Age range: 21-24 years 
 
Experimental conditions: 
24 hours prior to study, the 
subjects refrained from caffeine, 
alcohol, and heavy exercises. The 
data was collected at baseline 
state, and during hypocapnia, 
normocapnia and hypercapnia 

Cerebral Physiology:  
CBFv was recorded 
with TCD from the 
MCA. BPMCA was 
estimated from ABP 
signal. 
(CVRi = 
BPMCA/CBFv) 
ECG 
 
Other: 
HR was determined 
from ECG. ABP was 
recorded with an 
arterial tonometry 

1.25 Hz ARMA • A reduction in magnitude of EtCO2-CVRi 
response as well as a slowed CVRi response to 
BPMCA were observed from hypocapnia to 
hypercapnia. 
• It was found that a small reduction in EtCO2 
resulted in a more rapid response of CVRi to 
change in BPMCA. 
• It was concluded that the two-breath method 
with ARMA was able to detect small but 
important changes in CA.  
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maintained with a computerized 
dynamic end-tidal forcing system. 

non-invasively. EtCO2 
was continuously 
recorded with a mass 
spectrometry from a 
face mask. 

Panerai et 
al., 2012 
[23] 

The effect of 
ABP and PaCO2 
on CBFv 
response to 
motor 
stimulation was 
examined. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 10 
Subject demographics: 9 male/1 
female 
Age range: >45 years 
Mean age: 62.7±7.8 years 
Right-handed  
 
Experimental conditions: 
The subjects did not have any 
cardiovascular or neurological 
diseases. The subjects refrained 
from consuming alcohol, caffeine, 
or nicotine 12 hours prior to the 
study. The data was recorded in 
supine position during rest and 
during two active motor 
stimulation of repetitive elbow 
flexion and extension. 

Cerebral Physiology: 
CBFv was recorded 
with TCD from the 
MCA. 
ECG 
 
Other: ABP was 
measured by arterial 
volume clamping of 
the left middle finger. 
EtCO2 was measured 
by an infrared 
capnography. 

5 Hz ARMA • ABP and EtCO2 had similar variance 
contribution on CBFv responses in ipsi- (p-
valueABP=0.007 and p-valueEtCO2=0.008) and 
contralateral hemispheres (p-valueABP=0.01 
and p-valueEtCO2=0.03). It was concluded from 
the synchronized population averages that the 
ABP resulted in the initial sudden change in 
CBFv whereas influence of EtCO2 was 
irregular. 
• CBFv step responses to ABP were similar in 
data obtained during motor stimulation and 
baseline. 
• The possibility of detecting and removing 
ABP and PaCO2 from response of CBFv to 
motor stimulation was shown in the study in 
order to improve non-invasive assessment of 
NVC. 

ARX Studies 

Gehalot et 
al., 2005 
[24] 

The 
effectiveness of 
utilizing beat-to-
beat blood 
pressure time 
sequences as 
input stimuli for 
deriving linear 
model estimates 
of CA. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 11 
Subject demographics: 9 male/2 
female 
Mean age: 29±6 years  
 
Experimental conditions: 
The subjects were non-smokers 
and did not have any known 
medical problems. The data was 
collected from the subjects in 
supine position at rest. 

Cerebral Physiology: 
CBFv was recorded 
with TCD from the 
MCA. 
ECG 
 
Other: 
MABP was measured 
with photo-
plethysmography. 

2 Hz ARX • Mean square error values for each subject 
were same regardless of the data duration that 
were 0.0200 for 6 min, 0.0235, 0.0263, 0.0278 
and 0.0255 for all four 1.5-min datasets in all 
three ARX models created where CBFv was 
output, and inputs were either MABP or 
pseudo random binary input. 
• P-values between 6-min and 1.5-min data 
were 0.2767 (6-min and 1st 1.5-min), 0.1790 
(6-min and 2nd), 0.1486 (6-min and 3rd) and 
0.2459 (6-min and 4th). 
• P-values between the 1.5-min datasets were 
0.5459 (1st and 2nd), 0.4178 (1st and 3rd), 
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0.6742 (1st and 4th), 0.8069 (2nd and 3rd), 
0.8829 (2nd and 4th) and 0.7060 (3rd and 4th). 
• It was concluded that MABP would be as 
effective as binary input signal an input 
stimulus indicating its significance in 
estimation of linear models of CA. 

Liu and 
Allen, 
2002 [25] 

CA was 
assessed by 
analyzing the 
relationship 
between 
variations in 
ABP and noise 
in recordings. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 11 
Subject demographics:  NA 
 
Experimental conditions: 
The subjects were free of 
cerebrovascular disorders. The 
thigh cuff technique where 
(negative) step change in ABP 
was stimulated was used in the 
study. 

Cerebral Physiology: 
CBFv was recorded 
with TCD from the 
MCA. 
 
Other: 
ABP was monitored 
with finger 
plethysmography 

1 Hz ARX • The study findings showed that the ARX 
model predicted the step response successfully 
in the noise-free condition with high variation 
in ABP (R5%=92) and with low variation of 
ABP (R5%=98) as well as in a noisy condition 
with high variation in ABP (R5%=97±8) 
condition for normal CA. 
• It was suggested that under noisy conditions, 
the accuracy and the reliability of the model 
predictions could be improved by 
manipulation of higher ABP variations. 

Liu et al., 
2003 [26] 

The effect of 
manipulated 
spontaneous 
ABP changes on 
CBFv was 
examined. 

Subject Characteristics: 
Healthy subjects 
Number of subjects: 8 
Subject demographics: 6 male/2 
female 
 
Experimental conditions: 
The subjects did not have any 
cerebrovascular and 
cardiovascular diseases. The data 
was recorded at rest, thigh cuff 
and LBNP tests in supine position. 
Hypercapnia was induced by 5% 
CO2. 

Cerebral Physiology: 
CBFv was recorded 
with TCD from the 
MCA. 
 
Other: 
ABP was measured 
non0invasively with 
finger 
plethysmography. 
EtCO2 was acquired 
with an infrared 
capnograph connected 
to a face mask. 

1 Hz ARX • Significantly different gradient of the step 
responses was observed between normocapnia 
and hypercapnia (p-value<0.001) in each and 
across different experiments (p-value=0.003). 
• Between gradient and EtCO2 and between 
EtCO2 and phase shift there were strong linear 
relationships (p-value<0.0001 for both) 
suggesting that ARX model fitted to ABP and 
CBFv data could be used to assess CA. 
• It was concluded that ARX model showed a 
strong relationship between CBFv and ABP in 
healthy subjects proving useful for assessment 
of dynamic CA status. 

ABP, arterial blood pressure; ARI, autoregulation index; ARMA, autoregressive moving average; ARX, autoregressive with exogenous input; BP, blood pressure; BPMCA, 
blood pressure corrected at the middle cerebral artery; CA, cerebral autoregulation; CBF, cerebral blood flow; CBFv, cerebral blood flow velocity; CrCP, critical closing 
pressure; CVRi, cerebrovascular reactivity index; DBP, diastolic blood pressure; ECG, electrocardiography; EtCO2, end-tidal carbon dioxide; HR, heart rate; Hz, Hertz; 
LBNP, lower body negative pressure; MABP, mean arterial blood pressure;  MCA, middle cerebral arterial; NA, not available; NVC, neurovascular coupling; PaCO2, arterial 
oxygen partial pressure; PHPV, paced hyperventilation; RAP, resistance-area product; SBP, systolic blood pressure; SRVCrCP, percent changes of CrCP; SRVRAP, percent 
changes of RAP; TCD, transcranial Doppler 
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Table B3: Summary of articles for healthy human subjects with model comparison 

Article Aim of the 
Study 

Demographics & 
Experimental 
Conditions 

Physiological Data & 
Measurement 
Methods 

Data 
Resolution 

Method(s) 
of  
Time-
Series 
Modelling 

Model 
comparison 

Study Results and Conclusions 
Regarding Cerebral Physiologic 
Signal Modelling 

Chacon et 
al., 2011 
[27] 

The 
simultaneous 
effect of ABP 
and arterial CO2 
fluctuations on 
CBFv was 
modelled to 
assess CVR. 

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
16  
Mean age: 31.8±8.5 
years 
 
Experimental 
conditions: 
12 hours prior to the 
study, the subjects 
refrained from 
consuming caffeine 
or alcohol. The 
subjects were in 
supine position with 
a head elevation of 
30°. The recordings 
included baseline 
measurements and 
measurements of 
breathing 5% CO2 in 
air. 

Cerebral Physiology: 
CBFv was recorded via 
TCD ultrasonography. 
 
Other: 
ABP was recorded by 
arterial volume 
clamping of the digital 
artery non-invasively. 
EtCO2 was measured 
by an infrared 
capnography with a 
face mask. 

0.6-sec Linear and 
non-linear 
AR SVM 
and FIR 
SVM 
models 

AR SVM 
models 
performed 
better in 
describing the 
dynamic CA 
both during 
baseline and at 
hypoxia than 
FIR models.  

• The linear models performed well in 
the baseline state (FIR p-value=0.044, 
AR p-value=0.040) while better 
performances were observed with non-
linear models (FIR p-value=0.234, AR 
p-value=0.030) during 5% CO2 
breathing state.  
• The results showed that in overall, 
the AR SVM models performed better 
than the FIR SVR models describing 
the dynamic CA (AR baseline linear p-
value=0.0022 and non-linear p-
value=0.0027, AR 5% CO2 linear p-
value=0.00098 and non-linear p-
value=0.00042). 

Chacón et 
al., 2018 
[28] 

The effect of 
step change in 
BP on CBFv 
response was 
modelled with 
linear and non-
linear models to 
assess the 
dynamic CA 

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
45 
Mean age: 31±12 
years 
 
Experimental 
conditions: 

Cerebral Physiology:  
CBFv was recorded via 
TCD ultrasonography. 
ECG 
 
Other: 
BP was recorded by 
arterial volume 
clamping of the digital 
artery non-invasively. 
EtCO2 was measured 

2 Hz,  
VLF: 0.02-
0.07 Hz,  
LF: 0.07-
0.2 Hz 

TFA, NAR 
SVM and 
NFIR SVM 
models 

Non-linear 
SVM models 
showed higher 
performance in 
detecting the 
deterioration of 
dynamic CA 
than the linear 
TFA models.  

• The NAR and NFIR SVM models 
(p-value<0.001) showed significantly 
better ability to detect the hypercapnia-
induced changes in dynamic CA. 
• Model-free ARI with NAR models 
(p-value=0.022) detected the 
hypercapnia-induced changes in 
dynamic CA significantly better than 
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12 hours prior to the 
study, the subjects 
refrained from 
consuming caffeine 
or alcohol. The 
subjects were free of 
any neurological or 
cardiovascular 
diseases. The 
recordings included 
rest state, baseline 
measurements and 
hypercapnia state 
induced by breathing 
5% CO2 all in supine 
position. 

by an infrared 
capnography with a 
face mask. HR was 
estimated from ECG. 

ARI but not with NFIR models (p-
value=0.431). 
• Although NFIR models were faster 
between the non-linear models, the 
best performance was achieved with 
model-free ARI extracted with NAR 
SVM models. 

Chacón et 
al., 2022 
[29] 

The dynamic 
CA was 
modelled via the 
responses of 
CBFv to 
variations in 
ABP to describe 
the changes in 
cerebral 
hemodynamics 
with body 
posture changes. 

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
18 
Age range: 22-44 
years 
Mean age: 27.0±6.3 
years 
 
Experimental 
conditions:  
The subjects were 
free of any 
cardiovascular and 
neurological 
diseases. The data 
were recorded in 
standing, sitting, and 
laying positions. 
 

Cerebral Physiology:  
CBFv was recorded via 
TCD ultrasonography 
in both hemispheres. 
 
Other: 
ABP was measured 
with a finger 
photoplethysmography 
non-invasively. 

0.4 Hz FIR SVM, 
NFIR SVM, 
NARX 
SVM and 
ARX SVM 

In all models, 
there was no 
significant 
difference in 
performances in 
any positions. 

• The study results showed no 
significant difference between the 
models in any of the three positions. 
• The p-values of the models were 
found as FIR ARI=0.2522, NFIR 
ARI=0.3201, ARX ARI=0.9683 and 
NARX ARI= 0.6991. 
• The study results showed that body 
postures had an effect on the cerebral 
hemodynamics system beyond ABP-
CBFv relationship while the CBF 
autoregulation was not affected by 
different postures. 

Edwards 
et al., 
2001 [30] 

The independent 
effects of 
breath-by-breath 
changes in 
EtCO2 and beat-

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
8 

Cerebral Physiology: 
CBFv was recorded via 
TCD ultrasonography 
in bilateral MCA. CPP 
was determined with 

0.3 Hz, 
LF: <0.07 
Hz, 
HF: 0.07-
0.3 Hz 

Cross-
spectral 
analysis 
(one-input 
and one-

The ARMAX 
model allowed 
for a 
simultaneous 
solution of two 

• Within the HF range, CPP and mean 
CBFv were observed to have strong 
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by-beat changes 
during breathing 
at rest on CBF 
were assessed. 

Subject 
demographics: 6 
male/2 female 
 
Experimental 
conditions: 
24 hours prior to 
study, the subjects 
refrained from 
caffeine, alcohol, and 
heavy exercises. The 
data was collected in 
sitting position. 

arterial tonometry non-
invasively.  
(CVRi = CPP/CBFv) 
 
Other: EtCO2 was 
measured with a mass 
spectrometry. 

output) and 
ARMAX 
model (two-
input and 
one-output) 

inputs, whereas 
cross-spectral 
analysis could 
not discriminate 
between 
multiple input-
output 
relationships.   

coherence which was poorer in the LF 
range. 
• Negative phase shift was observed 
suggesting that the changes in CPP 
affected CVRi. 
• Cross-spectral analysis showed 
correlation between CPP and EtCO2 in 
three subjects at the LF and in all 
subjects at the HF ranges. 
• ARMAX illustrated that the 
magnitude of EtCO2 to CBFv gain was 
significantly smaller than that of CPP 
to CBFv. 
• A high coherence between EtCO2 
and CPP was observed suggesting the 
significance of their interaction in CBF 
regulation. 

Kostoglou 
et al., 
2014 [31] 

Nonstationary 
characteristics 
of CA and 
cerebral 
hemodynamics 
during step 
hypercapnic 
stimulus were 
investigated. 

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
8 
Subject 
demographics: 0 
male/8 female 
Mean age: 27±7.1 
years 
 
Experimental 
conditions: 
The subjects did not 
have any history of 
cardiovascular, 
cerebrovascular, or 
respiratory diseases. 
The subjects were 
tested in the 
follicular phase of 
their menstrual cycle. 
The subjects were 
positioned in semi-
supine position. Data 

Cerebral Physiology: 
CBFv was recorded 
with TCD from the 
MCA. 
 
Other:  
ABP was measured by 
finger 
photoplethysmography. 
EtCO2, MABP 

1 Hz,  
VLF: <0.04 
Hz, 
LF: 0.04-
0.15 Hz, 
HF: 0.15-
0.30 Hz 

One-input 
and two-
input 
discrete-
time 
Laguerre 
function 
model 

One-input 
(MABP) model 
was shown to 
exhibit more 
time varying 
characteristics 
and had smaller 
forgetting 
factors than 
two-input 
(MABP and 
EtCO2) model. 

• EtCO2 kernel gain showed an 
increase during hypercapnia with two-
input model. 
• It was shown that the addition of 
EtCO2 as input resulted in reduced 
non-stationarity of the single-input 
model estimation indicating the 
significance of EtCO2 as an input in 
the assessment of dynamic CA. 
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was recorded in three 
periods; when EtO2 
was held at 88 
mmHg and EtCO2 at 
1.0 mmHg above 
subject’s natural 
resting value, 
followed by 
hypercapnia when 
EtCO2 was 8 mmHg 
above resting levels, 
and lastly, when 
EtCO2 was held at its 
pre-hypercapnic 
value. 

Marmarel
is et al., 
2012 [32] 

The effect of 
changes in 
perfusion 
pressure on the 
dynamic CFA 
was examined 
via nonlinear 
modelling. 

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
12 
Mean age: 37±9 
years 
 
Experimental 
conditions: 
The data was 
collected in supine 
position at rest. 

Cerebral Physiology: 
CBFv was recorded 
with TCD from the 
MCA.  
ECG 
 
Other:  
ABP was recorded non-
invasively with a finger 
plethysmography. 
EtCO2 was acquired by 
a mass spectrometer via 
nasal cannula. HR was 
obtained from ECG.  
MABP 

2 Hz Nonlinear 
and linear 
one-input 
and two-
input PDM-
based 
model, 
linear 
Laguerre-
based 
model, 
linear 
single-input 
TFA 

Nonlinear two-
input PDM 
model achieved 
lower prediction 
error. 

• Significantly lower prediction error 
was obtained with nonlinear two-input 
PDM model (NMSE=40.4% over all 
subject cohort) compared to nonlinear 
single-input PDM model 
(NMSE=53.8%), linear single-input 
PDM model (NMSE=64.94%), TFA 
(NMSE=63.94%), and linear Laguerre-
based model (NMSE=55.47%). 
• The PDM-based models 
demonstrated the ability to predict the 
mean CBFV as output for any given 
set of inputs consisting of MABP and 
EtCO2 within the scope of this study. 
• It was concluded that robustness and 
physiological interpretation of 
nonlinear models were improved with 
PDMs. The importance of inclusion of 
EtCO2 as an input for dynamic CFA 
analysis and utilization of nonlinear 
models was also highlighted. 

