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Abstract: The modeling and forecasting of cerebral pressure–flow dynamics in the time–frequency
domain have promising implications for veterinary and human life sciences research, enhancing
clinical care by predicting cerebral blood flow (CBF)/perfusion, nutrient delivery, and intracranial
pressure (ICP)/compliance behavior in advance. Despite its potential, the literature lacks coherence
regarding the optimal model type, structure, data streams, and performance. This systematic scoping
review comprehensively examines the current landscape of cerebral physiological time-series model-
ing and forecasting. It focuses on temporally resolved cerebral pressure–flow and oxygen delivery
data streams obtained from invasive/non-invasive cerebral sensors. A thorough search of databases
identified 88 studies for evaluation, covering diverse cerebral physiologic signals from healthy volun-
teers, patients with various conditions, and animal subjects. Methodologies range from traditional
statistical time-series analysis to innovative machine learning algorithms. A total of 30 studies in
healthy cohorts and 23 studies in patient cohorts with traumatic brain injury (TBI) concentrated on
modeling CBFv and predicting ICP, respectively. Animal studies exclusively analyzed CBF/CBFv.
Of the 88 studies, 65 predominantly used traditional statistical time-series analysis, with transfer
function analysis (TFA), wavelet analysis, and autoregressive (AR) models being prominent. Among
machine learning algorithms, support vector machine (SVM) was widely utilized, and decision trees
showed promise, especially in ICP prediction. Nonlinear models and multi-input models were preva-
lent, emphasizing the significance of multivariate modeling and forecasting. This review clarifies
knowledge gaps and sets the stage for future research to advance cerebral physiologic signal analysis,
benefiting neurocritical care applications.

Keywords: cerebral physiologic signal analysis; cerebral pressure–flow dynamics; time-series
modeling; time-series forecasting

1. Introduction

Cerebral physiologic signals serve as windows into the complex neurophysiological
processes of the brain. These signals not only provide essential insights into cerebral dy-
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namics but also hold critical clinical implications for both humans and veterinary cohorts,
particularly in the realm of neurocritical care [1,2]. Understanding the relationships within
and among these signals is paramount for accurate diagnosis, monitoring, and therapeutic
intervention in patients with neurological disorders [3]. Of particular importance is being
able to understand the temporal behavior, and potentially forecast or predict various as-
pects of cerebral pressure–flow and oxygen delivery metrics, as these aspects are potentially
modifiable in real-time in both the health sciences and veterinary fields. Additionally,
although further research is needed, it is crucial to highlight the potential relationship
between cerebral pressure–flow and certain neurological conditions, such as brain tumors,
Alzheimer’s disease, and Parkinson’s disease [4,5]. Such cerebral pressure–flow metrics
are derived from a combination of invasive/non-invasive cerebral monitoring devices,
providing high-frequency continuous data streams related to intracranial pressure (ICP),
cerebral perfusion pressure (CPP), cerebral blood flow (CBF) and CBF velocity (CBFv;
acquired through transcranial Doppler (TCD)), cerebral autoregulation (CA), extracellular
brain tissue oxygen (PbtO2), and regional oxygen saturations (rSO2; using near-infrared
spectroscopy (NIRS)) [6,7]. Typically, continuous waveforms of ICP, CPP, CBF, and PbtO2
are acquired through invasive sensors placed directly into the cranial cavity and brain
parenchyma. CBFv and NIRS signals can be obtained continuously in a non-invasive
pattern using Doppler ultrasound probes to insonate the middle cerebral artery (i.e., CBFv),
or using spatially resolved continuous-wave NIRS signal sources for oxy- and deoxyhe-
moglobin signals or processed rSO2 values. CA metrics carry the unique nature of being
able to be derived from raw physiologic data streams from either invasive (i.e., ICP) or
non-invasive (i.e., TCD or NIRS) sensor sources.

There are several time-series analysis techniques used for the examination and mod-
eling of cerebral physiologic signals that bridge frequency domain, time domain, and
machine learning methods. Regarding the temporal modeling of such cerebral pressure–
flow data streams, however, the literature on this topic remains scattered, with various
approaches including both linear and nonlinear methods using statistical analysis tech-
niques such as time domain and frequency domain analyses, having been developed to
assess the pressure–flow relation for dynamic CA modeling [8]. Similarly, work includ-
ing transfer function analysis (TFA), the continuous wavelet transform (CWT), empirical
mode decomposition (EMD), fast Fourier transform (FFT), cross-spectral analysis, wavelet
analysis, Granger causality, autoregressive (AR) models, and so on [9] have been described.
In addition to the statistical time-series analysis techniques, there are various machine
learning algorithms used for cerebral physiologic signal modeling [10,11] as well as for the
prediction task [12], including models such as linear regression, artificial neural networks
(ANNs), convolutional neural networks (CNNs), extreme gradient boosting (XGBoost), and
decision trees. These algorithms offer adaptability and data-driven capabilities that can
uncover intricate patterns within the data, particularly in cases where complexities demand
more flexible modeling approaches [13]. The juxtaposition of these two approaches, i.e., sta-
tistical time-series analysis techniques (leveraging frequency or time domain methods) and
machine learning algorithms, presents a compelling landscape for the temporal analysis
and forecasting of cerebral pressure–flow physiologic signals.

This systematic scoping review aims to comprehensively explore and provide a syn-
thesis and evaluation of the literature on temporally resolved cerebral pressure–flow phys-
iologic data modeling and forecasting/prediction. We aim to provide insights into the
methodologies employed, current knowledge, key findings, research gaps, limitations, and
implications for future research. Our goal is to shed light on the evolving landscape of
cerebral pressure–flow physiologic signal analysis and modeling, ultimately contributing
to improved fundamental physiological understanding.

2. Materials and Methods

The methodology outlined in the Cochrane Handbook for Systematic Reviews [14]
was followed as guidance for this systematic scoping review of the available literature.
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Our reporting adhered to the guidelines provided by the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) [15] and PRISMA Extension for Scoping
Review [16]. The methodology and search approach employed in this review closely
align with previous systematic reviews carried out by our research team [17,18]. The
formulation of review objectives and the design of the search strategy were a collaborative
effort involving the primary (NV, LF) and senior (FZ) authors.

2.1. Search Questions, Population, and Inclusion/Exclusion Criteria

In this systematic scoping review, we examined the following question: What cerebral
pressure–flow physiology has been modeled or predicted/forecasted using high-temporal
time-series methods?

For the purposes of this scoping review, we defined continuous pressure–flow physio-
logic data streams as those from either invasive or non-invasive sensors, being recorded at a
minimum of 0.1 Hertz (Hz), and measuring some aspect of ICP, CPP, CBF, CBFv, CA, PbtO2,
rSO2, or cerebral compliance. We are including English language full-manuscript studies
only, which studies human or animal subjects in states of health or disease. Given the pri-
mary focus of our review centered on the modeling or prediction of cerebral pressure–flow
physiological time-series data, all included studies had to describe modeling or predic-
tion/forecasting of cerebral pressure–flow signals in time. Finally, any study that leveraged
time-series analytic (time and/or frequency domain) or machine learning methods to derive
these temporally resolved models was included. This included the following modeling
methodologies: cross-spectral analysis; Welch method; multiple coherence estimation; TFA;
FFT; power-spectrum analysis; CWT; wavelet analysis; discrete-time Laguerre function
model; principal dynamic modes (PDMs); linear Laguerre-based model; Laguerre–Volterra
network (LVN) model; Volterra–Wiener method; Aaslid–Tiecks model; Zhao–Atlas–Marks
distribution (ZAMD); moving correlation coefficient; single pulse analysis; dynamical
Bayesian inference (DBI); Granger causality; generalized harmonic wavelets (GHWs); non-
parametric transfer function estimator; Laguerre expansion technique (LET); autoregressive
moving average (ARMA); autoregressive with exogenous input (ARX); autoregressive
moving average with exogenous input (ARMAX); autoregressive integrative moving av-
erage (ARIMA); autoregressive ordinal-regression (AR-OR); vector autoregressive (VAR);
vector autoregressive integrative moving average (VARIMA); ANN; hidden Markov model
(HMM); k-nearest neighbor (k-NN) algorithm; lasso regression; linear regression; logistic re-
gression; time-varying temporal signal angle measurement (TSAM) algorithm; time-lagged
recurrent neural network (TLRN); SVM; wavelet-based k-means clustering; forecasting with
additive switching of seasonality, trend, and exogenous regressors (FASSTER); time-varying
dynamic linear models (DLMs); fractal analysis with box-counting and Higuchi algorithms;
random forest; exponential smoothing (ETS) model; intrinsic multiscale pressure–flow
analysis (IMPFA); multimodal pressure–flow analysis (MMPF); XGBoost; light gradient
boosting model (LGBM); adaptive boosting (AdaBoost); extremely randomized decision
trees (ExtraTrees); robust time-varying generalized partial directed coherence with the
Kalman filter; dual extended Kalman filter (DEKF); short-time Fourier transform (STFT);
Kalman filtering; recurrent neural network (RNN); multiresolution dynamic predictor
(MDP); probabilistic Markov model; linear mixed effects (LME); and Mandeville’s visco-
elastic Windkessel (VM) and elastic Windkessel (EW) models.

Non-English studies, as well as organoid and purely theoretical studies, were excluded,
as these did not align with our aim to focus on empirical research. Additionally, studies
involving non-continuous data streams, such as MRI studies, were deemed outside the
scope of this review. Similarly, purely electroencephalography (EEG) data studies were
excluded, as the focus was on cerebral pressure–flow physiologic data steams (as described
above). Furthermore, non-original studies and abstract-only studies were intentionally
omitted to ensure the inclusion of substantive research contributions in our analysis.
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2.2. Search Strategy

We conducted comprehensive searches across multiple databases, namely BIOSIS,
Cochrane Library, EMBASE, MEDLINE, and SCOPUS, covering the entire period from
the inception of each database up to mid-March 2023 using tailored search strategies for
each database to ensure precision. A detailed outline of the search strategy for BIOSIS,
along with the specific keywords employed, can be found in Supplementary Appendix SA.
Following the retrieval of search results from these sources, we merged the findings and
conducted a meticulous deduplication process.

2.3. Study Selections

Utilizing a two-reviewer approach, involving NV and LF, we conducted a meticulous
two-stage manual review of all articles yielded by the search strategy. In the initial filtering
phase, both reviewers independently assessed all identified studies using the search strategy
described earlier, evaluating their eligibility based on the title and abstract. The resulting
list of selected studies then proceeded to a second filtering phase, where, once again, both
reviewers independently assessed the studies for inclusion, this time based on a full-text
examination. In the event of any discrepancies between the two reviewers, a third-party
mediator (FZ) was consulted for resolution. Additionally, for any conference abstracts
identified during this process, we diligently attempted to locate associated peer-reviewed
manuscripts for potential inclusion. To further ensure the comprehensiveness of our review,
we conducted a thorough examination of the reference lists, of the articles reviewed, on
time-series analysis.

2.4. Data Collection

The data fields encompassed various study subject characteristics, including biological
sex, age, height, weight, cerebral physiology, as well as other physiological parameters and
their respective measurement methods. Additionally, we extracted information about data
resolution, the approaches employed for time-series modeling or prediction, any compar-
ative analyses of models, primary objectives, and the relevant findings and conclusions
from the studies.