Marmarel
is et al., 
2016 [33] 

The effect of 
inclusion of HR 
changes as an 
additional input 
to cerebral 
hemodynamics 

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
18 

Cerebral Physiology:  
CBFv was recorded 
with TCD from the 
MCA.  
ECG 
 

2 Hz PDMs 
(three-input 
and two-
input linear 
and 

Nonlinear three-
input models 
achieved lower 
prediction error. 

• Statistically significant output 
prediction error reduction was 
observed with inclusion of HR to 
MABP and EtCO2 as an input in linear 
(p-value=0.005) and nonlinear (p-
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model in 
addition to ABP 
and EtCO2 on 
CA was 
examined. 

Subject 
demographics: 9 
male/9 female 
Mean age: 66.8±7.4 
years 
 
Experimental 
conditions: 
The data was 
collected in supine 
position at rest. 

Other: 
ABP was recorded non-
invasively with a finger 
plethysmography. 
EtCO2 was acquired by 
a capnograph via nasal 
cannula. HR was 
obtained from ECG. 

nonlinear) 
models 

value=0.00012) models compared to 
two-input models. 
• Similarly, inclusion of nonlinearities 
resulted in further statistically 
significant reduction error of output 
prediction for both two-input (p-
value=0.00016) and three-input (p-
value=0.00002) models implying 
functional connection between HR 
changes and CBFv. 
• It was concluded that the proposed 
models could produce subject-specific 
measures quantitively and therefore 
could serve in personalized diagnostic 
purposes. 

Mitsis et 
al., 2004 
[34] 

The effect of 
ABP and 
mPEtCO2 on 
CBFv variations 
was analyzed 
with multiple 
input-LVN 
methodology. 

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
10 
Mean age: 30.4±20.1 
years 
Mean height: 
179.6±8.9 cm 
Mean weight: 
76.6±14.0 kg 
 
Experimental 
conditions: 
The subjects 
refrained from 
consuming food and 
caffeine 4 hours prior 
to the study. 

Cerebral Physiology:  
CBFv was recorded 
with TCD from the 
MCA. 
 
Other:  
EtCO2 was recorded 
with a nasal catheter. 
ABP was recorded 
noninvasively with a 
finger 
plethysmography. 
MABP 

1 Hz LVN (one-
input and 
two-input 
linear and 
non-linear 
first, second 
and third 
order 
models) 

Two-input 
nonlinear third 
order LVN 
model achieved 
the lowest 
output 
prediction error. 

• Output prediction error reduced by 
6% with inclusion of EtCO2 as an 
input in addition to MABP.  
• Additionally, significant reduction 
was observed in output prediction error 
when nonlinear models were used by 
16% with one-input models and 18% 
with two-input models. 
• The third order had smaller outcome 
prediction error compared to the first 
and second order models. 
• The lowest output prediction error 
was obtained with the 3rd order two-
input model 
(NMSE(±s.d%.)=20.2±5.4%). 
• It was concluded that EtCO2 
fluctuations and nonlinear interactions 
between MABP and EtCO2 had 
significant effect on the CBFv 
variations mainly in the LF range 
(<0.04 Hz). 

Mitsis et 
al., 2006 
[35] 

The effects of 
nonlinear 
interactions in 
MABP and 
EtCO2 

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
10 

Cerebral Physiology: 
CBFv was recorded 
with TCD from the 
MCA. 
ECG 

1 Hz, 
VLF: <0.04 
Hz, LF: 
0.04 – 0.15 
Hz, HF: 

LVN model 
(one-input 
and two-
input linear 
and non-

Two-input 
nonlinear LVN 
model achieved 
the lowest 
output 

• A significant reduction was observed 
in output prediction error with 
nonlinear models by 15%-20% 
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variations on 
mean CBFv 
variations in 
different 
frequency 
ranges were 
examined. 

Subject 
demographics: 5 
male/5 female 
Age range: years 
Mean age: 32.1±7.3 
years 
Mean height: 
169.6±11.1 cm 
Mean weight: 
68.9±13.9 kg 
 
Experimental 
conditions: 
The subjects did not 
have any 
cardiovascular, 
cerebrovascular, or 
pulmonary diseases. 
The data were 
recorded at baseline 
and during LBNP at -
15, -30 and -10 
mmHg in supine 
position. 

 
Other:  
HR was obtained from 
ECG. ABP was 
recorded noninvasively 
with a finger 
plethysmography. 
EtCO2 was acquired by 
a mass spectrometer via 
nasal cannula.  
MABP 

0.15– 0.30 
Hz 

linear 
models) 

prediction errors 
at baseline and 
during LBNP. 

especially at VLF range for both 
baseline and during LBNP. 
• Output prediction error was further 
reduced by 12% to 30% with inclusion 
of EtCO2 as an input in addition to 
MABP in nonlinear models. 
• The lowest prediction error was 
achieved with nonlinear, two-input 
model at baseline (NMSE=17.3) and in 
different LBNP (NMSE-15mmHg=32.6, 
NMSE-30mmHg=21.1, NMSE-

40mmHg=23.2 and NMSE-50mmHg=23.7). 
• Significant increase of linear and 
nonlinear magnitude of Volterra 
kernels of MABP and mean CBFv was 
observed above -30 mmHg LBNP in 
the VLF range implying an impaired 
dynamic CA whereas reduction in the 
magnitude of EtCO2 and mean CBFv 
kernels was observed in all frequencies 
during LBNP indicating a weakened 
CVR during dynamic conditions. 
• It was concluded that the orthostatic 
stress resulted in impaired dynamic 
CA of VLF MABP variations and 
reduced vasomotor reactivity. 

Panerai et 
al., 1999 
[36] 

The limitations 
of linear 
assumptions in 
modelling 
dynamic 
relationship 
between ABP 
and CBFv was 
analyzed, and 
performances of 
different 
modelling 
options were 
compared. 

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
47 
Subject 
demographics: 27 
male/20 female 
Age range: 44-80 
years 
Mean age: 66.9±9.2 
years 
 
Experimental 
conditions: 

Cerebral Physiology: 
CBFv was recorded 
with TCD from the 
MCA. 
ECG 
 
Other: 
ABP was measured 
noninvasively with 
finger 
plethysmography. 

5 Hz Linear and 
non-linear 
Laguerre-
Wiener 
method, 
FFT and 
Aaslid-
Tiecks 
model 

Among the 
linear models, 
Volterra-Wiener 
model had the 
best results. 

• In training set, nonlinear Volterra-
Wiener method had better performance 
than linear Volterra-Wiener, FFT and 
Aaslid-Tiecks methods (p-value<10-6) 
while linear Volterra-Wiener method 
was superior to FTT and Aaslid-Tiecks 
model (p-value<10-6). 
• During the thigh cuff test, nonlinear 
Volterra-Wiener model had the worst 
performance while linear Volterra-
Wiener model was slightly better than 
FFT and Aaslid-Tiecks models. 
• It was concluded that the poor 
performance of nonlinear model could 
be related to temporal pattern of 
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The subjects 
refrained from 
consuming alcohol 
and caffeine 12 hours 
prior to the study. 
The subjects did not 
have any 
cardiovascular 
diseases. The data 
was recorded during 
normal breathing rest 
and during thigh cuff 
test. 

fluctuations of MABP, and the 
significance of linear models in routine 
applications was pointed out. 

Panerai et 
al., 2004 
[37] 

The dynamic 
relationship 
between ABP 
and CBFv were 
modelled with 
TLRN, and the 
performances of 
different models 
were compared. 

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
15 
Age range: 23-47 
years 
Mean age: 30±7 
years 
 
Experimental 
conditions: 
The subjects did not 
have any 
cardiovascular, 
neurological, or 
autonomic nervous 
system diseases. The 
data was recorded in 
supine position with 
30° elevated head at 
rest and during 
repeated thigh cuff 
maneuvers. 

Cerebral Physiology: 
CBFv was recorded 
with TCD from the 
MCA. 
 
Other: 
ABP was measured 
noninvasively with 
blood pressure monitor. 

2 Hz TLRN, 
Aaslid-
Tiecks 
model, 
Laguerre-
Wiener 
method, 
TFA and 
simple 
linear 
regression 

TLRN had the 
lowest 
validation error. 

• TLRN (0.64) had slightly lower 
validation error than Volterra-Wiener 
(0.66) and Aaslid-Tiecks models 
(0.65) and significantly lower 
validation error than TFA (0.69) and 
simple linear regression (0.81) models. 
• It was found that step responses of 
CBFv from TLRN showed nonlinear 
behavior in ABP-CBFv relationship 
involving both amplitude factor and 
possible directional effect. 

Placek et 
al., 2017 
[38] 

Non-stationarity 
of CA and phase 
shift between 
ABP and CBFv 
oscillations were 

Subject 
Characteristics: 
Healthy subjects 
Number of subjects: 
50 

Cerebral Physiology:  
CBFv was recorded 
with TCD from the 
MCA. 
ECG 

5 Hz, 
VLF: 0.02-
0.07 Hz, 
LF: 0.07-
0.20 Hz, 

ZAMD, 
TFA and 
ARMA 

The ARMA 
model offered 
superior 
temporal 
resolution 

• The stationarity hypothesis of the 
signals ABP, CBFv and phase shift 
between them was rejected in both 
normocapnia and hypercapnia for most 
of the cases. However, rejection rate 
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analyzed in the 
time-frequency 
domain. 

Subject 
demographics: 21 
male/29 female 
Age range: 18-31 
years 
Mean age: 23 years 
 
Experimental 
conditions: 
12 hours prior to the 
study, the subjects 
refrained from 
consuming alcohol or 
caffeine. Subjects 
wore a face mask for 
EtCO2 concentration 
increase to achieve 
hypercapnia. Data 
were recorded at 
normocapnia and 
hypercapnia. 
 

 
Other:  
ABP was monitored by 
a cuff placed around 
the left middle finger at 
heart level. EtCO2 and 
continuous respiratory 
rate were measured 
with the face mask 
connected to a standard 
capnograph. 

HF: 0.20-
0.35 Hz 

compared to the 
ZAMD-based 
approach. 

was lower during hypercapnia 
suggesting the relation between ABP 
and CBFv to become more stationary 
with disturbed CA. 
• There was a significant increase of 
time frequency coherence particularly 
in the LF (p-value<10-7) and HF (p-
value<10-5) and decrease of phase shift 
in the VLF (p-value=0.0005) and LF 
(p-value<10-7) and unchanged phase 
shift in HF (p-value=0.22) with 
hypercapnia. 
• Spectral phase shift derived by TFA 
was significantly lower in the VLF (p-
value<10-5) and LF (p-value<10-6) and 
was higher in the HF (p-value=0.017) 
during hypercapnia. 
• Compared to spectral estimates, 
phase shift estimates with ZAMD were 
significantly lower in the VLF (p-
value=0.009) during normocapnia and 
in the HF (p-value=0.0012) during 
hypercapnia while it was higher in the 
LF (p-value=0.007) during 
hypercapnia. 
• It was concluded that ZAMD did not 
perform as intended possibly due to 
exclusion of the nonlinear properties of 
CA. 

ABP, arterial blood pressure; AR, autoregressive; ARI, autoregulation index; ARMAX, autoregressive moving average with exogenous input; ARX, autoregressive with 
exogenous input;  BP, blood pressure; CA, cerebral autoregulation; CBF, cerebral blood flow; CBFv, cerebral blood flow velocity; CFA, cerebral flow autoregulation; CPP, 
cerebral perfusion pressure; CVR, cerebrovascular reactivity; CVRi, cerebrovascular reactivity index; ECG, electrocardiography; EtCO2, end-tidal carbon dioxide; FFT, 
fast Fourier transform; FIR, finite impulse response; HF, high frequency; HR, heart rate; Hz, Hertz; LBNP, lower body negative pressure; LF, low frequency; LVN; Laguerre-
Volterra network; MABP, mean arterial blood pressure; NA, not available; NAR, non-linear autoregressive; NARX, non-linear autoregressive with exogenous input; NFIR, 
non-linear finite impulse response; NMSE, normalized mean square error; PDM, principal dynamic mode; SVM, support vector machine; TCD, transcranial Doppler; TFA, 
transfer function analysis; TLRN, time lagged recurrent neural network; VLF, very low frequency, ZAMD, Zhao-Atlas-Marks distribution  
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Table B4: Summary of articles for patient population with time-series analysis techniques 

Article Aim of the 
Study 

Demographics & Experimental 
Conditions 

Physiological Data & 
Measurement 
Methods 

Data 
Resolution 

Method(s) 
of  
Time-
Series 
Modelling 

Study Results and Conclusions Regarding 
Cerebral Physiologic Signal Modelling 

Dynamic/ Frequency Domain Analysis Studies 

Czosnyka 
et al., 
1996 [39] 

The time-
dependent 
relationship 
between 
amplitude of 
the ICP pulse 
wave, mean 
values of ICP 
and CPP was 
analyzed. 

Subject Characteristics: 
Severe TBI patients 
Number of subjects: 56 
Subject demographics: 40 male/16 
female 
Age range: 6-75 years 
Mean age: 36 years 
 
Experimental conditions: 
All subjects were mechanically 
ventilated. 

Cerebral Physiology:  
ICP was monitored 
either with a fiber-optic 
transducer or a 
subdural catheter. 
CPP 
 
Other: ABP was 
measured from the 
radial or dorsalis pedis 
artery. 
HR 

1-min Moving 
correlation 
coefficient 

• A clear correlation between the amplitude and 
mean ICP relationship and the correlation 
between amplitude and pressure coefficient for 
severe head injury patients was observed. 
• The study results showed that the high ICP and 
low mean CPP as well as impaired tolerance to 
intracranial hypertension determined poor 
outcome. 

Elixmann 
et al., 
2012 [40] 

Patient state 
determination 
was modelled 
through 
extracting and 
categorizing 
ICP signals 
into 
predefined 
waveforms. 

Subject Characteristics: 
Idiopathic normal pressure 
hydrocephalus patients 
Number of subjects: 13 
Subject demographics: NA 
 
Experimental conditions: 
No information was given 
regarding the experimental 
conditions. 

Cerebral Physiology: 
ICP was recorded with 
a tip catheter. 

5.12-sec Single 
pulse 
analysis 

• The model was able to identify 5 different 
waveforms from increasing pressure and 
decreasing compliance. 
• It was concluded that the algorithm could be 
suitable for future hydrocephalus implant as it did 
not depend on the pressure drift. 

Giller and 
Gerardo 
lacopino, 
1997 [41] 

To assess the 
CA, 
coherence 
between 
CBFv and BP 
was 
examined. 

Subject Characteristics: 
SAH patients, healthy group 
Number of subjects: 8 (patients), 6 
(healthy) 
Subject demographics: NA 
 
Experimental conditions: 
The healthy group did not have 
any history of cardiovascular 
diseases. EtCO2 monitoring was 
available for one patient and one 
normal subject. 

Cerebral Physiology:  
CBFv was recorded 
with TCD from the 
MCA.  
 
Other:  
BP was recorded either 
with an arterial catheter 
or with a non-invasive 
plethysmography 
device. 

1 Hz FFT • Overall, it was observed that the random error 
was determined by the coherence magnitude. The 
random error was high for low coherence values 
and low for high coherence. 
• High coherence was observed in some of the 
data segments in SAH patients as well as two 
healthy subjects suggesting a small amounts of 
correlation in the autoregulatory mechanisms. 
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Li et al., 
2021 [42] 

The changes 
in the 
coupling 
interaction 
between ABP 
and 
oxyhemoglob
in 
concentration 
oscillations 
was 
investigated 
in 
hypertensive 
subjects with 
DBI. 

Subject Characteristics: 
Healthy volunteers (control), 
hypertensive individuals (HS) 
Number of subjects: 30 (control), 
32 (HS) 
Subject demographics: 16 male/14 
female (control), 18 male/14 
female (HS) 
Age range: years 
Mean age: 55.1±10.6 years 
(control), 58.9±8.7 years (HS) 
Right-handed 
 
Experimental conditions: 
The subjects refrained from 
excessive exercise and alcohol 12 
hours prior to the study. The 
subjects overall cognitive function 
was unimpaired, and they did not 
experience subjective memory 
problems. fNIRS and ABP data 
recordings took place in resting 
state. 

Cerebral Physiology: 
Δ[HbO] and Δ[Hb] 
were measured with 
multi-channel fNIRS 
device in the PFC, 
motor cortex and 
occipital lobe. 
 
Other:  
ABP was recorded non-
invasive blood pressure 
device. 

2 Hz, 
I: 0.6–2 
Hz, 
II: 0.145–
0.6 Hz, 
III: 0.01–
0.08 Hz 

DBI (for 
investigati
ng 
coupling 
interaction
s between 
ABP and 
oxyhemog
lobin 
concentrat
ion), 
wavelet 
transform. 
 

• HS group had significantly higher coupling 
strength from ABP to Δ[HbO] in interval I in 
LMC (p-value=0. 0007), RMC (p-value=0.0008), 
LOL (p-value=0.00001), and ROL (p-
value=0.00004) indicating a more direct response 
of cardiac activity in cerebral hemoglobin 
oscillations to the changes in systemic ABP in 
hypertensive individuals. 
• Similarly, HS group had significantly higher 
coupling strength from ABP to Δ[HbO] in 
interval III in LPFC (p-value=0.016), RPFC (p-
value=0.003), LMC (p-value=0.00008), RMC (p-
value=0.0008), LOL (p-value=0.0007), and ROL 
(p-value=0.001) indicating the susceptibility of 
the cerebral hemoglobin oscillations to ABP 
changes in hypertensive subjects. 
• No significant difference in the coupling 
strength from ABP to Δ[Hb] was found between 
the two groups in interval I while it was 
significantly higher for HS group in interval III in 
LMC (p-value=0.012) and RMC (p-value=0.008). 
• HS group had coupling strength from ABP to 
Δ[HbO] negatively related to DBP in LMC 
(interval II and III: p-value=0.007) and RMC 
(interval II: p-value=0.015; interval III: p-
value=0.012) and positively related to pulse 
pressure n LMC (interval II: p-value=0.007) and 
RMC (interval II and III: p-value=0.012). 
• The study results illustrated that hypertension 
caused impairment of dynamic CA. 