2.5. Bias Assessment

Considering the objective of this review, to provide a thorough and broad survey of
the literature, we did not undertake a formal bias assessment.

2.6. Statistical Analysis

Meta-analysis was omitted from this study, given the extensive heterogeneity in study
designs and outcomes within the relevant literature.

3. Results

The search and filtration results are summarized in Figure 1 using a PRISMA flow-
diagram. A total of 17,214 studies were identified through the combined search across all
five databases, of which 8699 were removed as duplicates. During the screening process,
8282 studies were deemed unsuitable based on their titles and abstracts, in accordance
with the inclusion/exclusion criteria. Consequently, 233 studies were extracted for full-text
review in the subsequent phase. The full-text review led to the exclusion of 155 studies
that were outside the scope of modeling or predicting cerebral physiology, resulting in
78 eligible studies for inclusion. Furthermore, a supplementary exploration of the reference
sections within those texts led to the identification of 10 additional studies, resulting in a
total of 88 studies incorporated into this systematic review. Details of the included studies
can be found in Supplementary Appendix SB, in Tables S1–S8.
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Figure 1. PRISMA flow diagram of this systematic review.

In this systematic review, 38 of the included studies investigated healthy population
data [1,13,19–54], 46 studied patient populations [2,3,55–98], while the remaining 4 studies
focused on animal subjects [99–102]. Figure 2 illustrates the distribution of studies based
on the methods employed in their research as well as the medical diagnostic tests with
respect to the studied pathology. Please note that the studies conducting comparisons may
have been referenced multiple times due to the various methodologies utilized.

The extensive summaries of healthy population studies are listed in Tables S1–S3,
whereas studies with patient cohorts are presented in Tables S4–S7 and animal studies in
Table S8 in Supplementary Appendix SB. In the sections to follow, we outline the ability
of the time and/or frequency domain, and machine learning methods to model and/or
predict the above-defined continuous cerebral pressure–flow physiologic metrics of interest
in the following sections: (1) healthy human populations, (2) human patient populations,
and (3) animal cohorts.
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3.1. Healthy Population—General Study Characteristics and Modeling Methods

Among the studies involving healthy populations, 20 studies [1,19–23,26,28,32,33,35,
36,43,47,48,50–54] used time-series analysis techniques composed of frequency-domain
analysis methods, TFA, and wavelet analysis; 6 studies [27,30,31,37,38,46] used AR time-
series models, namely ARMA and ARX; and 12 studies [13,24,25,29,34,39–42,44,45,49]
employed multiple modeling techniques, including time and/or frequency domain tech-
niques and machine learning models, for comparative analysis at various frequency ranges,
i.e., very low frequency (VLF), low frequency (LF), and high frequency (HF). These studies,
listed in Table 1, are categorized based on the modeled or forecasted cerebral physiologic
signals and the corresponding modeling techniques, including a comment on their ability
to model or predict.

Table 1. Healthy human populations—summary of cerebral physiologic modeling and prediction abilities.

Time–Frequency Domain Modeling Techniques

Cerebral
Physiologic Metric Number of Studies and Technique Temporal Modeling Ability Prediction/Forecasting

Ability

CPP Cross-spectral analysis—1 study [29] Successfully modeled. Not explored.

CBFv

Aaslid–Tiecks model—1 study [44]

Effective modeling of CBFv signal was
reported ([51], p-value < 0.01; [32],

p-value < 0.05; [50], p-value < 0.05; [19],
p-value < 0.05; [43], p-value < 0.05).

Not explored.

Cross-spectral analysis—3 studies
[20,30,35,45]

Discrete-time Laguerre function
model—1 study [34]

FFT—1 study [44]

Multiple coherence analysis—2
studies [33,48]

Laguerre–Wiener method—2 studies
[44,45]

LVN model—2 studies [41,42]

PDM-based model—2 studies [39,40]

Power spectrum analysis—1 study
[51]

TFA—9 studies
[19,26,32,39,40,43,49,51,103]

Wavelet analysis—1 study [50]

Welch method—1 study [33]

ZAMD—1 study [49]

CA

Cross-spectral analysis—1 study [20]

Successfully modeled. Not explored.

Discrete-time Laguerre function
model—1 study [34]

PDM-based model—2 studies [39,40]

TFA—5 studies [39,40,47,49,103]

Welch method—1 study [33]

ZAMD—1 study [49]

NIRS *

TFA—1 study [19]
Effective modeling of ∆[HbO] signal

was reported ([21], p-value < 0.04;
[22,23], p-value < 0.04 in both

studies; [28], p-value < 0.03; [36],
p-value < 0.014; [52], p-value < 0.03;

[53], p-value < 0.05; [50], p-value < 0.05).

Not explored.

Wavelet analysis—8 studies
[1,21–23,28,36,52,53]
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Table 1. Cont.

Autoregressive Modeling Techniques

Cerebral
Physiologic Metric Number of Studies and Technique Temporal Modeling Ability Prediction/Forecasting

Ability

CPP ARMAX—1 study [29] Successfully modeled. Not explored.

CBFv
ARMA—3 studies [27,46,49] Effective modeling of CBFv signal was

reported ([27], p-value = 0.003; [46],
p-value < 0.03; [31], p-value < 0.3; [37],

p-value < 0.001).

Not explored.ARMAX—1 study [29]

ARX—3 studies [31,37,38]

CA
ARMA—3 studies [27,30,49] Successfully modeled. Not explored.

ARX—2 studies [31,38]

Machine Learning Techniques

Cerebral
Physiologic Metric Number of Studies and Technique Temporal Modeling Ability Prediction/Forecasting

Ability

CBFv
Linear regression—1 study [45] Effective modeling of CBFv signal was

reported ([24], p-value < 0.002; [13],
p-value < 0.001)

Not explored.SVM—3 studies [13,24,25]

TLRN—1 study [45]

CA SVM—3 studies [13,24,25] Successfully modeled. Not explored.