Liu et al., 
2018 [43] 

The effective 
connectivity 
in CI patients 
were 
analyzed in 
various 
frequency 
ranges 
through NIRS 
method. 

Subject Characteristics: 
healthy subjects (control), cerebral 
infarction patients (CI) 
Number of subjects: 11 (control), 
11 (CI) 
Subject demographics: 6 male/5 
female (control), 5 male/6 female 
(CI) 
Mean age: 72±7.6 years (control), 
65±6.3 years (CI) 
 
Experimental conditions: 

Cerebral Physiology:  
Δ[HbO] and Δ[Hb] 
were calculated from 
Beer-Lambert law 
using signals from 
NIRS. 

2 Hz, 
I: 0.6–2 
Hz, 
II: 0.145–
0.6 Hz, 
III: 0.052–
0.145 Hz, 
IV: 0.021–
0.052 Hz, 
V: 0.0095–
0.021 Hz, 

DBI (for 
investigati
ng 
coupling 
strength), 
wavelet 
transform 

• The main coupling direction was altered 
significantly in interval II from the direction of 
RPFC to LMC (p-value=0.0036) and RMC (p-
value=0.0017) and from direction of LPFC to 
LMC (p-value=0.0017) and RMC (p-
value=0.0025), in interval IV from the direction 
of RPFC to LMC (p-value=0.0047) and RMC (p-
value=0.0041), in interval VI in between LMC 
and RMC (p-value=0.032). 
• A significant decreased coupling strength of the 
effective connectivity was observed in CI group 
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The patients had CI for more than 
12 months and no other serious 
physiological diseases. 

VI: 0.005–
0.0095 Hz 

which was the most significant in intervals IV (p-
value=0.0006) and VI (p-value=0.0028). 
• A greatly decreased coupling strength in CI 
group as well as a shift in the coupling direction 
of motor section were suggested with the results 
of the study. 

Martinez-
Tejada et 
al., 2021 
[44] 

The causal 
relationship 
between 
oscillatory 
modes of 
ICP, ABP and 
CBFv was 
examined in 
hydrocephalu
s patients. 

Subject Characteristics: 
CSF infusion patients 
Number of subjects: 45 
Subject demographics: 28 male/17 
female 
Age range: 25-78 years 
Mean age: 54 years 
 
Experimental conditions: 
Data was extracted retrospectively 
from a database. After a baseline 
recording, the infusion was started 
and terminated once a ICP plateau 
was observed, or the pressure 
exceeded 40 mmHg. 

Cerebral Physiology: 
CBFv was monitored 
with TCD.  
ICP 
 
Other:  
ABP was recorded with 
a finger 
plethysmography. 

1 Hz, 
IMF6: 
0.095-
0.155 Hz, 
IMF7: 
0.052-
0.094 Hz, 
IMF8: 
0.027-
0.054 Hz, 
IMF9: 
0.013-
0.030 Hz 

Granger 
causality 
method 
with 
EEMD 

• From baseline to infusion stage, the power of 
slow waves was observed to be increasing. 
• Between the IMFs, no causalities were recorded 
during baseline phase. 
• The most significant connection was found 
from CBFv to ICP in IMF6 as 0.038 during 
infusion study indicating the influence of slow 
waves of CBFv on ICP. 
• It was concluded that EEMD could be use in 
assessment of cerebral and systemic signal 
nonlinearity and non-stationarity. 

TFA Studies 

Caldas et 
al., 2017 
[45] 

The cerebral 
hemodynamic
s of post-
surgery 
patients with 
IABP, during 
its removal 
and post-
removal were 
assessed 
through 
continuous 
estimates of 
dynamic CA 
and TFA. 

Subject Characteristics: 
Coronary artery bypass graft 
surgery patients 
Number of subjects: 14 
Subject demographics: 10 male/4 
female 
Mean age: 63.9±7.9 years 
 
Experimental conditions: 
The data recordings were 
performed after the surgery while 
the subjects were resting in a 
supine position. Measurements 
included IABP operating at one 
inflation every three cardiac cycle 
(1:3 ratio) and for IABP ON and 
through removal of IABP without 
pumping assistance (IABP OFF). 

Cerebral Physiology: 
CBFv was recorded 
with TCD from the 
MCA. CrCP and RAP 
for each cardiac cycle 
were obtained from the 
first harmonic method. 
 
Other:  
BP was recorded with 
invasive intra-arterial 
line. EtCO2 was 
recorded with an 
infrared capnograph. 
MABP and HR were 
detected from the BP 
signals. 

5 Hz TFA • CBFv step-response plots illustrated that the 
ARI values in IABP ON and OFF was not 
significantly different from each other (p-value = 
0.42) indicating a relatively stable transition from 
IABP ON to OFF. 
• During removal of IABP, the dynamic CA 
altered slightly, with p-value of 0.052. 
• The findings of the study suggested that the 
cerebral hemodynamics of post-surgical patients 
with IABP operating at 1:3 mode assessed with 
TCD resulted in similar CBFv, ARI, CrCP and 
RAP values to the values obtained at baseline 
recordings after removal of the balloon. 
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Haubrich 
et al., 
2016 [46] 

The 
interaction 
between 
increasing 
ICP and R-
waves in CBF 
in brain 
injury 
patients were 
examined. 

Subject Characteristics: 
TBI patients 
Number of subjects: 22 
Subject demographics: NA 
 
Experimental conditions: 
The patients had subsequently 
increasing ICP by at least 5 
mmHg and CPP above 70 mmHg 
with normocapnia. 

Cerebral Physiology:  
ICP was measured with 
ICP transducer. CBFv 
was recorded with TCD 
from the MCA. RAP 
was calculated from 
ICP data. 
 
Other:  
PaCO2 was monitored 
with a blood gas 
analyzer.  
ABP 

10-sec TFA • Diminishing R-waves transfer function gains 
were observed while the ICP were increasing in 
every patient while no correlation between R-
waves and CA, CPP, and ABP was found. 
• It was found that for RAP higher than 0.85, ICP 
had higher impact on transmission of R-waves to 
CBF. 
• The study results showed a direct correlation 
between vascular and perivascular intracranial 
compartments indicating impact of increasing ICP 
on the CBFv before the alterations in 
cerebrovascular pulsatility or CA. 

Panerai et 
al., 1998 
[47] 

The CA of 
term and 
premature 
neonates was 
characterized 
by analyzing 
the dynamic 
relationship 
between 
spontaneous 
ABP 
fluctuations 
and resulting 
changes in 
CBFv. 

Subject Characteristics: 
Neonates with normal or impaired 
CA 
Number of subjects: 83 
Subject demographics: NA 
 
Experimental conditions: 
The infants were not included in 
the study if they were admitted to 
neonatal ICU more than 12 hours 
after birth or had lethal 
malformation. The neonates were 
grouped into normal or impaired 
CA groups by linear regression 
and the coherent average 
method.5 

Cerebral Physiology:  
CBFv was measured 
with a TCD probe. 
 
Other:  
ABP was measured 
through either a 
peripheral or umbilical 
arterial catheter. 

0.2-sec TFA • Impaired CA group had significantly higher 
coherences between CBFv and ABP in 0.02-0.10 
Hz and 0.33-0.49 Hz frequency ranges (p-
value<10-6). 
• Group with the normal CA had significantly 
more positive phase coherence between CBFv 
and ABP than impaired CA group. 
• Impaired CA group had significantly higher 
frequency response between CBFv and ABP in 
0.02-0.50 Hz frequency range (p-value=0.0009). 
• It was concluded that different components of 
CA could be identified by TFA. 

Sammons 
et al., 
2007 [48] 

Non-invasive 
and invasive 
recordings of 
ABP 
estimates of 
dynamic CA 
were 
compared. 

Subject Characteristics: 
Coronary intervention patients 
Number of subjects: 27 
Subject demographics: 26 male/1 
female 
Mean age: 61.4±11.2 years 
Mean height: 174±5 cm 
 
Experimental conditions: 
The patients were scheduled for 
routine elective percutaneous 
coronary interventions. 

Cerebral Physiology: 
CBFv was measured 
with TCD probe. 
ECG 
 
Other:  
ABP was recorded both 
noninvasively with 
finger plethysmography 
and invasively with a 
catheter-tip pressure 
transducer from aorta. 

5 Hz, 
VLF: 0.00 
– 0.10 Hz, 
LF: 0.10– 
0.25 Hz, 
HF: 0.25– 
0.40 Hz 

TFA • There was no significant difference between 
total mean ABP power of non-invasive ABP and 
invasive ABP whereas non-invasive ABP power 
was significantly higher in VLF range (p-
value=0.014) and significantly lower in LF range 
(p-value=0.02). 
• Significantly greater non-invasive estimates of 
ARI index and CBFv step-response was observed.  
• Non-invasive estimates had significantly 
smaller gain at frequencies <0.1 Hz and 
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significantly greater phase frequency response 
only at frequencies >0.1 Hz. 
• It was concluded that finger plethysmography 
resulted in higher values for the dynamic CA 
efficiency compared to aortic ABP. However, the 
small amplitude of the biases of gain, phase, 
CBFv step-response and ARI index were 
concluded to imply a good level agreement 
between the indexes of CA. 

Wavelet Analysis Studies 

Han et al., 
2014 [49] 

The 
prefrontal 
functional 
connectivity 
in the elderly 
subjects with 
CI during 
resting state 
was assessed 
by analyzing 
Δ[HbO] data. 

Subject Characteristics: 
Elderly people with cerebral 
infarction (CI), healthy control 
Number of subjects: 28 (10 
elderly, 18 healthy) 
Subject demographics:  7 male/3 
female (elderly), 7 male/11 female 
(healthy) 
Mean age: 74.4±9.0 years 
(elderly), 69.9±7.3 years (healthy) 
Age range: 59-83 years (elderly) 
 
Experimental conditions: 
The subjects were made up of 10 
elderly people with CI and 28 
healthy people. The healthy 
subjects did not have any history 
of neurological and vascular 
diseases. Elderly subjects did not 
have diabetes mellitus, 
insufficiency of the heart, lungs, 
kidneys, and liver, smoking or 
drinking habits, subarachnoid 
hemorrhage, hypertension, and 
additional medications usage. The 
data was collected in supine 
position with NIRS system. 

Cerebral Physiology:  
Δ[HbO] and Δ[Hb] 
were calculated from 
Beer-Lambert law 
using signals from 
NIRS. 

2 Hz,  
I (0.6–
2Hz), II 
(0.145–0.6 
Hz), 
III (0.052–
0.145 Hz) 
IV (0.021–
0.052 Hz) 

Wavelet 
analysis 

• P-values for WCO in the left and right PFC 
were 0.290 (I), 0.081 (II), 0.003 (III) and 0.375 
(IV). 
• P-values for WPCO in the left and right PFC 
0.114 (I), 0.205 (II), 0.003 (III) and 0.171 (IV). 
• Δ[HbO] signals illustrated high coherence in the 
intervals I and III in the left and right PFC for the 
healthy subjects indicating a significant linear 
relationship. 
• WCO and WPCO was significantly lower in 
interval III (p-value=0.003) for the elderly 
subjects with CI. 
• It was concluded that the lower WCO and 
WPCO suggested disruption of the NVC and 
weakening of the resting state connectivity of the 
left and right PFC in the elderly subjects with CI. 

Kvandal 
et al., 
2013 [50] 

The wavelet 
spectral 
energy of ICP 
signal 

Subject Characteristics: 
Acute TBI patients 
Number of subjects: 22 

Cerebral Physiology:  
ICP was recorded with 
strain gauge transducer 
in the right frontal lobe. 

2 Hz Wavelet 
analysis 
(Morlet) 

• A phase shift was observed in the patients with 
positive PRx in the 0.006-0.14 Hz frequency 
range in which CVR was found altered from 
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oscillations 
were 
evaluated by 
analyzing ICP 
and ABP 
signals for 
evaluation of 
CA in TBI 
patients. 

Subject demographics: 14 male/8 
female 
Mean age: 41.6±9.9 years 
 
Experimental conditions: 
The data recordings were 
performed in the supine position 
with elevated upper body between 
20° and 30°. The recordings were 
taken on 4.3±3.7 days post-injury. 

PRx was calculated 
from ABP and ICP. 
ECG 
 
Other:  
ABP was recorded with 
a radial arterial line 
connected to a pressure 
transducer. 
MABP 
 

0.006 to 0.07 Hz and normal from 0.07 to 0.14 
Hz. 
• In the 0.006-2 Hz frequency interval, 
statistically significant WPCO was found between 
ICP and ABP signals (p-value<0.05). 
• In the 0.14-1.0 Hz frequency interval, high 
WPCO and no phase shift was found between the 
ICP and ABP signals indicating the effect of 
heartbeat and respiration on the hydrostatic 
transmission to the ICP. 
• For all patients, three district peaks were 
observed in 0.06-0.14 Hz frequency range as 
frequency peak (0.03 Hz), and in 0.14-2.0 Hz 
frequency range as cardiac peak (1.0 Hz) and 
respiratory peak (0.25 Hz). 
• It was concluded that the spectral peaks at the 
cardiac, respiratory and 0.03 Hz frequencies were 
observed with wavelet transform of the ICP 
signals.  

Tian et 
al., 2016 
[51] 

CA of 
newborns 
suffering 
from 
moderate to 
severe 
hypoxic 
ischemic 
encephalopat
hy was 
assessed. 

Subject Characteristics: 
Neonates 
Number of subjects: 9 
Age range: >36 weeks 
Mean age: 39±2 weeks 
 
Experimental conditions: 
The newborn infants had moderate 
to severe hypoxic ischemic 
encephalopathy (HIE). 

Cerebral Physiology:  
SctO2 was recorded via 
an oximetry on the 
frontoparietal side of 
the head. 
 
Other:  
MABP was 
continuously recorded 
with an indwelling 
umbilical arterial 
catheter. 

30-sec Wavelet 
analysis 

• Newborns with abnormal outcomes showed 
either higher in-phase coherence (p-value=0.15) 
or higher anti-phase coherence (p-value=0.27), 
and either higher in-phase gain (p-value=0.03) or 
anti-phase gain (p-value=0.39) than the newborns 
with normal outcomes.  
• It was concluded that both in- and anti-phase 
coherence was related to worse clinical outcomes. 
• The results showed that for assessment of 
dynamic CA of newborns with HIE during 
hypothermia, the wavelet coherence analysis 
could be used clinically. 

Turalska 
et al., 
2009 [52] 

The nature of 
CBF at very 
low 
frequency 
was 
examined. 

Subject Characteristics: 
Healthy control, TBI patients 
Number of subjects: 17 (control), 
38 (patient) 
Subject demographics: 7 male/10 
female (control) 
Mean age: 24±3 years (control) 
 
Experimental conditions: 

Cerebral Physiology:  
CBFv was recorded 
with a TCD probe. 
ICP 
 
Other:  
ABP was monitored 
either by finger 
photoplethysmography 
(control) or by radial 

2 Hz, 
VLF: 0.02-
0.07 Hz 

Wavelet 
analysis 

• Significantly smaller variability of ICP was 
observed in VLF for TBI patients (p-
value<0.0001). 
• CBFv variability was found comparable for 
both cohorts (p-value=0.11).  
• Spontaneous generation of VLF oscillations 
within intracranial volume to compensate for 
reduction in ABP variability was suggested for 
TBI patients without cerebral hypertension. 
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The control group did not have 
any cardiovascular, 
cerebrovascular, or pulmonary 
diseases. 

artery cannulation 
(patients). 

ABP, arterial blood pressure; ARI, autoregulation index; BP, blood pressure; CA, cerebral autoregulation; CBF, cerebral blood flow; CBFv, cerebral blood flow velocity; 
CI, cerebral infarction; CPP, cerebral perfusion pressure; CrCP, critical closing pressure; CVR, cerebrovascular reactivity; DBI, dynamical Bayesian inference; ECG, 
electrocardiography; EEMD, ensemble empirical mode decomposition; EtCO2, end-tidal carbon dioxide; fNIRS, functional near-infrared spectroscopy; HF, high frequency; 
HIE, hypoxic ischemic encephalopathy; HR, heart rate; HS, hypertensive; Hz, Hertz; IABP, intra-aortic balloon pump; ICP, intracranial pressure; ICU, intensive care unit; 
IMF, intrinsic mode functions; LF, low frequency; LPFC, left prefrontal cortex; LMC, left sensorimotor cortical; LOL, left occipital lobe; MABP, mean arterial blood pressure;  
MCA, middle cerebral arterial; NA, not available; NVC, neurovascular coupling; PaCO2, arterial oxygen partial pressure; PFC, prefrontal cortex; RAP, resistance-area 
product; RMC, right sensorimotor cortical; ROL, right occipital lobe; RPFC, right prefrontal cortex; SAH, subarachnoid hemorrhage; SctO2, cerebral tissue oxygen 
saturation; TBI, traumatic brain injury; TCD, transcranial Doppler; TFA, transfer function analysis; VLF, very low frequency; WCO, wavelet coherence; WPCO, wavelet 
phase coherence; Δ[Hb], change in deoxyhemoglobin concentration; Δ[HbO], change in oxyhemoglobin concentration 
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Table B5: Summary of articles for patient population with time-series models 

Article Aim of the 
Study 

Demographics & Experimental 
Conditions 

Physiological Data & 
Measurement 
Methods 

Data 
Resolution 

Method(s) 
of  
Time-
Series 
Modelling 

Study Results and Conclusions Regarding 
Cerebral Physiologic Signal Modelling 

Daley et 
al., 2006 
[53] 

The effect of 
ABP and ICP 
on the 
changes on 
the 
cerebrovascul
ar pressure 
transmission 
was 
examined. 