ARMA = autoregressive moving average, ARMAX = autoregressive moving average with exogenous in-
put, ARX = autoregressive with exogenous input, CA = cerebral autoregulation, CBF = cerebral blood flow,
CBFv = cerebral blood flow velocity, CPP = cerebral perfusion pressure, FFT = fast Fourier transform,
LVN = Laguerre–Volterra network, NIRS = near-infrared spectroscopy, PDM = principal dynamic mode,
TFA = transfer function analysis, TLRN = time-lagged recurrent neural network, SVM = support vector machine,
ZAMD = Zhao–Atlas–Marks distribution. * NIRS represents oxy- and deoxyhemoglobin signals (∆[HbO], etc.), as
well as process saturation measures such as regional oxygen saturation (rSO2).

In most of the studies, the study population consisted primarily of healthy young
adult volunteers who were free from documented cardiovascular or neurological diseases,
with an average age of approximately 30 years. However, there were exceptions, as
some studies [23,28,36,43,52,53] included both young and elderly healthy adults, and one
study [51] encompassed healthy volunteers, heart transplant recipients, and donor controls.

In most of the studies, the data were resampled from very high resolution to low reso-
lution ranging from 1 Hz to 5 Hz. A significant portion of the studies recorded CBFv using
a transcranial Doppler probe targeting the middle cerebral artery (MCA); however, some
studies only recorded rSO2 [1] or the change in oxyhemoglobin concentration (∆[HbO])
using NIRS [21–23,28,36,52,53]. Two studies recorded both CBFv using TCD and ∆[HbO]
using NIRS [43]. Additionally, in one study [19], the change in deoxyhemoglobin con-
centration (∆[Hb]) and change in total hemoglobin (∆[HbTot]) using NIRS were recorded
in addition to ∆[HbO] and CBFv. Arterial blood pressure (ABP) and end-tidal carbon
dioxide (EtCO2) were also recorded in the majority of the studies, except for a select few
that recorded only ABP [1,25,28,31,35,38,44,45], only EtCO2 [29], or neither [21–23,36,52,53].
Some studies estimated the resistance-area product (PRA) and critical closing pressure
(CrCP) from CBFv and ABP [27,33,47,56].

3.1.1. Time and/or Frequency Domain Modeling Techniques

The studies, which employed time and/or frequency domain models with a
healthy subject cohort, mainly modeled CBFv [19,20,26,32,33,35,43,47,48,50,51,54] or
∆[HbO] [19,21–23,28,36,52,53] signals, while one study examined the rSO2 signal [1]. Over-
all, the study results reported the successful modeling of these cerebral physiologic signals
discovering the underlying patterns, in many cases to assess CA [20,33,34,39,40,47,49,54].
Due to the nature of data collection from healthy volunteers, ICP and PbtO2 signals were
not modeled in any of the studies included in this section. Additionally, forecasting of the
cerebral physiologic signals was not carried out.
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Cross-spectral analysis, which is used to examine the connection between two time
series with respect to their frequency dependence [104], was utilized in two studies ([20,35],
p-value < 0.01). Welch’s method, which is used for estimation of the power spectral density
of a signal, was utilized in one study ([33], p-value < 10−4). Two studies [33,48] utilized
multiple coherence estimation, which analyzes the degree of coherence or correlation
between a reference signal and multiple other signals at various frequencies. Power
spectrum analysis, which is used for understanding the frequency components present
in a signal and their relative amplitudes, was employed in one study [51]. TFA, which
is a mathematical representation of a relation between an input and output of a linear,
time-invariant system [105], was utilized by five studies to rigorously evaluate the dynamic
relationship between ABP and CBFv as a result of repeated squat–stand maneuvers ([26,51],
p-value < 0.01), hypoxia ([32], p-value < 0.05), hypercapnia [47,54], and the placebo effect
([50], p-value < 0.05). In two other studies, TFA was used to analyze the relation between
CBFv and various signals, i.e., ∆[HbO] and EtCO2 ([19], p-value < 0.05), and ABP and
EtCO2 ([43], p-value < 0.05).

Wavelet analysis is used for analyzing signals in the time–frequency domain [106].
One study [1] utilized the synchro-squeezed CWT (synchro-CWT) model, which is an ad-
vanced wavelet analysis model for improved time–frequency analysis and cross-frequency
interaction assessment in signals [107], to analyze the coupling dynamics between ABP
and rSO2. Seven studies employed wavelet analysis to investigate phase synchronization
patterns within ∆[HbO] signals, observing varying wavelet amplitude, wavelet coherence
(WCO), and wavelet phase coherence (WPCO) in different frequency ranges as a result of
long-term offshore work ([21], p-value < 0.04), sleep deprivation ([22,23], p-value < 0.04 in
both studies), and aging ([28], p-value < 0.03; [36], p-value < 0.014; [52], p-value < 0.03; [53],
p-value < 0.05). Another study [50] analyzed cerebral pressure–flow relations with wavelet
analysis (p-value < 0.05).

3.1.2. Autoregressive Modeling Techniques

The studies employing various AR models reported the successful modeling of the
CBFv signal, several of which assessed CA [27,30,31,38]. Similar to time–frequency domain
techniques, ICP and PbtO2 signals were not modeled, and forecasting of the cerebral
physiologic signals was not carried out.

These AR time-series models included ARMA models which is a statistical model
capable of analyzing and forecasting the behavior of time-series data by combining AR and
moving average (MA) components, and ARX models which represent dynamic systems
with dependencies on both past values and external input signals. Among these, three
studies utilized ARMA for the analysis of dynamic CA under paced hyperventilation
(PHPV) ([27], p-value = 0.003) and hypercapnia [30], and to examine CBFv response during
motor stimulation ([46], p-value < 0.03). Another three studies employed ARX to model CA
during rest ([31], p-value < 0.3 between 1.5 min and 6 min datasets, p-value ranging from
0.54 to 0.88 between 1.5 min datasets), under noisy conditions ([38]; 5-s recovery percentage
(R5%) = 92–97 ± 8 depending on noise and variation in ABP), and to assess CBFv under
normocapnia and hypercapnia ([37], p-value < 0.001).

3.1.3. Model Comparison Studies

The majority of the model comparison studies [29,34,39–42,44,45,49] employed time
and/or frequency domain models, while a few [13,24,25,45] compared machine learning
algorithms in their performance to model CBFv signals. As mentioned in the previous
sections, other cerebral physiologic signals such as ICP and PbtO2 were not collected from
the subject cohort. In the studies under comparative model evaluation, various types of
time-series analysis techniques and machine learning algorithms were employed. The
objective of the studies was mainly to compare the modeling performance of linear models
and nonlinear models as well as compare the effect of input size. All employed models
were suggested to offer the ability to model CBFv signals to an extent. However, better
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modeling performances were observed with linear models and multiple-input models.
Additionally, better modeling was reported with machine learning models compared to
time/frequency domain models [13,45].

SVM, which is a supervised machine learning algorithm used for the classification
or modeling of time-series data, was utilized by three studies to assess cerebrovascular
reactivity (CVR) [24] and dynamic CA [13,25] by comparing linear and nonlinear models.
Chacon et al. compared linear AR SVM, nonlinear AR (NAR) SVM, linear finite impulse
response (FIR) SVM, and nonlinear FIR (NFIR) SVM models for modeling CBFv ([24],
p-value < 0.002 with AR models). Another study compared TFA, NAR SVM, and NFIR
SVM to model the CBFv response to BP changes ([13], p-value < 0.001 with nonlinear SVM
models). Furthermore, another comparative study by Chacon et al. compared performances
of FIR SVM, NFIR SVM, nonlinear ARX (NARX) SVM, and ARX SVM models for assessing
CBF [25]. Panerai et al. compared the performance of the Volterra–Wiener method to
the FFT and Aaslid–Tiecks model, which is a mathematical model that can be used for
estimating the step responses from spontaneous fluctuations in ABP and CBFv [108]
(p-value < 10−6) [44]. In their consecutive study, Panerai et al. compared the TLRN model,
which is used for modeling sequential data to capture temporal dependencies and patterns,
the Aaslid–Tiecks model, the linear Volterra–Wiener method, TFA, and the simple linear
regression model for modeling CBFv [45]. Another study conducted a comparative analysis
involving the Zhao–Atlas–Marks distribution (ZAMD), which is a distribution function
characterized by a cone-shaped kernel, that can be used for CA assessment [109]; TFA; and
ARMA models to estimate the phase shift between ABP and CBFv [49].

Additionally, several studies carried out comparative studies between single-input
and multiple-input models in addition to the comparison of linearity. Overall multiple-
input models achieved better results in all the studies included [30,34,39–42]. Edwards et al.
employed two-input ARMAX, which is an extension of ARMA incorporating exogenous
input variables to improve the model’s predictive capability [110], and one-input cross-
spectral analysis [30]. Kostoglou et al. compared one-input and two-input discrete-time
Laguerre function models, which are capable of representing and analyzing signals and
systems in the time, frequency, or Laguerre domain [34]. The PDM model was used in two
studies [39,40] to analyze dynamic CA. One study [39] compared linear- and nonlinear-, one-
and two-input PDM models to a linear Laguerre-based model, and linear single-input TFA
(normalized mean squared error (NMSE) = 40.4% with nonlinear two-input PDM model).
In a consecutive study by Marmarelis et al., they focused on PDMs to compare between
linear- and nonlinear-, two- and three-input models ([40], p-value < 0.005). LVN, which is a
type of an artificial neural network for modeling nonlinear dynamic systems [111], was
used in two studies to compare between variations of models with linearity (linear and
nonlinear) and input size (one- and two-input) [42] as well as different model orders (1st,
2nd, and 3rd) [41] to assess the interactions of various signals on CBFv variations ([41];
NMSE < 33). The Volterra–Wiener method, which is an approach used for estimation of the
linear and nonlinear expressions of the dynamic pressure–volume relationship [112], was
utilized by two studies to assess the dynamic relationship between ABP and CBFv.

3.2. Human Patient Population Studies—General Study Characteristics and Modeling Methods

Similar to healthy cohort studies, the studies involving patient populations have
been organized into categories. A total of 14 studies [56,58,60,62,64,65,69–71,73,78,82,90,92]
utilized time-series analysis techniques, including dynamic relationship analysis methods,
TFA, and wavelet analysis. A total of 5 studies [59,80,89,95,96] employed variations in AR
time-series models, 8 studies [55,57,72,74,77,81,85,86] utilized machine learning models,
and 19 studies [2,3,61,63,66–68,75,76,79,83,84,87,88,91,93,94,97,98] carried out comparative
model evaluations.

In the majority of the articles, the study population consisted primarily of traumatic
brain injury (TBI) patients with various severities, with the exceptions of articles that
studied idiopathic normal-pressure hydrocephalus patients [60], SAH patients [62,74],
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cerebrospinal fluid (CSF) infusion patients [73], coronary intervention patients [56,81,82],
pediatric patients [61,78,90], elderly people with cerebral infarction (CI) [64,71], hyperten-
sive individuals [70], diabetic patients [57], intracerebral hemorrhage patients [72,87,88],
stroke patients [66], arterial stenosis patients [67,75,84], concussion patients [68], and pa-
tients with various ICP-related conditions [3].