Subject Characteristics: 
Severe TBI patients who showed a 
plateau wave (Group A) and who 
had intracranial hypertension and 
hypoperfusion (Group B) 
Number of subjects: 4 (Group A), 
5 (Group B) 
Subject demographics: NA 
 
Experimental conditions: 
No information was given 
regarding the experimental 
conditions. 

Cerebral Physiology:  
ICP was measured 
with an 
intraparenchymal 
probe. 
CPP 
 
Other:  
ABP was recorded 
invasively from the 
radial or dorsalis 
pedis artery. 

2 Hz ARMA • It was found that the highest modal frequency 
values of Group A decreased with increasing CPP 
whereas for Group B, HMF and CPP showed direct 
relationship. 
• According to the study findings, pressure 
regulation of CBF would be intact when highest 
modal frequency varied opposite to CPP, and CBF 
would be impaired when HMF varied directly with 
CPP. 

Pinto et 
al., 2022 
[54] 

Multivariate 
and 
simultaneous 
analysis of 
cardiocerebro
vascular 
oscillations of 
R-R intervals, 
MABP and 
pulse 
amplitude of 
ICP were 
modelled to 
understand 
the 
interconnecti
on between 
these signals. 

Subject Characteristics: 
Severe TBI patients 
Number of subjects: 18 
Subject demographics: 16 male/2 
female 
Mean age: 42 years 
 
Experimental conditions: 
Propofol and/or midazolam and 
fentanyl were used to sedate the 
patients who were 
normoventilated. 

Cerebral Physiology: 
ICP, CPP, ECG 
 
Other: ABP, MABP, 
EtCO2  
 

10-sec VARFI 
model 

• It was shown that baseline R-R could provide 
information regarding an arising plateau wave 
possibility. 
• All recorded phases illustrated positive values 
indicating the simultaneous interaction between 
MABP and amplitude of ICP. 
• Long-term correlations illustrated the synergistic 
relation of MABP and pulse amplitude of ICP as 
well as giving better heart rate variability during 
plateau wave. 
• It was concluded that the estimation of Transfer 
Entropy through VARFI model was effective in 
assessing the global role of long-term correlations 
and working reliably on short-time series. 

Thelin et 
al., 2020 
[55] 

Statistical 
time-series 
relationship 
between ICP, 

Subject Characteristics: 
Mild to severe TBI patients 
Number of subjects: 31 

Cerebral Physiology: 
ICP was recorded 
with either an 
intraparenchymal 

10-sec and 
1-min 

ARIMA, 
VARIMA, 
univariate 
logistic 

• The ARIMA model showed that ICP and MABP 
varied among patients whereas no significant 
variances were observed between 10-sec and 1-min 
intervals implying similar time-series behavior. 
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MABP and 
PRx of adult 
TBI patients 
was 
examined. 

Subject demographics: 23 male/8 
female 
Age range: 30-55 years 
Mean age: 41.7+13.6 years 
 
Experimental conditions: 
Data was extracted retrospectively 
from a database. 

strain gauge probe, 
parenchymal fiber 
optic pressure sensor 
or external ventricular 
drain. Long-PRx (L-
PRx), which was a 
low frequency PRx, 
was derived from ICP 
and MABP data. 
 
Other: 
ABP was recorded 
with pressure 
transducers from 
either radial or 
femoral arterial lines.  
 

regression 
analysis, 
Granger 
causality 

Similarly, PRx and L-PRx were observed to be 
patient dependent whereas ARIMA structure of 
both indices were similar in individual patients. 
• Granger causality method revealed that the 
MABP impacting ICP was favored by the 
directional nature of the relationship regardless of 
the time interval for most patients. 
• Similar absolute ICP standard error changes were 
observed with VARIMA in overall with minute 
interval indicating the loss of some information on 
slow-wave relationships between ICP and MABP 
and preservation of overall shape of ICP response 
to MABP changes implying the retention of some 
information regarding CVR by the mean minute 
data. 
• Univariate logistic regression analysis illustrated 
that there was no statistical difference between 
AUC of all PRx and L-PRx indices implying 
statistically significant relation between mortality at 
6 months and L-PRx and PRx indices. 

Zeiler et 
al., 2020 
[56] 

The effect of 
craniectomy 
on PRx as 
well as the 
relationship 
between 
vasogenic 
slow waves 
of ICP and 
MABP were 
assessed. 

Subject Characteristics: 
Moderate to severe TBI patients 
Number of subjects: 10 
Subject demographics: 8 male/2 
female 
Mean age: 34.0±18.0 years 
 
Experimental conditions: 
Data was extracted retrospectively 
from a database. The data were 
included from patients who 
underwent secondary 
decompressive craniectomy (DC) 
with high-frequency data 
recordings. 

Cerebral Physiology:  
ICP was monitored 
with an 
intraparenchymal 
strain gauge probe, 
parenchymal fiber 
optic pressure sensor, 
or external ventricular 
drain. 
(CPP = MABP – ICP) 
 
Other:  
ABP was recorded 
with pressure 
transducers through 
either radial or 
femoral arterial lines. 
MABP 

10-sec 
 

VARIMA 
with IRF 
plots, 
Granger 
causality 
 
 
  

• Time-series analysis and VARIMA IRF plots 
showed that there was no variation in the PRx time-
series structure between pre- and post-DC, 
suggesting that secondary DC did not affect CVR. 
• Granger causality revealed that there was no 
significant change in F-test value for MABP and 
ICP between pre- and post-DC (p-value=0.280 
within the first 48-hours after DC and p-
value=0.248 for beyond 48-hours after DC) 
indicating the minimal effect of DC on the slow-
waves of ICP and MABP. 
• It was concluded that DC did not significantly 
affect the PRx metrics and statistical behavior of 
time-series, and the change in the ICP and MABP 
slow-waves were also small. 

Zeiler et 
al., 2021 
[57] 

The 
relationship 
between slow 
wave 

Subject Characteristics: 
Moderate to severe TBI patients 
Number of subjects: 47 
Mean age: 45 years 

Cerebral Physiology:  
ICP was monitored 
with an intra-
parenchymal strain 

10-sec ARIMA, 
VARIMA 
with IRF, 

• ICP and MABP slow waves were observed to 
have similar ARIMA structure whereas PbtO2 
displayed different optimal model structure 
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fluctuations 
in ICP, 
MABP and 
PbtO2 were 
investigated 
for derivation 
of CVR 
metrics for 
TBI patients.  

 
Experimental conditions: 
Data was extracted retrospectively 
from a database. 

gauge probe or 
parenchymal fiber 
optic pressure sensor. 
PbtO2 was monitored 
with an invasive 
parenchymal probe. 
 
Other:  
ABP was recorded 
with pressure 
transducers through 
arterial lines. 
MABP 

Granger 
causality 
 

implying that PbtO2 slow waves had very different 
behavior than that of MABP and ICP. 
• VARIMA generated IRF plots showed that the 
directional relation between MABP and ICP was 
strong suggesting definite ICP response to MABP 
and limited response of PbtO2 response to slow 
wave fluctuations of MABP or ICP. 
• It was concluded that the ICP and MABP slow 
wave fluctuations were reproducible whereas there 
was no reliable PbtO2 response to slow wave 
fluctuations in MABP implying that PbtO2 would 
not be useful for deriving CVR metrics in TBI. 

ABP, arterial blood pressure; ARIMA, autoregressive integrative moving average; ARMA, autoregressive moving average; AUC, area under the curve; CBFv, cerebral blood 
flow velocity; CPP, cerebral perfusion pressure; CVR, cerebrovascular reactivity; DC, decompressive craniectomy; ECG, electrocardiography; EtCO2, end-tidal carbon 
dioxide; HMF, highest modal frequency; Hz, Hertz, ICP, intracranial pressure; IRF, impulse response function; L-PRx, long pressure reactivity index; MABP, mean arterial 
blood pressure;  MCA, middle cerebral arterial; NA, not available; PbtO2, cerebral tissue oxygen; PRx, pressure reactivity index; TBI, traumatic brain injury; TCD, 
transcranial Doppler; VARFI, vector autoregressive fractionally integrated; VARIMA, vector autoregressive integrative moving average 
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Table B6: Summary of articles for patient population with machine learning models 

Article Aim of the 
Study 

Demographics & Experimental 
Conditions 

Physiologic
al Data & 
Measureme
nt Methods 

Data 
Resolution 

Method(s) 
of  
Time-
Series 
Modelling 

Study Results and Conclusions Regarding Cerebral 
Physiologic Signal Modelling 

Asgari et 
al., 2019 
[58] 

Cerebral 
dynamic states 
were 
determined 
from 
combined 
ICP, CPP, 
PRx and RAP. 

Subject Characteristics: 
TBI adult patients 
Number of subjects: 379 
Subject demographics: 299 male/80 
female 
Mean age: 39±17 years 
 
Experimental conditions: 
Data was extracted retrospectively 
from a database. 

Cerebral 
Physiology: 
ICP, CPP, 
PRx, RAP 
 
Other: ABP 

1-h HMM • The model predicted that lower ICP, higher CPP, intact 
autoregulation and preserved compensatory reserve were 
associated with ‘good’ state, while higher ICP, lower 
CPP, loss of autoregulation and reduced compensatory 
reserve were associated with ‘poor’ state and 
‘intermediate’ state was associated with values between 
the two states (p-values<0.0001). 
• It was observed that the HMM model the CPP values for 
the ‘poor’ state was within the published CPP 
management guidance despite the unsupervised learning. 
• The results showed that the HMM model could identify 
the clinically relevant states unsupervised as well as its 
ability to identify clinically meaningful critical thresholds. 

Chiu et 
al., 2010 
[59] 

Dynamic CA 
was assessed 
through the 
linear and 
non-linear 
features 
extracted from 
mean CBFv 
and MABP to 
classify the 
degrees of 
autonomic 
neuropathy in 
diabetic 
patients. 

Subject Characteristics: 
Diabetics with severe autonomic 
neuropathy (DSN), diabetics with 
mild autonomic neuropathy (DMN), 
diabetics without autonomic 
neuropathy (DWN), healthy control 
group (control) 
Number of subjects: 18 (DSN), 25 
(DMN), 15 (DWN), 14 (control) 
Subject demographics: 12 male/6 
female (DSN), 15 male/10 female 
(DMN), 10 male/5 female (DWN), 4 
male/10 female (control) 
Mean age: 61.6±10.9 years (DSN), 
67.5±8.8 years (DMN), 52.6±16.27 
years (DWN), 30.3±8 years (control) 
 
Experimental conditions: 
The control group did not suffer from 
any neurological or cerebrovascular 
diseases. The data were recorded in 
supine and tilt-up positions. 

Cerebral 
Physiology:  
CBFv was 
recorded 
with TCD 
from the 
MCA.  
 
Other:  
ABP was 
measured 
with a finger 
photoplethys
mography 
device from 
the right 
middle 
finger. 
MABP was 
calculated 
from ABP. 

2 Hz,  
VLF: 
0.015-0.07 
Hz,  
LF: 0.07-
0.15 Hz,  
HF: 0.15-
0.40 Hz 

Linear 
CCF-
SVM, 
nonlinear 
CD-SVM 

• CFF results illustrated that the correlation values for 
control group was generally higher than the subjects with 
diabetics. 
• For DWN, DMN and control groups, the CD values of 
mean CBFv and MABP were significantly different in 
supine position compared to tilt-up position. For DSN, CD 
values of mean CBFv was not significantly different 
between the two positions. 
• The SVM classification results showed that it was able 
to distinguish between the control, DSN, DMN and DWN 
groups with high accuracy. 
• The overall results suggested that using SVM classifier 
with linear CCF features and nonlinear CD features would 
provide a simple, easy and non-invasive method to 
classify dynamic CA in diabetic patients with autonomic 
neuropathy. 
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Mariak 
et al., 
2000 
[60] 

Automatic 
classification 
of the ICP 
waveforms in 
certain scale 
of risk classes 
was modelled. 

Subject Characteristics: 
Intracerebral hemorrhage patients 
Number of subjects: >60 
Subject demographics: NA 
 
Experimental conditions: 
Data was extracted retrospectively 
from a database. 

Cerebral 
Physiology: 
ICP was 
recorded 
before and 
after the 
surgical 
removal of 
intraparench
ymal brain 
hematoma. 

10-sec ANN • Unambiguous classifications were observed for some 
parts of the ICP signals with online classification. 
• With classification of global properties of ICP signals, it 
was concluded that the uneven represented classes made 
the ANN classification ineffective. 
• Classification based on global parameter extraction from 
ICP signals was found to be more promising than the on-
Line classification of ICP signals. 
• The authors assumed their model as not fully developed 
and stressed the need for further training with sufficient 
number of ICP samples. 

Megjhan
i et al., 
2022 
[61] 

The prediction 
of DCI using 
continuously 
updated 
multimodal 
neuromonitori
ng and CA 
analyses were 
examined. 

Subject Characteristics: 
Aneurysmal SAH patients 
Number of subjects: 131 
Subject demographics: 37 male/94 
female 
Mean age: 54 years 
 
Experimental conditions: 
Data was extracted retrospectively 
from a database. 64 of the patients 
had delayed cerebral ischemia (DCI). 

Cerebral 
Physiology: 
ICP, CPP, 
PbtO2, PRx 
(ΔCPP = 
CPP-CPPOpt) 
 
Other: ABP, 
MABP  

60-min TSAM 
algorithm 

• The presented model achieved 67.3% balanced 
accuracy. 
• Performance of the model was over 60% consistently 
after 105 hours since bleed date. 
• It was concluded the TSAM algorithm showed potential 
for DCI classification using multimodal neuromonitoring 
and CA calculations. 

Naraei et 
al., 2017 
[62] 

Normal ICP 
levels were 
predicted and 
distinguished 
from higher 
level ICP 
levels, i.e., 
hypertension 
onset and 
intracranial 
hypertension. 

Subject Characteristics: 
TBI patients 
Number of subjects: 20 
Subject demographics: NA 
 
Experimental conditions: 
The data was collected from the TBI 
patients during the first 24 hours of 
their hospitalization. 

Cerebral 
Physiology: 
ICP 

1 Hz Wavelet-
based k-
means 
clustering 

• Each sample has been divided into 3 sections as normal 
status, intracranial hypertension onset and intracranial 
hypertension each in 90 second time frames. This method 
allowed the model to be able to differentiate the normal 
status from intracranial hypertension onset and 
intracranial hypertension. 
• The study showed that hybrid approach of wavelet 
analysis and k-means clustering could effectively find 
intracranial hypertension without invasive measurements 
using. 

Porta et 
al., 2020 
[63] 

Spectral and 
complexity 
analysis of 
characterizatio
n of 
cardiovascular 
and 
cerebrovascul
ar controls as 

Subject Characteristics: 
Patients undergoing surgical aortic 
valve replacement (SAVR) 
Number of subjects: 11 
Subject demographics: 7 male/4 
female 
Mean age: 76±5 years 
 
Experimental conditions: 

Cerebral 
Physiology:  
CBFv was 
measured 
with TCD 
device. 
ECG 
 
Other:  

0.5 Hz, 
LF: 0.04-
0.15 Hz, 
HF: 0.15-
0.4 Hz 

k-NN 
  

• Vagal autonomic and baroreflex controls were found to 
be depressed pre-surgery and impaired post-surgery 
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well as the 
presence of 
nonlinear 
patterns in 
pre- and post- 
surgical aortic 
valve 
replacement 
were 
examined. 

The patients did not have atrial 
fibrillation, cerebrovascular diseases, 
or overt autonomic nervous system 
pathologies. The data was recorded a 
day prior to the surgery and 7 days 
after, in supine position and during 
active standing. 

ABP was 
monitored 
with 
volume-
clamp 
photoplethys
mography. 

whereas cerebrovascular variability and CA were found to 
be less affected by the SAVR. 
• Complexities of SBP, DBP and MABP variabilities and 
nonlinear dynamics of SBP after surgery were increased 
as a result of autonomic control impairment. 
• Observation of nonlinear dynamics decreased in stand 
position. 
• Neither surgery nor orthostatic challenge caused a 
change in respiratory rate. 

Shaw et 
al., 2021 
[64] 

Prediction of 
ICP time-
series data 
was examined 
with a novel 
time-varying 
DLM. 

Subject Characteristics: 
TBI patients 
Number of subjects: 106 (+155 for 
training) 
Subject demographics: 80 male/26 
female 
Age range: 17.9-54.7 years 
Mean age: 32 years 
 
Experimental conditions: 
Data was extracted retrospectively 
from a database. 

Cerebral 
Physiology: 
ICP 
 
Other: ABP 

1-min FASSTER 
time 
varying 
DLM 

• The model had an overall median absolute error of 2.98 
mmHg with 95% confidence intervals.  
• An adequate accuracy was achieved with FASSTER 
time varying DLM illustrating its potential for ICP 
forecasting.  
• Further optimizations were suggested for clinical 
usability of the model. 

Sourina 
et al., 
2010 
[65] 

For prediction 
of changes in 
health status 
of a patient, 
ICP time-
series data of 
before and 
after surgery 
was analyzed 
via dynamic 
fractal-based 
method. 

Subject Characteristics: 
Severe TBI patients  
Number of subjects: 9  
Subject demographics: NA 
 
Experimental conditions: 
The data measurement methods were 
not mentioned. The data was 
recorded pre- and post-surgery. 