The patient cohort studies are divided into TBI and non-TBI patients grouped based
on cerebral physiologic signals and the modeling technique, along with a comment on their
ability to model or predict, and are listed in Tables 2 and 3, respectively.

Table 2. Human TBI patient populations—summary of cerebral physiologic modeling and predic-
tion abilities.

Time–Frequency Domain Modeling Techniques

Cerebral
Physiologic Metric Number of Studies and Technique Temporal Modeling Ability Prediction/Forecasting

Ability

ICP

DEKF—1 study [83]

Effective modeling of ICP signal was
reported ([92], p-value < 0.1).

Not explored.

GP algorithm—2 studies [63,76]

Granger causality—3 studies [89,95,96]

MDP—1 study [91]

Moving correlation
coefficient—1 study [58]

Probabilistic Markov
model—1 model [93]

Robust time-varying generalized
partial directed coherence with Kalman

filter—1 study [83]

TFA—1 study [65]

Wavelet analysis—1 study [69]

CPP
GP algorithm—1 study [63]

Successfully modeled. Not explored.Moving correlation
coefficient—1 study [58]

CBFv TFA—2 studies [65,92] Effective modeling of CBFv signal
was reported ([92], p-value < 0.1). Not explored.

CA Wavelet analysis—1 study [69] Successfully modeled. Not explored.

PbtO2

DEKF—1 study [83]

Successfully modeled. Not explored.

GP algorithm—1 study [76]

Granger causality—1 study [96]

Robust time-varying generalized
partial directed coherence with Kalman

filter—1 study [83]

Autoregressive Modeling Techniques

Cerebral
Physiologic Metric Number of Studies and Technique Temporal Modeling Ability Prediction/Forecasting

Ability

ICP

AR—2 studies [88,93]

Effective modeling of ICP signal was
reported ([95], p-value < 0.3).

Not explored.

AR-OR—1 study [76]

ARIMA—5 studies [2,89,94,96,98]

ARMA—2 studies [59,97]

VARFI—1 study [80]

VARIMA—3 studies [89,95,96]
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Table 2. Cont.

Autoregressive Modeling Techniques

Cerebral
Physiologic Metric Number of Studies and Technique Temporal Modeling Ability Prediction/Forecasting

Ability

CPP

ARMA—1 study [59]

Successfully modeled. Not explored.VARFI—1 study [80]

VARIMA—1 study [95]

CBFv ARIMA—2 studies [2,94] Successfully modeled. Not explored.

PbtO2

AR-OR—1 study [76]

Successfully modeled. Not explored.ARIMA—1 study [96]

VARIMA—1 study [96]

Machine Learning Techniques

Cerebral
Physiologic Metric Number of Studies and Technique Temporal Modeling Ability Prediction/Forecasting

Ability

ICP

ANN—3 studies [88,97,98]

Not explored.

Adequate performance
to predict ICP was

reported ([79];
precision = 0.76 and
accuracy = 0.86 with

random forest).

HMM—1 study [55]

FASSTER time varying
DLM—1 study [85]

Fractal analysis with box-counting and
Higuchi algorithms—1 study [86]

LGBM—1 study [79]

Logistic regression—2 studies [63,76]

Random forest—1 study [79]

RNN—1 study [91]

Wavelet-based k-means
clustering—1 study [77]

XGBoost—1 study [79]

CPP
HMM—1 study [55]

Not explored.
Adequate prediction

performance
was reported.Logistic regression—1 study [63]

PbtO2 Logistic regression—1 study [76] Not explored.
Adequate prediction

performance
was reported.

ANN = artificial neural network, AR = autoregressive, AR-OR = autoregressive ordinal-regression,
ARIMA = autoregressive integrated moving average, ARMA = autoregressive moving average, CA = cere-
bral autoregulation, CBF = cerebral blood flow, CBFv = cerebral blood flow velocity, CPP = cerebral perfu-
sion pressure, DEFK = dual extended Kalman filter, DLM = dynamic linear model, FASSTER = forecasting
with additive switching of seasonality, trend and exogenous regressors, GP = Gaussian process, HMM = hid-
den Markov model, ICP = intracranial pressure, LGBM = light gradient boosting model, MDP = multireso-
lution dynamic predictor, PbtO2 = partial pressure of brain tissue oxygen, RNN = recurrent neural network,
TFA = transfer function analysis, VARFI = vector autoregressive fractionally integrated, VARIMA = vector
autoregressive integrated moving average, XGBoost = extreme gradient boosting.
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Table 3. Human non-TBI patient populations—summary of cerebral physiologic modeling and
prediction abilities.

Time–Frequency Domain Modeling Techniques

Cerebral
Physiologic Metric Number of Studies and Technique Temporal Modeling Ability Prediction/Forecasting

Ability

ICP

ETS model—1 study [61]

Not explored.
Adequate performance

to predict ICP
was reported.

Granger causality with
EEMD—1 study [73]

Kalman filtering—1 study [87]

Single pulse analysis—1 study [60]

CBFv

CWT—1 study [84]

Effective modeling of CBFv signal was
reported ([56], p-value = 0.052; [78],

p-value < 0.0009; [82],
p-value < 0.02; [69], p-value < 0.05; [90],

p-value < 0.3; [92], p-value < 0.1).

Not explored.

FFT—1 study [62]

GHW—1 study [75]

Granger causality with
EEMD—1 study [73]

IMPFA—1 study [66]

Impulse-response-based LET
model—1 study [68]

MMPF—1 study [66]

Nonparametric transfer function
estimator—1 study [67]

STFT—1 study [84]

TFA—4 studies [6,66,75,82]

Wavelet analysis—1 study [69]

CA

GHW—1 study [75]

Successfully modeled. Not explored.TFA—4 studies [6,56,75,82]

Wavelet analysis—2 studies [75,90]

NIRS *
DBI—2 studies [70,71]

Effective modeling of ∆[HbO] signal
was reported ([70], p-value < 0.02; [71],

p-value < 0.03; [64], p-value < 0.4).
Not explored.