Cerebral 
Physiology: 
ICP 

5-sec (for 3 
patients), 
10-sec (for 
6 patients) 

Fractal 
analysis 
with box-
counting 
and 
Higuchi 
algorithms 

• Significant variability was observed in FD values of the 
ICP using the box-counting algorithm, both before and 
after decompressive craniectomy signaling the need for 
more aggressive clinical interventions. 
• It was determined that critical FD values could predict 
changes in the clinical management stage which was 
validated with real-world stepwise clinical protocols in 
severe TBI patients. 
• It was concluded that changes in fractal dimension 
values could serve as early warnings for future changes in 
patients' conditions, potentially aiding surgical decisions. 

ABP, arterial blood pressure; ANN, artificial neural network; CA, cerebral autoregulation; CBFv, cerebral blood flow velocity; CFF, cross correlation function; CP, 
correlation dimension; CPP, cerebral perfusion pressure; CPPOpt, optimal cerebral perfusion pressure; DBP, diastolic blood pressure; DCI, delayed cerebral ischemia; DLM, 
dynamic linear model; DMN, diabetics with mild autonomic neuropathy; DSN, diabetics with severe autonomic neuropathy; DWN, diabetics without autonomic neuropathy; 
ECG, electrocardiography; FASSTER, forecasting with additive switching of seasonality, trend and exogenous regressors; FD, fractal dimension; HF, high frequency; HMM; 
hidden Markov model; Hz, Hertz, ICP, intracranial pressure; k-NN, k-nearest neighbor; LF, low frequency; MABP, mean arterial blood pressure; MCA, middle cerebral 
arterial; NA, not available; PbtO2, cerebral tissue oxygen; PRx, pressure reactivity index; RAP, resistance-area product; SAVR, surgical aortic valve replacement; SBP, 
systolic blood pressure; SVM, support vector machine; TBI, traumatic brain injury; TCD, transcranial Doppler; TSAM, time-varying temporal signal angle measurement; 
VLF, very low frequency  
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Table B7: Summary of articles for patient population with model comparison 

Article Aim of the 
Study 

Demographics & 
Experimental 
Conditions 

Physiological Data 
& Measurement 
Methods 

Data 
Resolution 

Method(s) of  
Time-Series 
Modelling 

Model 
Evaluation 

Study Results and Conclusions 
Regarding Cerebral Physiologic Signal 
Modelling 

Farhadi et 
al., 2019 
[66] 

ICP episodes 
based on 
dynamic features 
of ICP, vitals and 
medications 
were forecasted 
with data-driven 
models. 

Subject Characteristics: 
Pediatric ICU patients 
Number of subjects: 78 
Subject demographics:  
42 male/36 female 
Age range: 0-18 years 
 
Experimental 
conditions: 
Data was extracted 
retrospectively from a 
database. 

Cerebral 
Physiology: ICP, 
CPP 
Transducers were 
implanted in the brain 
parenchyma. 
 
Other: MABP, HR, 
BP 

1-min ARIMA, 
ETS model, 
linear 
regression, 
Lasso 
regression, 
SVM and 
random 
forest 

Overall, 
random 
forest had 
the highest 
accuracy. 

• The results showed that the linear 
regression performed the worst 
(NMSE=4.13), the Lasso regression was 
the most accurate (NMSE=2.76) model 
by selecting and estimating the effects of 
relevant variables. 
• ARIMA and ETS models performed 
poorly due to irregular ICP fluctuations. 
• Random forest had the highest 
accuracy for forecasting ICP achieving 
0.99 correlation between predicted and 
experimental ICP values (NMSE=0.89, 
and RRSE=5.7%).  

Güiza et 
al., 2013 
[67] 

Prediction of 
increased ICP 
episodes and 
early prediction 
of unfavorable 
neurological 
outcome in TBI 
patients was 
assessed using 
dynamic 
characteristics of 
ICP and MABP. 

Subject Characteristics: 
TBI patients 
Number of subjects: 
264  
Subject demographics: 
211 male/53 female 
Age range: 19-48 years 
Mean age: 31 years 
 
Experimental 
conditions: 
The patients were ICP-
monitored. 

Cerebral 
Physiology: ICP, 
CPP 
 
Other: MABP 

1-min GP algorithm 
and logistic 
regression 

For 
prediction of 
ICP 
episodes, 
GP model 
had the best 
overall 
performance 
compared to 
logistic 
regression 
which 
performed 
poorly.  

• The models using dynamic information 
outperformed the static predictors, i.e., 
corticosteroid randomization after 
significant head injury (CRASH) and 
international mission for prognosis and 
clinical trial (IMPACT), in early 
neurological outcome prediction. 
• The GP model achieved an overall 
good model performance in both 
development cohort and validation 
cohort (classification accuracy=77%, 
sensitivity=82%, and specificity=75%) 
for prediction of ICP episodes. The p-
value of development and validation 
cohorts were 0.175 and 0.12, 
respectively. 

Hu et al., 
2012 [68] 

The relationship 
between CBFv 
and spontaneous 
BP fluctuations 
in old adults 
were established 

Subject Characteristics: 
Stroke patients and non-
stroke subjects 
Number of subjects: 79 
(39 stroke, 40 non-
stroke) 

Cerebral 
Physiology:  
CBFv was recorded 
with TCD from the 
MCA. 
 

50 Hz IMPFA, 
MMPF and 
TFA 

IMPFA 
model more 
accurately 
presented 
the 
relationship 

• The results showed that compared to 
non-stroke group, the CBFv-BP phase 
shift was consistently smaller for the 
stroke group (p-value<0.0001). 
• The results of IMPFA suggested an 
active CBF regulation at multiple time 
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at multiple time 
scales. 

Subject demographics: 
20 male/19 female 
(stroke), 17 male/23 
female (non-stroke) 
Age range: 50-80 years 
(stroke), 51-80 years 
(non-stroke) 
Mean age: 64.6±1.4 
years (stroke), 68.0±1.0 
years (non-stroke) 
 
Experimental 
conditions: 
Subjects were studied in 
a supine position during 
the data collection. A 
finger 
photoplethysmography 
device was placed on 
the subjects’ finger. 
Doppler probes were 
placed in the left and 
right middle cerebral 
arteries. 

Other:  
Beat-to-beat BP 
waveforms were 
measured with the 
finger 
photoplethysmograph
y device. EtCO2 was 
recorded via a face 
mask.  

between BP 
and CBFv 
oscillations 
and 
accounted 
better for the 
non-
stationarities 
and noise in 
the data 
recordings 
compared to 
MMPF and 
TFA. 

scales by presenting the CBFv 
oscillation phase being advanced 
compared to BP oscillation at 0.02-0.38 
Hz. 
• It was discovered that the multiscale 
regulation was affected by ischemic 
stroke in a long-term altering the CBF 
regulation in infracted and non-fracted 
hemispheres. 
• The results of this study pointed out 
that the importance of a reliable and non-
invasive CBF regulation monitoring for 
management and daily care of stroke 
patients due to the long-term effect of 
stroke. 

Jachan et 
al., 2009 
[69] 

The dynamic CA 
assessment using 
parametric 
transfer function 
estimation with 
non-invasively 
recorded 
spontaneous 
oscillations was 
examined. 

Subject Characteristics: 
Unilateral (set 1) and 
bilateral (set 2) 
impaired patients 
Number of subjects: 91 
(set 1), 44 (set 2) 
Subject demographics: 
77 male/14 female (set 
1), 38 male/6 female 
(set 2) 
Age range: 35-85 years 
(set 1), 43-84 years (set 
2) 
Mean age: 65±10 years 
(set 1), 71±10 years (set 
2) 
 

Cerebral 
Physiology:  
CBFv was recorded 
with TCD from the 
MCA. 
 
Other:  
ABP was recorded 
with finger 
plethysmograph. 

2.5 Hz 
 

ARMAX 
model, VAR 
model, and 
non-
parametric 
transfer 
function 
estimator 
 

No 
difference 
between 
performance
s of the three 
methods 
were 
observed 
while 
ARMAX 
model 
showed the 
lowest 
complexity 
on average. 

• In set 1, there was no significant 
difference between the ARMAX, VAR 
and nonparametric models in the mean 
phase estimates for healthy (p-
value=0.279) and impaired (p-
value=0.450) sides. The healthy side had 
significantly higher phase parameter in 
all methods than impaired side (p-
value<0.0002). 
• Significant correlations between first 
and second half measurements in set 2 
were found in all three methods (p-
value<.0016). A very low variability 
between the measurements were found 
for set 1, while the higher variability was 
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Experimental 
conditions: 
The patients had severe 
unilateral or bilateral 
internal carotid artery 
stenosis or occlusion. 
The data recordings 
were performed in the 
supine position with 50° 
inclination of the upper 
body. 

present for set 2 similar for coefficients 
of variation. 
• It was concluded that the proposed 
parametric approaches could be 
alternative to the nonparametric method 
to assess CA automatically with lower 
model complexity. 

Kostoglo
u et al., 
2016 [70] 

CA of the young 
athletes who 
experienced 
concussion was 
examined 
through 
modeling the 
relationship 
between MABP, 
EtCO2, CBFv 
and visual 
stimulation. 

Subject Characteristics: 
Players who 
experienced concussion 
Number of subjects: 7 
Subject demographics: 
7 male/0 female 
 
Experimental 
conditions: 
The subjects were tested 
on tasks involving two 
separate visuals 
paradigms which were 
reading an article 
relevant to the subject 
cohort and on-screen 
subject search. MCA 
and PCA were 
insonated on the right 
side and left sides of the 
brain, respectively. The 
testing was repeated at 
72 hours, 2 weeks, and 
1-month post-injury. 

Cerebral 
Physiology:  
CBFv was monitored 
with TCD. 
PCAv, ECG 
 
Other:  
EtCO2 was recorded 
with a mouthpiece. 
BP was recorded with 
finger 
photoplethysmograph
y. 
MABP 

1 Hz, 
VLF: 
0.005-0.04 
Hz, 
LF: 0.04-
0.15 Hz, 
HF: 0.15-
0.30 Hz 

ARX, and 
impulse 
response 
model based 
on LET 

Significantly 
higher 
predictive 
performance 
was 
observed 
with LET 
models with 
infinite-step 
ahead 
prediction 
whereas 
with one-
step ahead 
prediction, 
performance
s of both 
models were 
comparable. 

• Two models had consistent gain and 
phase of MABP indicating more 
accurate estimation compared to those 
from EtCO2 and visual stimulation. 
• ARX (NMSE=0.077) and LET 
(NMSE=0.090) showed similar 
performance when their output was 
PCAv as visual cortex was affected 
directly by PCA. 
• Statistically significant changes were 
observed between the testing in 72 hours 
and 1-month (p-value<0.0358) 
indicating a recovery in the CA function 
for most of the subjects. 
• The study results illustrated that 
changes in CA of young athletes who 
experienced concussion was successfully 
detected with features from the LET and 
ARX models. 

Miller et 
al., 2020 
[71] 

Joint time-
frequency 
domain analysis 
was examined to 
quantify 
dynamic CA 
performance. 

Subject Characteristics: 
Healthy group, 
unilateral impaired 
patients 
Number of subjects: 55 
(healthy), 35 (patients) 

Cerebral 
Physiology:  
CBFv was monitored 
with a TCD probe. 
 
Other:  

0.15 Hz. TFA, GHW 
and wavelet 
transform 
(Morlet) 

The GHW 
model 
achieved 
higher 
sensitivity 
compared to 
other models 

• In the healthy group, both GHW and 
TFA showed similar outcomes. 
• In patient group, GHW achieved much 
higher sensitives as 74% in coherence 
threshold approach (p-value=0.0027) 
and 71.4% in coherence-weighted 
approach (p-value=0.0009) compared to 
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Subject demographics: 
NA 
 
Experimental 
conditions: 
The patients had 
unilateral internal 
carotid artery stenosis 
or occlusion. The data 
recordings took place in 
supine position. 

ABP was recorded 
with a finger 
plethysmography. 

for impaired 
dynamic CA 
identificatio
n. 

TFA and wavelet-based models in 
identifying expected side-to-side 
differences. 
• It was concluded that the GHW 
analysis had better performance in terms 
of identifying asymmetry of dynamic 
CA in two cerebral hemispheres with 
unilateral carotid stenosis patients. 

Myers et 
al., 2016 
[72] 

Predictions of 
intracranial 
hypoxia and 
tissue hypoxia 
crises were 
assessed for 
development of 
early warning 
algorithm in 
cases of 
impending crises 
in TBI patients 
on 30-min 
interval. 

Subject Characteristics: 
Severe TBI patients 
Number of subjects: 
817 (ICP prediction), 
242 (brain hypoxia 
prediction) 
Subject demographics: 
694 male/123 female 
(ICP prediction), 206 
male/36 female (brain 
hypoxia prediction) 
Age range: 22-42 years 
(ICP prediction), 23-44 
years (brain hypoxia 
prediction) 
Mean age: 30 years 
 
Experimental 
conditions: 
Data was extracted 
retrospectively from a 
database. 

Cerebral 
Physiology:  
ICP was recorded 
with either an extra-
ventricular drain or 
an intraparenchymal 
fiberoptic probe. 
PbtO2 was measured 
using Licox. 
 
Other:  
MABP, EtCO2, SaO2 

36-sec GP, logistic 
regression, 
and AR-OR 
model 

The best 
performance
s were 
achieved by 
two-state 
AR-OR 
model in 
both ICP 
and PbtO2 
crisis 
predictions. 

• ICP and changes in ICP were found to 
be the most associated signals for 
elevated ICP prediction (AUC=0.85), 
whereas on their own CPP, EtCO2, and 
MABP were the least associated signals 
(AUC = 0.49, 0.57, and 0.58, 
respectively). 
• Similarly, PbtO2 and changes in PbtO2 
were the most associated signals in 
depressed PbtO2 prediction (AUC=0.91) 
while the SaO2 and CPP, in isolation, 
were the least associated signals 
(AUC=0.53). 
• The two-state AR-OR model achieved 
AUC of 0.85 and 0.91 for ICP and PbtO2 
crisis predictions, respectively, with 30-
min advance warning. 
• It was concluded that the presented 
algorithms could provide predictions of 
intracranial hypertension and tissue 
hypoxia crises accurately and timely 
using the relevant signal and the time 
since last crisis. 

Petrov et 
al., 2023 
[73] 

Prediction of 
onset ICP crises 
based on time-
series data of 
ICP signals was 
modelled to be 
applied in 
preventative 

Subject Characteristics: 
Severe TBI patients 
Number of subjects: 36 
Subject demographics: 
NA 
 
Experimental 
conditions: 

Cerebral 
Physiology:  
ICP was monitored 
invasively. 

1-sec Random 
forest, 
XGBoost 
and LGBM 
 

The highest 
performance 
was 
achieved by 
the random 
forest model 
on both 

• The study results showed that the 
random forest achieved the highest 
performance on all data sets with 
accuracy range of 0.82 to 0.88. 
• Validation test also showed that 
random forest had high precision (0.76) 
and overall strong predictive 



40 
 

therapies using 
machine learning 
algorithms in 10-
min and 20-min 
intervals. 

Data was extracted 
retrospectively from a 
database. 

training and 
testing sets. 
 
  

performance (F1-score=0.57, 
accuracy=0.86). 
• It was concluded that an accurate and 
precise prediction of ICP crisis events 
from ICP time-series data was achieved. 

Scalzo et 
al., 2012 
[74] 

The 
effectiveness of 
ensemble 
classifiers in 
temporal 
prediction of 
intracranial 
hypertension 
were tested on 1-
min to 10-min 
intervals. 

Subject Characteristics: 
Patients with ICP 
related conditions 
Number of subjects: 30 
Subject demographics: 
NA 
 
Experimental 
conditions: 
Data was extracted 
retrospectively from a 
database. The patients 
were treated for various 
ICP related conditions 

Cerebral 
Physiology: 
ECG, ICP  

40 Hz Multiple 
linear 
regression, 
AdaBoost 
and 
ExtraTrees 

The best 
performance 
was 
achieved by 
ExtraTrees 
followed by 
AdaBoost 
and 
multilinear 
classifier. 

• ExtraTrees showed improved results 
with increased input length (AUC1-

min=0.96, AUC3-min=0.91, AUC6-min=0.87) 
followed by AdaBoost (AUC1-min=0.93, 
AUC3-min=0.84, AUC6-min=0.80) and 
linear classifier (AUC1-min=0.87, AUC3-

min=0.78, AUC6-min=0.71). ExtraTrees 
also had the highest sensitivities for 
time-to-onset of 1-min (0.93), 3-min 
(0.83) and 6-min (0.75). 
• The sensitivity and specificity results 
obtained by linear model were 
significantly improved with ensemble 
classifiers. 

Schäck et 
al., 2018 
[75] 

A new method 
was proposed for 
nonlinear 
causality 
analysis of 
multivariate 
time-series of 
physiological 
data. 

Subject Characteristics: 
TBI patients 
Number of subjects: 10  
Subject demographics: 
NA 
 
Experimental 
conditions: 
Data was extracted 
retrospectively from a 
database. 

Cerebral 
Physiology: 
ICP, PbtO2 
 
Other:  
MABP 

0.1 Hz Robust time-
varying 
generalized 
partial 
directed 
coherence 
with Kalman 
filter and 
DEKF 

DEKF and 
the proposed 
model had 
similar 
accuracy, 
however, 
proposed 
model had 
shorter 
computation 
time. 

• The proposed model was shown to 
simultaneously detect linear and 
nonlinear causality between time-series 
signals. 
• Although both models had similar 
accuracy, the proposed model had far 
less computation time compared to 
DEKF. 
• The proposed model shown robustness 
against artifacts and outliers while 
reconstructing causality spectrum 
patterns in TBI data. 