Wavelet analysis—2 studies [64,90]

Autoregressive Modeling Techniques

Cerebral
Physiologic Metric Number of Studies and Technique Temporal Modeling Ability Prediction/Forecasting

Ability

ICP
ARIMA—1 study [61]

Successfully modeled. Not explored.
ARX—1 study [87]

CBFv
ARMAX—1 study [67]

Successfully modeled. Not explored.
ARX—1 study [68]

VAR—1 study [67]

CA ARX—1 study [68] Successfully modeled. Not explored.
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Table 3. Cont.

Machine Learning Techniques

Cerebral
Physiologic Metric Number of Studies and Technique Temporal Modeling Ability Prediction/Forecasting

Ability

ICP

AdaBoost—1 study [3]

Not explored.

Adequate performance
to predict ICP was

reported ([61];
NMSE = 0.89 with
random forest, [3];
AUC = 0.87~0.96
with ExtraTrees).

ANN—2 studies [72,87]

ExtraTrees—1 study [3]

Lasso regression—1 study [61]

Linear regression—2 studies [3,61]

Random forest—1 study [61]

SVM—1 study [61]

TSAM algorithm—1 study [74]

CPP TSAM algorithm—1 study [74] Not explored. Successfully modeled.

CBFv
k-NN—1 study

Successfully modeled. Not explored.
SVM—1 study [57]

CA SVM—1 study [57] Successfully modeled. Not explored.

PbtO2 TSAM algorithm—1 study [74] Successfully modeled. Not explored.

AdaBoost = adaptive boosting, ANN = artificial neural network, ARIMA = autoregressive integrated moving
average, ARMAX = autoregressive moving average with exogenous input, ARX = autoregressive with exogenous
input, CA = cerebral autoregulation, CBFv = cerebral blood flow velocity, CPP = cerebral perfusion pressure CWT
= cross-wavelet transform, DBI = dynamical Bayesian inference, EEMD = ensemble empirical mode decomposition,
ETS = exponential smoothing, ExtraTrees = extremely randomized decision trees, GHW = generalized harmonic
wavelets, ICP = intracranial pressure, IMPFA = intrinsic multiscale pressure–flow analysis, k-NN = k-nearest
neighbor, LET = Laguerre expansion technique, MMPF = multimodal pressure–flow analysis, NIRS = near-infrared
spectroscopy, PbtO2 = partial pressure of brain tissue oxygen, STFT = short-time Fourier transform, SVM = support
vector machine, TFA = transfer function analysis, TSAM = time-varying temporal signal angle measurement,
VAR = vector autoregressive. * NIRS represents oxy- and deoxyhemoglobin signals, as well as process saturation
measures such as regional oxygen saturation (rSO2).

In most of the studies, the data were resampled from very high resolution to low
resolution ranging from 0.1 Hz to 5 Hz. Overall, the majority of the studies recorded ICP
with either a fiber-optic transducer, a subdural catheter, an intraparenchymal probe, or an
external ventricular drain, except for studies that recorded only CBFv via a TCD probe
from the MCA [56,57,62,66–68,73,75,78,81,82,84], ∆[HbO] and ∆[Hb] using NIRS [64,70,71],
or cerebral tissue oxygen saturation (SctO2) via oximetry [90]. Some studies estimated CPP
from MABP and ICP [2,55,58,59,61,63,74,80,94,95], pressure–volume reserve (RAP) from
the pulse amplitude of ICP and ICP data [55,65], and pressure reactivity index (PRx) from
ABP and ICP [55,69,74,89]. Some studies also measured continuous PbtO2 with an invasive
parenchymal probe [76,83,96].

3.2.1. Time and/or Frequency Domain Modeling Techniques

A small portion of the studies employing time and/or frequency domain models with a
patient cohort consist of TBI patients [58,65,69,92] and neonates [78,90], while the remaining
studies are on individuals with various health issues [56,60,62,64,70,71,73,82]. The stud-
ies mainly modeled ICP [58,60,65,69,92], CBFv [56,62,65,73,78,82,92], or ∆[HbO] [64,70,71]
signals, while SctO2 was modeled in only one study [90]. Several of these stud-
ies [56,62,69,78,82,90] aimed to assess CA. Overall, study findings revealed effective mod-
eling of the mentioned cerebral physiologic signals uncovering the intrinsic patterns.

In a study by Czosnyka et al., the moving correlation coefficient was utilized for
tracking changes in the correlation between two time series as a function of time, observing
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a clear correlation between the fundamental harmonic of the ICP pulse wave and the mean
ICP for severe TBI patients [58]. Single pulse analysis, which is method of studying and
analyzing individual, isolated pulses within a larger data stream, was used in a study by
Elixmann et al. to identify ICP signals [60]. Another investigation, Giller and Gerardo
Iacopino, utilized FFT, which analyzes and process signals in the frequency domain, to
assess the coherence between CBFv and blood pressure (BP) [62]. DBI can detect time-
varying dynamics despite noise and track temporal changes in the relevant parameters [70].
Two studies employed DBI to investigate the coupling strength between ABP and oxyhe-
moglobin concentration (HbO) ([70], p-value < 0.02; [71], p-value < 0.03). Martinez-Tejada
et al. employed the Granger causality method in conjunction with ensemble empirical
mode decomposition (EEMD) to explore causal relationships between oscillatory modes of
ICP, ABP, and CBFv [73]. TFA was employed by four studies in the patient populations to
investigate dynamic CA ([56], p-value = 0.052; [65,78], p-value < 0.0009; [82], p-value < 0.02).
Wavelet analysis was used in the remaining four studies to study prefrontal functional
connectivity ([64], p-value < 0.4), to evaluate CA ([69], p-value < 0.05; [90], p-value < 0.3),
and to analyze CBF ([92], p-value < 0.1).