Semenyut
in et al., 
2022 [76] 

State of CA was 
aimed to be 
determined in 
real-time with 
CWT and STFT 
models. 

Subject Characteristics: 
Healthy group (control), 
patients with brain 
arteriovenous 
malformations (AVM), 
patients with arterial 
stenosis (AS) 
Number of subjects: 9 
(control), 6 (AVM), 6 
(AS) 

Cerebral 
Physiology:  
CBFv was recorded 
in both MCAs with a 
TCD probe. 
 
Other:  
ABP was monitored 
with a finger 
plethysmography. 

0.01-sec CWT and 
STFT 

CWT 
achieved 
higher 
sensitivity to 
changes in 
CA and 
localized the 
time and 
frequency 
changes 

• CWT method was found more 
sensitive according to the sensitivity 
analysis of the changes of phase shift. 
• A greater relative decrease of phase 
shift was observed on the left (p-
value=0.0222) and the right (p-
value=0.014) for CWT in hypercapnia. 
• A greater relative increase of phase 
shift was observed on the left (p-
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Age range: 19-35 years 
(control), 41-63 years 
(AVM), 52-72 years 
(AS) 
 
Experimental 
conditions: 
The patients either had 
brain with arteriovenous 
malformations or 
brachiocephalic artery 
stenosis. The data 
measurements took 
place in supine position 
under normocapnia (5% 
CO2) and hypocapnia. 

better than 
SFTF. 

value=0.035) and the right (p-
value=0.041) for CWT in hypocapnia. 
• It was concluded that the CWT model 
enabled enhancing non-invasiveness in 
real time, assessing state of a patient in 
the norm and identifying CA disorders in 
group of patients. 

Swiercz 
et al., 
1998 [77] 

Prediction of ICP 
trends and 
detection of 
unfavorable 
symptom 
configuration in 
neurosurgical 
patients was 
assessed. 

Subject Characteristics: 
Patients with 
intracerebral 
hemorrhage or brain 
tumor 
Number of subjects: 
>60 
Subject demographics: 
NA 
 
Experimental 
conditions: 
Data was extracted 
retrospectively from a 
database. 

Cerebral 
Physiology:  
ICP  

10-sec ANN, ARX 
and Kalman 
filtering 

ANN was 
observed to 
have better 
prediction 
accuracy 
than 
traditional 
ARX 
predictors 
and Kalman 
filtering. 

• ANN was proved to be a good tool for 
modelling nonlinear and non-stationary 
processes generating the ICP signal. 
• It was suggested that the accuracy of 
the ANN predictor could be improved 
with further ICP recordings. 

Swiercz 
et al., 
2000 [78] 

The efficiency of 
the neural 
models 
combined with 
newer signal 
processing 
algorithms was 
assessed in 
prediction of on-
line ICP values 

Subject Characteristics: 
Patients with 
intracerebral 
hemorrhage or TBI 
Subject demographics: 
NA 
 
Experimental 
conditions: 

Cerebral 
Physiology:  
ICP 
 

10-sec ANN with 
wavelet 
decompositio
n and AR 
with Kalman 
filtering 

ANN 
combined 
with wavelet 
decompositi
on to pre-
process the 
ICP data 
achieved the 
best 
prediction 
accuracy. 

• ANN had better performance (arv 
coefficient of 0.62, MAE=3.21%) than 
AR with Kalman filtering (arv 
coefficient of 0.75, MAE=3.72%). 
• The results showed that the ANN 
model was able to predict changes in 
ICP quite well except for the rapid 
changes in ICP. 
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on 10-sec 
intervals. 

Data was extracted 
retrospectively from a 
database. 

Tsui et 
al., 1995 
[79] 

ICP was 
predicted in both 
long term and 
short term in 32-
sec, 64-sec and 
5-min intervals. 

Subject Characteristics: 
TBI patients 
Number of subjects: NA 
Subject demographics: 
NA 
 
Experimental 
conditions: 
Data was extracted 
retrospectively from a 
database. 

Cerebral 
Physiology:  
ICP 

2-sec MDP and 
RNN 

ICP 
prediction 
by MDP 
provided 
better 
prediction 
performance 
and 
prediction 
accuracy 
than RNN. 

• MDP model predicted ICP dynamics 
and trained in 20 minutes with 32-sec 
and 64-sec resolutions compared to the 
RNN model which couldn’t capture the 
natural dynamics in ICP data and 
completed training with 5-min data 
resolution approximately in a day.  

Wijayatu
nga et al., 
2022 [80] 

For prediction of 
individual ICU 
patient’s future 
ICP levels within 
each 10-min 
interval of the 
past hour, a 
probabilistic 
model was 
developed. 

Subject Characteristics: 
Severe TBI patients 
Number of subjects: 29 
Subject demographics: 
22 male/7 female 
Age range: 20-80 years 
Mean age: 56 years 
 
Experimental 
conditions: 
The patients who had 
pre-existing 
neurological disorders 
were excluded from the 
study. The patients were 
sedated and 
mechanically ventilated. 

Cerebral 
Physiology: 
ICP 

1-min Probabilistic 
Markov 
model and 
six different 
AR models 

Probabilistic 
model and 
AR models 
had similar 
performance 
to an extent, 
however, 
probabilistic 
model had 
better 
performance 
at predicting 
dangerously 
high ICP 
values. 

• The model was able to predict future 
ICP values of 20 mmHg or more with 
high specificity (0.94-0.95) and good to 
high sensitivity (0.73-0.87).  
• Similar specificity (0.90-0.95) and 
sensitivity (0.73-0.89) values were 
obtained when leave-one-out cross-
validation was applied, and the model 
was evaluated with individual patient 
data. 
• Six different AR models were applied 
to six different intervals and achieved 
0.84-0.98 specificity and 0.65-0.81 
sensitivity, achieving similar 
performance as the probabilistic model 
to an extent. 

Zeiler et 
al., 2018 
[81] 

For estimation of 
PRx using TCD 
based indices 
over a minute-
by-minute 
interval, it was 
aimed to derive 
ARIMA based 
LME models 
generated for 

Subject Characteristics: 
Mild to severe TBI 
patients 
Number of subjects: 
347 
Subject demographics: 
250 male/97 female 
Mean age: 33.7±16.4 
years 
 

Cerebral 
Physiology:  
ICP was monitored 
with an 
intraparenchymal 
strain gauge probe. 
CBFv was monitored 
with a TCD probe. 
DFv and MFv were 
calculated from 
CBFv. SFv was 

10-sec LME with 
ARIMA for 
Sx_a, Mx_a, 
and Dx_a 
models 
 
 

PRx~Sx_a 
and 
PRx~Sx_a+
Mx_a LME 
models had 
the best 
performance 
among all 
generated 
ARIMA 
models 

• Best correlation between estimated and 
observed PRx values were obtained by 
PRx~Sx_a LME model with a 
correlation of 0.794 (p-value<0.0001, 
CInt=0.788 to 0.799) and 
PRx~Sx_a+Mx_a LME model with a 
correlation of 0.814 (p-value<0.0001, 
CIint=0.809 to 0.819). 
• It was concluded that PRx could be 
estimated by ARIMA based LME 
models using TCD based indices. 
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each patient and 
for entire cohort. 

Experimental 
conditions: 
Data was extracted 
retrospectively from a 
database. 

determined from 
maximum flow 
velocity. 
(CPP = MABP - ICP) 
 
Other:  
ABP was recorded 
with pressure 
transducers through 
either radial or 
femoral arterial lines. 

embedded in 
LME. 

Zeiler et 
al., 2019 
[82] 

PRx was aimed 
to be predicted 
using TCD based 
indices over a 
minute-by-
minute interval 
with separate 
ARIMA based 
LME models 
generated for 
each patient. 

Subject Characteristics: 
Moderate to severe TBI 
patients 
Number of subjects: 10 
Subject demographics: 
8 male/2 female 
Mean age: 34.5±17.0 
years 
 
Experimental 
conditions: 
Data was extracted 
retrospectively from a 
database. The patients 
depending on the 
severity of their TBI 
were intubated and 
sedated. 

Cerebral 
Physiology:  
ICP was monitored 
with an 
intraparenchymal 
strain gauge probe. 
CBFv was monitored 
with a TCD probe. 
SFv and MFv were 
calculated from 
CBFv. PRx was 
calculated from 
MABP and ICP. 
Mx_a was correlated 
from MFv and 
MABP. Sx_a was 
correlated from SFv 
and MABP. 
(CPP = MABP – 
ICP) 
 
Other:  
ABP was recorded 
with pressure 
transducers through 
either radial or 
femoral arterial lines. 

10-sec LME with 
ARIMA 
model 

PRx~Sx_a 
and 
PRx~Sx_a+
Mx_a LME 
models had 
the best 
performance 
among 16 
generated 
ARIMA 
models 
embedded in 
LME. 

• Strong correlation between the 
estimated and observed values of PRx 
was found with the LME models of 
PRx~Sx_a with a value of 0.998 (95% 
CInt = 0.990 – 0.999; p-value<0.0001) 
and PRx~Sx_a+Mx_a with a value of 
0.997 (95% CInt = 0.988 – 0.999; p-
value<0.0001) in the training set. 
• Moderate correlation between the 
predicted and observed PRx values was 
also found with the PRx~Sx_a with a 
value of 0.797 (95% CInt = 0.336 – 
0.949; p-value=0.006) and 
PRx~Sx_a+Mx_a with a value of 0.763 
(95% CInt = 0.258 – 0.941; p-
value=0.011) LME models with testing 
set. 
• It was concluded that PRx prediction 
using TCD derived indices was 
attainable using ARIMA and LME 
modelling. 

Zhang et 
al., 2011 
[83] 

Prediction of ICP 
on 15-min, 30-
min and 45-min 
future intervals 

Subject Characteristics: 
Severe TBI patients 
Number of subjects: 53  

Cerebral 
Physiology:  
ICP was measured 
with a fibre-optic 

100 Hz ANNNARX-
MFA, 
ANNNAR and 
ARMA 

ANNNARX-
MFA 
outperforme
d ANNNAR 

• It was observed that ANNNARX-MFA 
showed the best performance in all 
future prediction intervals (R2; T15-

min=0.93, T30-min=0.81, T45-min=0.56) 
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were examined 
with a proposed 
ANNNARX-MFA 
model and 
compared to 
ANNNAR and 
ARMA models. 

Subject demographics: 
42 male/11 female 
 
Experimental 
conditions: 
Data was extracted 
retrospectively from a 
database. 

intraparenchymal 
gauge 

consistently 
in 
performance
. 

compared to ANNNAR (R2; T15-min=0.88, 
T30-min=0.73, T45-min=0.43) and ARMA 
(R2; T15-min=0.76, T30-min=0.61, T45-

min=0.28). 

Zhang et 
al., 2012 
[84] 

For continuous 
trend prediction 
of ICP, an 
ARIMA method 
with orders 
selection 
predicted on 
PACF and ACF 
were examined 
and compared 
with ARIMA 
based on AIC 
and ANN. 

Subject Characteristics: 
TBI patients 
Number of subjects: 27 
Subject demographics: 
NA 
 
Experimental 
conditions: 
Data was extracted 
retrospectively from a 
database. 

Cerebral 
Physiology:  
ICP was measured 
with a fiber-optic 
intraparenchymal 
gauge. 

1-sec ARIMA 
based on 
PACF and 
ACF, 
ARIMA 
based on 
AIC, and 
ANN 

Order 
selection 
predicted on 
PACF and 
ACF 
significantly 
improved 
the accuracy 
of ARIMA 
model with 
shorter 
prediction 
processing 
time 
compared to 
other two 
models. 

• The accuracy of ARIMA based on 
PACF and ACF was higher (mean 
R2=0.898) than ANN (mean R2=0.804) 
and ARIMA based on AIC (mean 
R2=0.712). ARIMA based on PACF and 
ACF also had shorter processing time for 
ICP forecasting. 

ABP, arterial blood pressure; ACF, autocorrelation function; AdaBoost, adaptive boosting; AIC, Akaike information criterion; ANN, artificial neural network; ANNNARX, 
nonlinear autoregressive with exogenous input artificial neural network, ANNNARX-MFA, nonlinear autoregressive with exogenous input artificial neural network based mean 
forecast algorithm; AR, autoregressive; ARIMA, autoregressive integrative moving average; ARMA, autoregressive moving average; ARMAX, autoregressive moving average 
with exogenous input; AR-OR, autoregressive ordinal-regression; ARX, autoregressive with exogenous input; AS, arterial stenosis; AUC, area under the curve, AVM, 
arteriovenous malformations; BP, blood pressure; CA, cerebral autoregulation; CBFv, cerebral blood flow velocity; CInt, confidence interval; CPP, cerebral perfusion 
pressure; CRASH, corticosteroid randomisation after significant head injury; CWT, cross-wavelet transform; DEKF, dual extended Kalman filter; DFv, diastolic flow velocity; 
Dx_a, diastolic flow index; ECG, electrocardiography; EtCO2, end-tidal carbon dioxide; ETS, exponential smoothing; ExtraTrees, extremely randomized decision trees; 
GHW, generalized harmonic wavelets; GP, Gaussian processes; HF, high frequency; HR, heart rate; Hz, Hertz, ICP, intracranial pressure; ICU, intensive care unit; IMPACT, 
international mission for prognosis and clinical trial; IMPFA, intrinsic multiscale pressure-flow analysis; LET, Laguerre expansion technique; LF, low frequency; LGBM, 
light gradient boosting model; LME, linear mixed effects; MABP, mean arterial blood pressure; MCA, middle cerebral arterial; MDP, multiresolution dynamic predictor; 
MFv, mean flow velocity; MMPF, multimodal pressure-flow analysis; Mx_a, mean flow index; NA, not available; NMSE, normalized mean square error; PACF, partial 
autocorrelation function; PbtO2, cerebral tissue oxygen; PCA, posterior cerebral artery; PCAv, posterior cerebral artery velocity; PRx, pressure reactivity index; R2, 
coefficient of determination; RNN, recurrent neural network; RRSE, root relative squared error; SaO2, arterial oxygen saturation; SFv, systolic flow velocity; STFT, short-
time Fourier transform; SVM, support vector machine; Sx_a, systolic flow index; T, time; TBI, traumatic brain injury; TCD, transcranial Doppler; TFA, transfer function 
analysis; VLF, very low frequency; VAR, vector autoregressive; XGBoost; extreme gradient boosting  
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Table B8: Summary of studies for animal subjects 

Article Aim of the 
Study 

Demographics & 
Experimental Conditions 

Physiological 
Data & 
Measurement 
Methods 

Data 
Resolution 

Method(s) 
of  
Time-
Series 
Modelling 

Model 
Evaluation 

Study Results and Conclusions Regarding 
Cerebral Physiologic Signal Modelling 

Alexandr
in, 2010 
[85] 

The 
myogenic 
response of 
pial 
arterioles in 
situ was 
examined 
during CBF 
autoregulatio
n. 

Subject Characteristics: 
Albino mature outbred male 
rats 
Weight: 260-300 g 
Number of subjects: NA 
 
Experimental conditions: 
The rats were narcotized with 
chloral hydrate, 
intraperitoneally. Both femoral 
arteries of the rats are isolated 
and catheterized after 
administration of heparin. 
Negative images were used to 
measure the inner diameter of 
the arterioles. Pial arteries 
through the dura matter were 
monitored. 

Cerebral 
Physiology:  
CBF were 
measured with a 
laser Doppler 
flowmetry 
before and after 
blood loss. 
 
Other:  
SBP, blood loss 

600-sec Wavelet 
analysis 

No model 
performance 
was 
evaluated. 

• It was observed the arterioles diameter 
significantly increased with drop in BP 
whereas a significant change in the relative 
tension of the vessel walls were observed 
only after systemic BP drop to 38 mmHg 
which resulted in failure of autoregulation of 
CBF. 
• No change in myogenic component while 
the CBF oscillation increased with respect to 
decrease in the systemic BP with blood loss 
proved the effect of reduced perfusion 
pressure on the vessel wall tension. 
• Wavelet analysis of CBF oscillation 
revealed an augmentation in oscillation 
amplitude while the myogenic response in 
autoregulation remained unaltered. 
• The study results suggested that the 
myogenic reaction plays an important role in 
autoregulation of CBF. 

Doblar et 
al., 1979 
[86] 

The impact 
of hypoxia 
on the 
dynamic 
characteristic
s of the 
cerebrovascu
lar response 
was analyzed 
with Fourier 
analysis. 

Subject Characteristics: 
Goats 
Weight: 25-40 kg 
Number of subjects: 3 
 
Experimental conditions: 
The goats were anesthetized 
and paralyzed with thiopental 
sodium and pancuronium 
bromide, respectively, and 
intubated using endotracheal 
tubes. 
The applied stimuli frequencies 
ranged between 0.001 to 0.05 
Hz. 

Cerebral 
Physiology:  
CBF was 
measured by an 
electromagnetic 
flow probe 
placed on the 
internal 
maxillary artery. 
 
Other:  
SaO2 was 
measured by 
dual flow 
cuvette oximeter 
placed in 

0.05 Hz 
 

Fourier 
analysis 

No model 
performance 
was 
evaluated. 

• The findings suggested a possibility for 
some relation between phasic changes in 
blood pressure and phasic CBF response to 
hypoxia in mid-frequencies and no relation at 
lower and higher frequencies. 
• Using normalized data, it was suggested 
that the cerebrovascular response to hypoxia 
could be considered a first-order function 
considering the limitations of the analysis.  
• Results of the harmonic analysis suggested 
that at low and high frequencies, observed 
sinusoidal responses in CBF were unlikely to 
be result of the changes in blood pressure.  
• It was concluded the main cause of the 
CBF response to sinusoidal hypoxia to be 
unrelated to the changes in blood pressure. 



46 
 

arteriovenous 
shunt.  

Issam et 
al., 2019 
[87] 

The 
influence of 
the 
psychosomat
ic factor on 
the 
regulation of 
CBFv in 
response to 
emotional 
stress was 
analyzed. 
 

Subject Characteristics: 
Wistar male rats 
Weight: 230-250 g 
Number of subjects: 15 
 
Experimental conditions: 
The rats were anesthetized with 
isoflurane for the catheter 
implantation. A total of three 
catheters were implanted: one 
in the distal abdominal aorta 
and two in the inferior vena 
cava. Air stream was sent to 
the cage to generate emotional 
stress in the rats. 

Cerebral 
Physiology:  
CBFv was 
recorded with a 
TCD probe. 
 
Other:  
BP was 
measured by the 
arterial catheter. 
HR was 
calculated with 
FFT. 

20 Hz Cross-
spectral 
analysis 

No model 
performance 
was 
evaluated. 

• The study results showed that the air jet 
causing high-intensity emotional stress 
significantly resulted in rising blood pressure 
and vasoconstriction of brain circulation. 
• An increase in the variability of carotid 
blood flow and carotid vascular conductance 
during stress was observed with cross-
spectral analysis compared to baseline state. 
• It was concluded that the air-jet stress could 
cause hypertensive overload in the case of a 
failure in the baroreflex mechanism 
compromising the brain circulation 
mechanism and could consequently result in 
a stroke. 

Zheng 
and 
Mayhew, 
2009 [88] 

The CBF-
CBV 
coupling 
with respect 
to visco-
elastic 
properties of 
the blood 
vessels was 
modelled.  

Subject Characteristics: 
Female hooded Lister rats 
Weight: 250-400 g 
Number of subjects: 5 
 
Experimental conditions: 
The rats were anesthetized with 
urethane and atropine. A slit 
spectrograph mounted camera 
and a laser-Doppler flowmeter 
probe were placed over the 
whisker barrel of a rat. 

Cerebral 
Physiology:  
CBF was 
measured by the 
laser Doppler 
flowmeter. CBV 
was obtained via 
optical imaging 
spectroscopy. 

7.5 Hz 
 

VW model 
and EW 
model 

The VW 
model 
outperforme
d the EW 
model at 
predicting 
the CBV 
time-series. 

• The variation of the difference between 
time-series of CBF and CBV were captured 
by the values of the two compliance 
parameters in VW model. 
• The VW model was shown to successfully 
simulate the relationship between the CBF 
and CBV time-series via a first order 
nonlinear time-invariant dynamic system. 

BP, blood pressure; CBF, cerebral blood flow; CBV, cerebral blood volume; EW, elastic windkessel; FFT, fast Fourier transform; HR, heart rate; Hz, Hertz; NA, not 
available; SaO2, arterial oxygen saturation; SBP, systemic blood pressure; TCD, transcranial Doppler; VW, visco-elastic windkessel



47 
 

REFERENCES 
1.  Brown, C.M.; Dütsch, M.; Öhring, S.; Neundörfer, B.; Hilz, M.J. Cerebral Autoregulation Is Compromised during 

Simulated Fluctuations in Gravitational Stress. Eur J Appl Physiol 2004, 91, 279–286, doi:10.1007/s00421-003-0965-
5. 

2.  Katsogridakis, E.; Simpson, D.M.; Bush, G.; Fan, L.; Birch, A.A.; Allen, R.; Potter, J.F.; Panerai, R.B. Revisiting the 
Frequency Domain: The Multiple and Partial Coherence of Cerebral Blood Flow Velocity in the Assessment of 
Dynamic Cerebral Autoregulation. Physiol. Meas. 2016, 37, 1056, doi:10.1088/0967-3334/37/7/1056. 

3.  Kuo, T.B.-J.; Chern, C.-M.; Sheng, W.-Y.; Wong, W.-J.; Hu, H.-H. Frequency Domain Analysis of Cerebral Blood 
Flow Velocity and Its Correlation with Arterial Blood Pressure. J Cereb Blood Flow Metab 1998, 18, 311–318, 
doi:10.1097/00004647-199803000-00010. 

4.  Peng, T.; Rowley, A.B.; Ainslie, P.N.; Poulin, M.J.; Payne, S.J. Multivariate System Identification for Cerebral 
Autoregulation. Ann Biomed Eng 2008, 36, 308–320, doi:10.1007/s10439-007-9412-9. 

5.  Ainslie, P.N.; Barach, A.; Murrell, C.; Hamlin, M.; Hellemans, J.; Ogoh, S. Alterations in Cerebral Autoregulation 
and Cerebral Blood Flow Velocity during Acute Hypoxia: Rest and Exercise. American Journal of Physiology-Heart 
and Circulatory Physiology 2007, 292, H976–H983, doi:10.1152/ajpheart.00639.2006. 

6.  Claassen, J.A.H.R.; Levine, B.D.; Zhang, R. Dynamic Cerebral Autoregulation during Repeated Squat-Stand 
Maneuvers. Journal of Applied Physiology 2009, 106, 153–160, doi:10.1152/japplphysiol.90822.2008. 

7.  Iwasaki, K.; Ogawa, Y.; Shibata, S.; Aoki, K. Acute Exposure to Normobaric Mild Hypoxia Alters Dynamic 
Relationships between Blood Pressure and Cerebral Blood Flow at Very Low Frequency. J Cereb Blood Flow Metab 
2007, 27, 776–784, doi:10.1038/sj.jcbfm.9600384. 

8.  Oudegeest-Sander, M.H.; van Beek, A.H.E.A.; Abbink, K.; Olde Rikkert, M.G.M.; Hopman, M.T.E.; Claassen, 
J.A.H.R. Assessment of Dynamic Cerebral Autoregulation and Cerebrovascular CO2 Reactivity in Ageing by 
Measurements of Cerebral Blood Flow and Cortical Oxygenation. Experimental Physiology 2014, 99, 586–598, 
doi:10.1113/expphysiol.2013.076455. 

9.  Panerai, R.B.; Haunton, V.J.; Llwyd, O.; Minhas, J.S.; Katsogridakis, E.; Salinet, A.S.; Maggio, P.; Robinson, T.G. 
Cerebral Critical Closing Pressure and Resistance-Area Product: The Influence of Dynamic Cerebral Autoregulation, 
Age and Sex. J Cereb Blood Flow Metab 2021, 41, 2456–2469, doi:10.1177/0271678X211004131. 

10.  Smirl, J.D.; Haykowsky, M.J.; Nelson, M.D.; Tzeng, Y.-C.; Marsden, K.R.; Jones, H.; Ainslie, P.N. Relationship 
Between Cerebral Blood Flow and Blood Pressure in Long-Term Heart Transplant Recipients. Hypertension 2014, 
64, 1314–1320, doi:10.1161/HYPERTENSIONAHA.114.04236. 

11.  Zhang, R.; Zuckerman, J.H.; Giller, C.A.; Levine, B.D. Transfer Function Analysis of Dynamic Cerebral  
Autoregulation in Humans. American Journal of Physiology-Heart and Circulatory Physiology 1998, 274, H233–
H241, doi:10.1152/ajpheart.1998.274.1.H233. 

12.  Addison, P.S. Identifying Stable Phase Coupling Associated with Cerebral Autoregulation Using the 
Synchrosqueezed Cross-Wavelet Transform and Low Oscillation Morlet Wavelets. In Proceedings of the 2015 37th 
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); August 2015; 
pp. 5960–5963. 

13.  Bu, L.; Li, J.; Li, F.; Liu, H.; Li, Z. Wavelet Coherence Analysis of Cerebral Oxygenation Signals Measured by Near-
Infrared Spectroscopy in Sailors: An Exploratory, Experimental Study. BMJ Open 2016, 6, e013357, 
doi:10.1136/bmjopen-2016-013357. 

14.  Bu, L.; Zhang, M.; Li, J.; Li, F.; Liu, H.; Li, Z. Effects of Sleep Deprivation on Phase Synchronization as Assessed 
by Wavelet Phase Coherence Analysis of Prefrontal Tissue Oxyhemoglobin Signals. PLOS ONE 2017, 12, e0169279, 
doi:10.1371/journal.pone.0169279. 

15.  Bu, L.; Wang, D.; Huo, C.; Xu, G.; Li, Z.; Li, J. Effects of Poor Sleep Quality on Brain Functional Connectivity 
Revealed by Wavelet-Based Coherence Analysis Using NIRS Methods in Elderly Subjects. Neuroscience Letters 
2018, 668, 108–114, doi:10.1016/j.neulet.2018.01.026. 

16.  Cui, R.; Zhang, M.; Li, Z.; Xin, Q.; Lu, L.; Zhou, W.; Han, Q.; Gao, Y. Wavelet Coherence Analysis of Spontaneous 
Oscillations in Cerebral Tissue Oxyhemoglobin Concentrations and Arterial Blood Pressure in Elderly Subjects. 
Microvascular Research 2014, 93, 14–20, doi:10.1016/j.mvr.2014.02.008. 

17.  Li, Z.; Zhang, M.; Cui, R.; Xin, Q.; Liqian, L.; Zhou, W.; Han, Q.; Gao, Y. Wavelet Coherence Analysis of Prefrontal 
Oxygenation Signals in Elderly Subjects with Hypertension. Physiol. Meas. 2014, 35, 777, doi:10.1088/0967-
3334/35/5/777. 



48 
 

18.  Saleem, S.; Teal, P.D.; Kleijn, W.B.; Ainslie, P.N.; Tzeng, Y.-C. Identification of Human Sympathetic Neurovascular 
Control Using Multivariate Wavelet Decomposition Analysis. American Journal of Physiology-Heart and 
Circulatory Physiology 2016, 311, H837–H848, doi:10.1152/ajpheart.00254.2016. 

19.  Tan, Q.; Zhang, M.; Wang, Y.; Zhang, M.; Wang, B.; Xin, Q.; Li, Z. Age-Related Alterations in Phase 
Synchronization of Oxyhemoglobin Concentration Changes in Prefrontal Tissues as Measured by near-Infrared 
Spectroscopy Signals. Microvascular Research 2016, 103, 19–25, doi:10.1016/j.mvr.2015.10.002. 

20.  Wang, B.; Zhang, M.; Bu, L.; Xu, L.; Wang, W.; Li, Z. Posture-Related Changes in Brain Functional Connectivity as 
Assessed by Wavelet Phase Coherence of NIRS Signals in Elderly Subjects. Behavioural Brain Research 2016, 312, 
238–245, doi:10.1016/j.bbr.2016.06.037. 

21.  Clough, R.H.; Minhas, J.S.; Haunton, V.J.; Hanby, M.F.; Robinson, T.G.; Panerai, R.B. Dynamics of the Cerebral 
Autoregulatory Response to Paced Hyperventilation Assessed Using Subcomponent and Time-Varying Analyses. 
Journal of Applied Physiology 2022, 133, 311–319, doi:10.1152/japplphysiol.00100.2022. 

22.  Edwards, M.R.; Devitt, D.L.; Hughson, R.L. Two-Breath CO2 Test Detects Altered Dynamic Cerebrovascular 
Autoregulation and CO2 Responsiveness with Changes in Arterial Pco2. American Journal of Physiology-Regulatory, 
Integrative and Comparative Physiology 2004, 287, R627–R632, doi:10.1152/ajpregu.00384.2003. 

23.  Panerai, R.B.; Salinet, A.S.M.; Robinson, T.G. Contribution of Arterial Blood Pressure and PaCO2 to the 
Cerebrovascular Responses to Motor Stimulation. American Journal of Physiology-Heart and Circulatory Physiology 
2012, 302, H459–H466, doi:10.1152/ajpheart.00890.2011. 

24.  Gehalot, P.; Mathew, A.; Behbehani, K.; Zhang, R. Efficacy of Using Mean Arterial Blood Pressure Sequence for 
Linear Modeling of Cerebral Autoregulation. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 
27th Annual Conference; January 2005; pp. 5619–5622. 

25.  Liu, Y.; Allen, R. Analysis of Dynamic Cerebral Autoregulation Using an ARX Model Based on Arterial Blood 
Pressure and Middle Cerebral Artery Velocity Simulation. Med. Biol. Eng. Comput. 2002, 40, 600–605, 
doi:10.1007/BF02345461. 

26.  Liu, Y.; Birch, A.A.; Allen, R. Dynamic Cerebral Autoregulation Assessment Using an ARX Model: Comparative 
Study Using Step Response and Phase Shift Analysis. Medical Engineering & Physics 2003, 25, 647–653, 
doi:10.1016/S1350-4533(03)00015-8. 

27.  Chacon, M.; Araya, C.; Panerai, R.B. Non-Linear Multivariate Modeling of Cerebral Hemodynamics with 
Autoregressive Support Vector Machines. Medical Engineering & Physics 2011, 33, 180–187, 
doi:10.1016/j.medengphy.2010.09.023. 

28.  Chacón, M.; Jara, J.L.; Miranda, R.; Katsogridakis, E.; Panerai, R.B. Non-Linear Models for the Detection of Impaired 
Cerebral Blood Flow Autoregulation. PLOS ONE 2018, 13, e0191825, doi:10.1371/journal.pone.0191825. 

29.  Chacón, M.; Rojas-Pescio, H.; Peñaloza, S.; Landerretche, J. Machine Learning Models and Statistical Complexity 
to Analyze the Effects of Posture on Cerebral Hemodynamics. Entropy 2022, 24, 428, doi:10.3390/e24030428. 

30.  Edwards, M.R.; Lin, D.C.; Hughson, R.L. Modeling the Interaction Between Perfusion Pressure and CO2 on Cerebral 
Blood Flow. In Frontiers in Modeling and Control of Breathing: Integration at Molecular, Cellular, and Systems 
Levels; Poon, C.-S., Kazemi, H., Eds.; Advances in Experimental Medicine and Biology; Springer US: Boston, MA, 
2001; pp. 285–290 ISBN 978-1-4615-1375-9. 

31.  Kostoglou, K.; Debert, C.T.; Poulin, M.J.; Mitsis, G.D. Nonstationary Multivariate Modeling of Cerebral 
Autoregulation during Hypercapnia. Medical Engineering & Physics 2014, 36, 592–600, 
doi:10.1016/j.medengphy.2013.10.011. 

32.  Marmarelis, V.Z.; Shin, D.C.; Zhang, R. Linear and Nonlinear Modeling of Cerebral Flow Autoregulation Using 
Principal Dynamic Modes. Open Biomedical Engineering Journal 2012, 6, 42–55, 
doi:10.2174/1874230001206010042. 

33.  Marmarelis, V.Z.; Mitsis, G.D.; Shin, D.C.; Zhang, R. Multiple-Input Nonlinear Modelling of Cerebral 
Haemodynamics Using Spontaneous Arterial Blood Pressure, End-Tidal CO2 and Heart Rate Measurements. 
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2016, 374, 
20150180, doi:10.1098/rsta.2015.0180. 

34.  Mitsis, G.D.; Poulin, M.J.; Robbins, P.A.; Marmarelis, V.Z. Nonlinear Modeling of the Dynamic Effects of Arterial 
Pressure and CO/Sub 2/ Variations on Cerebral Blood Flow in Healthy Humans. IEEE Transactions on Biomedical 
Engineering 2004, 51, 1932–1943, doi:10.1109/TBME.2004.834272. 

35.  Mitsis, G.D.; Zhang, R.; Levine, B.D.; Marmarelis, V.Z. Cerebral Hemodynamics during Orthostatic Stress Assessed 
by Nonlinear Modeling. Journal of Applied Physiology 2006, 101, 354–366, doi:10.1152/japplphysiol.00548.2005. 



49 
 

36.  Panerai, R.B.; Dawson, S.L.; Potter, J.F. Linear and Nonlinear Analysis of Human  Dynamic Cerebral Autoregulation. 
American Journal of Physiology-Heart and Circulatory Physiology 1999, 277, H1089–H1099, 
doi:10.1152/ajpheart.1999.277.3.H1089. 

37.  Panerai, R.B.; Chacon, M.; Pereira, R.; Evans, D.H. Neural Network Modelling of Dynamic Cerebral Autoregulation: 
Assessment and Comparison with Established Methods. Medical Engineering & Physics 2004, 26, 43–52, 
doi:10.1016/j.medengphy.2003.08.001. 

38.  Placek, M.M.; Wachel, P.; Iskander, D.R.; Smielewski, P.; Uryga, A.; Mielczarek, A.; Szczepański, T.A.; 
Kasprowicz, M. Applying Time-Frequency Analysis to Assess Cerebral Autoregulation during Hypercapnia. PLOS 
ONE 2017, 12, e0181851, doi:10.1371/journal.pone.0181851. 

39.  Czosnyka, M.; Guazzo, E.; Whitehouse, M.; Smielewski, P.; Czosnyka, Z.; Kirkpatrick, P.; Piechnik, S.; Pickard, 
J.D. Significance of Intracranial Pressure Waveform Analysis after Head Injury. Acta neurochir 1996, 138, 531–542, 
doi:10.1007/BF01411173. 

40.  Elixmann, I.M.; Hansinger, J.; Goffin, C.; Antes, S.; Radermacher, K.; Leonhardt, S. Single Pulse Analysis of 
Intracranial Pressure for a Hydrocephalus Implant. In Proceedings of the 2012 Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society; August 2012; pp. 3939–3942. 

41.  Giller, C.; Gerardo lacopino, D. Use of Middle Cerebral Velocity and Blood Pressure for the Analysis of Cerebral 
Autoregulation at Various Frequencies: The Coherence Index. Neurological Research 1997, 19, 634–640, 
doi:10.1080/01616412.1997.11740873. 

42.  Li, W.; Zhang, M.; Huo, C.; Xu, G.; Chen, W.; Wang, D.; Li, Z. Time-Evolving Coupling Functions for Evaluating 
the Interaction between Cerebral Oxyhemoglobin and Arterial Blood Pressure with Hypertension. Medical Physics 
2021, 48, 2027–2037, doi:10.1002/mp.14627. 

43.  Liu, Q.; Wang, B.; Liu, Y.; Lv, Z.; Li, W.; Li, Z.; Fan, Y. Frequency-Specific Effective Connectivity in Subjects with 
Cerebral Infarction as Revealed by NIRS Method. Neuroscience 2018, 373, 169–181, 
doi:10.1016/j.neuroscience.2018.01.007. 

44.  Martinez-Tejada, I.; Czosnyka, M.; Czosnyka, Z.; Juhler, M.; Smielewski, P. Causal Relationship between Slow 
Waves of Arterial, Intracranial Pressures and Blood Velocity in Brain. Computers in Biology and Medicine 2021, 
139, 104970, doi:10.1016/j.compbiomed.2021.104970. 

45.  Caldas, J.R.; Panerai, R.B.; Bor-Seng-Shu, E.; Almeida, J.P.; Ferreira, G.S.R.; Camara, L.; Nogueira, R.C.; Oliveira, 
M.L.; Jatene, F.B.; Robinson, T.G.; et al. Cerebral Hemodynamics with Intra-Aortic Balloon Pump: Business as 
Usual? Physiol. Meas. 2017, 38, 1349, doi:10.1088/1361-6579/aa68c4. 

46.  Haubrich, C.; Diehl, R.R.; Kasprowicz, M.; Diedler, J.; Sorrentino, E.; Smielewski, P.; Czosnyka, M. Increasing 
Intracranial Pressure After Head Injury: Impact on Respiratory Oscillations in Cerebral Blood Flow Velocity. In 
Intracranial Pressure and Brain Monitoring XV; Ang, B.-T., Ed.; Acta Neurochirurgica Supplement; Springer 
International Publishing: Cham, 2016; pp. 171–175 ISBN 978-3-319-22533-3. 

47.  Panerai, R.B.; Rennie, J.M.; Kelsall, A.W.R.; Evans, D.H. Frequency-Domain Analysis of Cerebral Autoregulation 
from Spontaneous Fluctuations in Arterial Blood Pressure. Med. Biol. Eng. Comput. 1998, 36, 315–322, 
doi:10.1007/BF02522477. 

48.  Sammons, E.L.; Samani, N.J.; Smith, S.M.; Rathbone, W.E.; Bentley, S.; Potter, J.F.; Panerai, R.B. Influence of 
Noninvasive Peripheral Arterial Blood Pressure Measurements on Assessment of Dynamic Cerebral Autoregulation. 
Journal of Applied Physiology 2007, 103, 369–375, doi:10.1152/japplphysiol.00271.2007. 

49.  Han, Q.; Zhang, M.; Li, W.; Gao, Y.; Xin, Q.; Wang, Y.; Li, Z. Wavelet Coherence Analysis of Prefrontal Tissue 
Oxyhaemoglobin Signals as Measured Using Near-Infrared Spectroscopy in Elderly Subjects with Cerebral 
Infarction. Microvascular Research 2014, 95, 108–115, doi:10.1016/j.mvr.2014.08.001. 

50.  Kvandal, P.; Sheppard, L.; Landsverk, S.A.; Stefanovska, A.; Kirkeboen, K.A. Impaired Cerebrovascular Reactivity 
after Acute Traumatic Brain Injury Can Be Detected by Wavelet Phase Coherence Analysis of the Intracranial and 
Arterial Blood Pressure Signals. J Clin Monit Comput 2013, 27, 375–383, doi:10.1007/s10877-013-9484-z. 

51.  Tian, F.; Tarumi, T.; Liu, H.; Zhang, R.; Chalak, L. Wavelet Coherence Analysis of Dynamic Cerebral Autoregulation 
in Neonatal Hypoxic–Ischemic Encephalopathy. NeuroImage: Clinical 2016, 11, 124–132, 
doi:10.1016/j.nicl.2016.01.020. 

52.  Turalska, M.; Latka, M.; Czosnyka, M.; Pierzchala, K.; West, B.J. Generation of Very Low Frequency Cerebral Blood 
Flow Fluctuations in Humans. In Proceedings of the Acta Neurochirurgica Supplements; Steiger, H.-J., Ed.; Springer: 
Vienna, 2009; pp. 43–47. 

53.  Daley, M.L.; Leffler, C.W.; Czosnyka, M.; Pickard, J.D. Intracranial Pressure Monitoring: Modeling Cerebrovascular 
Pressure Transmission. In Proceedings of the Brain Edema XIII; Hoff, J.T., Keep, R.F., Xi, G., Hua, Y., Eds.; 
Springer: Vienna, 2006; pp. 103–107. 



50 
 

54.  Pinto, H.; Dias, C.; Rocha, A.P. Multiscale Information Decomposition of Long Memory Processes: Application to 
Plateau Waves of Intracranial Pressure. In Proceedings of the 2022 44th Annual International Conference of the IEEE 
Engineering in Medicine & Biology Society (EMBC); July 2022; pp. 1753–1756. 

55.  Thelin, E.P.; Raj, R.; Bellander, B.-M.; Nelson, D.; Piippo-Karjalainen, A.; Siironen, J.; Tanskanen, P.; Hawryluk, 
G.; Hasen, M.; Unger, B.; et al. Comparison of High versus Low Frequency Cerebral Physiology for Cerebrovascular 
Reactivity Assessment in Traumatic Brain Injury: A Multi-Center Pilot Study. J Clin Monit Comput 2020, 34, 971–
994, doi:10.1007/s10877-019-00392-y. 

56.  Zeiler, F.A.; Aries, M.; Cabeleira, M.; van Essen, T.A.; Stocchetti, N.; Menon, D.K.; Timofeev, I.; Czosnyka, M.; 
Smielewski, P.; Hutchinson, P.; et al. Statistical Cerebrovascular Reactivity Signal Properties after Secondary 
Decompressive Craniectomy in Traumatic Brain Injury: A CENTER-TBI Pilot Analysis. Journal of Neurotrauma 
2020, 37, 1306–1314, doi:10.1089/neu.2019.6726. 

57.  Zeiler, F.A.; Cabeleira, M.; Hutchinson, P.J.; Stocchetti, N.; Czosnyka, M.; Smielewski, P.; Ercole, A.; Anke, A.; 
Beer, R.; Bellander, B.-M.; et al. Evaluation of the Relationship between Slow-Waves of Intracranial Pressure, Mean 
Arterial Pressure and Brain Tissue Oxygen in TBI: A CENTER-TBI Exploratory Analysis. J Clin Monit Comput 
2021, 35, 711–722, doi:10.1007/s10877-020-00527-6. 

58.  Asgari, S.; Adams, H.; Kasprowicz, M.; Czosnyka, M.; Smielewski, P.; Ercole, A. Feasibility of Hidden Markov 
Models for the Description of Time-Varying Physiologic State After Severe Traumatic Brain Injury. Critical Care 
Medicine 2019, 47, e880, doi:10.1097/CCM.0000000000003966. 

59.  Chiu, C.-C.; Yeh, S.-J.; Li, T.-Y. Classification of Diabetics with Various Degrees of Autonomic Neuropathy Based 
on Linear and Nonlinear Features Using Support Vector Machine. In Proceedings of the Medical Biometrics; Zhang, 
D., Sonka, M., Eds.; Springer: Berlin, Heidelberg, 2010; pp. 42–51. 

60.  Mariak, Z.; Swiercz, M.; Krejza, J.; Lewko, J.; Lyson, T. Intracranial Pressure Processing with Artificial Neural 
Networks: Classification of Signal Properties. Acta Neurochir (Wien) 2000, 142, 407–412, 
doi:10.1007/s007010050450. 

61.  Megjhani, M.; Weiss, M.; Kwon, S.B.; Ford, J.; Nametz, D.; Kastenholz, N.; Fogel, H.; Velazquez, A.; Roh, D.; 
Agarwal, S.; et al. Vector Angle Analysis of Multimodal Neuromonitoring Data for Continuous Prediction of Delayed 
Cerebral Ischemia. Neurocrit Care 2022, 37, 230–236, doi:10.1007/s12028-022-01481-8. 

62.  Naraei, P.; Kenez, M.; Sadeghian, A. A Hybrid Wavelet Based K-Means Clustering Approach to Detect Intracranial 
Hypertension. In Proceedings of the 2017 IEEE Canada International Humanitarian Technology Conference (IHTC); 
July 2017; pp. 21–25. 

63.  Porta, A.; Fantinato, A.; Bari, V.; Gelpi, F.; Cairo, B.; Maria, B.D.; Bertoldo, E.G.; Fiolo, V.; Callus, E.; Vincentiis, 
C.D.; et al. Evaluation of the Impact of Surgical Aortic Valve Replacement on Short-Term Cardiovascular and 
Cerebrovascular Controls through Spontaneous Variability Analysis. PLOS ONE 2020, 15, e0243869, 
doi:10.1371/journal.pone.0243869. 

64.  Shaw, M.; Hawthorne, C.; Moss, L.; Kommer, M.; O’Kane, R.; Piper, I. Time Series Analysis and Prediction of 
Intracranial Pressure Using Time-Varying Dynamic Linear Models. In Intracranial Pressure and Neuromonitoring 
XVII; Depreitere, B., Meyfroidt, G., Güiza, F., Eds.; Acta Neurochirurgica Supplement; Springer International 
Publishing: Cham, 2021; pp. 225–229 ISBN 978-3-030-59436-7. 

65.  Sourina, O.; Ang, B.-T.; Nguyen, M.K. Fractal-Based Approach in Analysis of Intracranial Pressure (ICP) in Severe 
Head Injury. In Proceedings of the Proceedings of the 10th IEEE International Conference on Information Technology 
and Applications in Biomedicine; November 2010; pp. 1–4. 

66.  Farhadi, A.; Chern, J.J.; Hirsh, D.; Davis, T.; Jo, M.; Maier, F.; Rasheed, K. Intracranial Pressure Forecasting in 
Children Using Dynamic Averaging of Time Series Data. Forecasting 2019, 1, 47–58, doi:10.3390/forecast1010004. 

67.  Güiza, F.; Depreitere, B.; Piper, I.; Van den Berghe, G.; Meyfroidt, G. Novel Methods to Predict Increased Intracranial 
Pressure During Intensive Care and Long-Term Neurologic Outcome After Traumatic Brain Injury: Development 
and Validation in a Multicenter Dataset*. Critical Care Medicine 2013, 41, 554, 
doi:10.1097/CCM.0b013e3182742d0a. 

68.  Hu, K.; Lo, M.-T.; Peng, C.-K.; Liu, Y.; Novak, V. A Nonlinear Dynamic Approach Reveals a Long-Term Stroke 
Effect on Cerebral Blood Flow Regulation at Multiple Time Scales. PLOS Computational Biology 2012, 8, e1002601, 
doi:10.1371/journal.pcbi.1002601. 

69.  Jachan, M.; Reinhard, M.; Spindeler, L.; Hetzel, A.; Schelter, B.; Timmer, J. Parametric Versus Nonparametric 
Transfer Function Estimation of Cerebral Autoregulation from Spontaneous Blood-Pressure Oscillations. Cardiovasc 
Eng 2009, 9, 72–82, doi:10.1007/s10558-009-9072-5. 



51 
 

70.  Kostoglou, K.; Wright, A.D.; Smirl, J.D.; Bryk, K.; van Donkelaar, P.; Mitsis, G.D. Dynamic Cerebral Autoregulation 
in Young Athletes Following Concussion. In Proceedings of the 2016 38th Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society (EMBC); August 2016; pp. 696–699. 

71.  Miller, E.C.; Santos, K.R.M. dos; Marshall, R.S.; Kougioumtzoglou, I.A. Joint Time-Frequency Analysis of Dynamic 
Cerebral Autoregulation Using Generalized Harmonic Wavelets. Physiol. Meas. 2020, 41, 024002, doi:10.1088/1361-
6579/ab71f2. 

72.  Myers, R.B.; Lazaridis, C.; Jermaine, C.M.; Robertson, C.S.; Rusin, C.G. Predicting Intracranial Pressure and Brain 
Tissue Oxygen Crises in Patients With Severe Traumatic Brain Injury. Critical Care Medicine 2016, 44, 1754, 
doi:10.1097/CCM.0000000000001838. 

73.  Petrov, D.; Miranda, S.P.; Balu, R.; Wathen, C.; Vaz, A.; Mohan, V.; Colon, C.; Diaz-Arrastia, R. Prediction of 
Intracranial Pressure Crises after Severe Traumatic Brain Injury Using Machine Learning Algorithms. Journal of 
Neurosurgery 2023, 1, 1–8, doi:10.3171/2022.12.JNS221860. 

74.  Scalzo, F.; Hamilton, R.; Asgari, S.; Kim, S.; Hu, X. Intracranial Hypertension Prediction Using Extremely 
Randomized Decision Trees. Medical Engineering & Physics 2012, 34, 1058–1065, 
doi:10.1016/j.medengphy.2011.11.010. 

75.  Schäck, T.; Muma, M.; Feng, M.; Guan, C.; Zoubir, A.M. Robust Nonlinear Causality Analysis of Nonstationary 
Multivariate Physiological Time Series. IEEE Transactions on Biomedical Engineering 2018, 65, 1213–1225, 
doi:10.1109/TBME.2017.2708609. 

76.  Semenyutin, V.; Antonov, V.; Malykhina, G.; Salnikov, V. Investigation of Cerebral Autoregulation Using Time-
Frequency Transformations. Biomedicines 2022, 10, 3057, doi:10.3390/biomedicines10123057. 

77.  Swiercz, M.; Mariak, Z.; Lewko, J.; Chojnacki, K.; Kozlowski, A.; Piekarski, P. Neural Network Technique for 
Detecting Emergency States in Neurosurgical Patients. Med. Biol. Eng. Comput. 1998, 36, 717–722, 
doi:10.1007/BF02518874. 

78.  Swiercz, M.; Mariak, Z.; Krejza, J.; Lewko, J.; Szydlik, P. Intracranial Pressure Processing with Artificial Neural 
Networks: Prediction of ICP Trends. Acta Neurochir (Wien) 2000, 142, 401–406, doi:10.1007/s007010050449. 

79.  Tsui, F.-C.; Sun, M.; Li, C.-C.; Sclabassi, R.J. A Wavelet Based Neural Network for Prediction of ICP Signal. In 
Proceedings of the Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society; 
September 1995; Vol. 2, pp. 1045–1046 vol.2. 

80.  Wijayatunga, P.; Koskinen, L.-O.D.; Sundström, N. Probabilistic Prediction of Increased Intracranial Pressure in 
Patients with Severe Traumatic Brain Injury. Sci Rep 2022, 12, 9600, doi:10.1038/s41598-022-13732-x. 

81.  Zeiler, F.A.; Smielewski, P.; Donnelly, J.; Czosnyka, M.; Menon, D.K.; Ercole, A. Estimating Pressure Reactivity 
Using Noninvasive Doppler-Based Systolic Flow Index. Journal of Neurotrauma 2018, 35, 1559–1568, 
doi:10.1089/neu.2017.5596. 

82.  Zeiler, F.A.; Smielewski, P.; Stevens, A.; Czosnyka, M.; Menon, D.K.; Ercole, A. Non-Invasive Pressure Reactivity 
Index Using Doppler Systolic Flow Parameters: A Pilot Analysis. Journal of Neurotrauma 2019, 36, 713–720, 
doi:10.1089/neu.2018.5987. 

83.  Zhang, F.; Feng, M.; Pan, S.J.; Loy, L.Y.; Guo, W.; Zhang, Z.; Chin, P.L.; Guan, C.; King, N.K.K.; Ang, B.T. 
Artificial Neural Network Based Intracranial Pressure Mean Forecast Algorithm for Medical Decision Support. In 
Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 
August 2011; pp. 7111–7114. 

84.  Zhang, F.; Feng, M.; Loy, L.Y.; Zhang, Z.; Guan, C. Online ICP Forecast for Patients with Traumatic Brain Injury. 
In Proceedings of the Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012); 
November 2012; pp. 37–40. 

85.  Alexandrin, V.V. Relationship between Myogenic Reaction and Autoregulation of Cerebral Circulation. Bull Exp 
Biol Med 2010, 150, 168–171, doi:10.1007/s10517-010-1095-9. 

86.  Doblar, D.D.; Min, B.G.; Chapman, R.W.; Harback, E.R.; Welkowitz, W.; Edelman, N.H. Dynamic Characteristics 
of Cerebral Blood Flow Response to Sinusoidal Hypoxia. Journal of Applied Physiology 1979, 46, 721–729, 
doi:10.1152/jappl.1979.46.4.721. 

87.  Issam, N.; Raffaello, S.; Dafne, S.; Luigi, C.; Abdelkrim, T. A Simple Approach to Studying Cerebral Blood Flow 
during Psychological Stress. Naunyn-Schmiedeberg’s Arch Pharmacol 2019, 392, 505–509, doi:10.1007/s00210-
019-01638-x. 

88.  Zheng, Y.; Mayhew, J. A Time-Invariant Visco-Elastic Windkessel Model Relating Blood Flow and Blood Volume. 
NeuroImage 2009, 47, 1371–1380, doi:10.1016/j.neuroimage.2009.04.022. 

 


	SUPPLEMANTARY APPENDIX SB – Detailed Summary of the Systematic Review
	Table of Contents

	REFERENCES