3.2.2. Autoregressive Modeling Techniques

All of the studies [59,80,89,95,96] employing various AR models modeled ICP data
along with CPP, and in one study with PbtO2. The studies reported effective modeling
results overall.

ARMA was utilized in one study [59] to study the impact of ABP and ICP on cere-
brovascular pressure transmission. The VARFI model was used in the study by Pinto et al.
to examine the interconnections between oscillations in R-R intervals, MABP, and the pulse
amplitude of ICP [80]. ARIMA was employed along with VARIMA, and univariate logistic
regression and Granger causality were employed in a study by Thelin et al. to examine the
statistical time-series relationship between ICP, MABP, and PRx of adult TBI patients [89].
The ARIMA model differs from ARMA with the ability to handle non-stationary in data
such as seasonality or trends [113], and VARIMA is used for analyzing multivariate time-
series data exhibiting non-stationarity or complex dynamics [114]. Univariate logistic
regression is a statistical modeling technique to analyze the relationship between an in-
dependent variable and a binary outcome, i.e., dependent variable [115]. Additionally,
Granger causality is a method of assessing the causal influences between simultaneously
obtained time series [116]. Another study [95] used VARIMA and impulse response func-
tion (IRF) analysis to assess the effect of craniectomy on PRx as well as the relationship
between vasogenic slow waves of ICP and MABP (p-value < 0.3). In a consecutive study,
Zeiler et al. employed ARIMA, VARIMA-generated IRF plots, and Granger causality to
investigate the relationship between slow-wave fluctuations in ICP, MABP, and PbtO2 [96].

3.2.3. Machine Learning Techniques

Eight studies [55,57,72,74,77,81,85,86] employed a range of machine learning algo-
rithms to address diverse objectives. Half of these studies [55,77,85,86] analyzed TBI
patient data with ICP and CPP, while the other half examined ICP [72,74] or CBFv [57,81]
signals from individuals with various health issues. The studies analyzing ICP signals car-
ried out prediction [55,74,77,85,86] or classification [72] tasks. Overall, two study findings
revealed an effective modeling of CBFv signals. The remaining studies reported adequate
ICP prediction and stressed the potential of the respective model.

HMM, which is capable of modeling sequential or temporal data and capturing pat-
terns in sequences [117], was employed by Asgari et al. to categorize cerebral dynamic
states [55]. Another study [57] employed SVM to extract features with the linear cross-
correlation function (CCF) and the nonlinear correlation dimension (CD) to non-invasively
classify dynamic CA. In a subsequent investigation, Mariak et al. employed ANN, which
learns patterns, classifies data, and makes predictions by making probability-based as-
sociations between an input and output, to classify ICP waveforms into risk classes [72].



Sensors 2024, 24, 1453 16 of 28

The TSAM algorithm, which is a method designed to address the challenges associated
with analyzing time-varying data, particularly with limited data availability, was used to
predict delayed cerebral ischemia (DCI) ([74]; model accuracy = 67.3%). In another study,
Naraei et al. applied wavelet-based K-means clustering, which is a unsupervised clustering
technique that does not rely on prior knowledge gained from labeled data, to differentiate
ICP levels [77]. Porta et al. utilized the k-NN algorithm, which is a machine learning and
pattern recognition method used for classification and regression tasks, for spectral and
complexity analysis of cardiovascular and cerebrovascular controls in patients undergoing
surgery for aortic valve replacement [81]. In a study by Shaw et al., FASSTER time-varying
DLM, which utilizes multi-DLM switching to enhance the precision of modeling the impact
of external factors on a time series, was employed for ICP forecasting ([85]; median absolute
error = 2.98 mmHg). Lastly, Sourina et al. used fractal analysis, which produces a numerical
metric that characterizes the self-replicating patterns identified in time-series data, with
box-counting and Higuchi algorithms, for the prediction of changes in health status of a
TBI patient [86].

3.2.4. Model Comparison Studies

Various time-series analysis techniques and machine learning algorithms were com-
pared mainly for prediction tasks using ICP data of TBI patients [2,3,61,63,76,79,83,87,88,91,
93,94,97,98], while a small portion of the studies performed comparisons of models for the
modeling of CBFv signals from patients with various conditions to assess CA [66–68,75,84].
It was reported that the employed models possessed the capacity to either predict ICP or
model CBFv signals to some extent. However, machine learning models, specifically en-
semble learning models, such as random forest and ExtraTrees, showed better performance
overall in terms of ICP prediction, whereas in a few cases [63,76], time/frequency domain
studies had better prediction performances compared to simple machine learning techniques.

One study assessed the Gaussian process (GP) algorithm, which is a probabilistic
machine learning technique used for regression and classification, and logistic regression
for the prediction of increased ICP episodes [63]. Another employed IMPFA, which is
a model that embraces nonlinear dynamics theories and does not make presumptions
about linearity or stationarity; MMPF, which is a method used for studying the pressure–
flow relationship proposed to handle nonstationary signals better; and TFA models to
examine CBFv [66]. A study by Jachan et al. utilized the ARMAX model, VAR model, and
nonparametric transfer function estimator, which is a method of modeling and analyzing
input–output relationships of dynamic systems without imposing structural assumptions,
to assess dynamic CA ([67], p-value = 0.45). Kostoglou et al. modeled CBFv by comparing
the performances of ARX and the impulse response model based on LET, which is a
mathematical tool that transforms complex functions into a series of simpler Laguerre
functions ([68], p-value < 0.035). In another study, Miller et al. compared TFA and GHW,
which is a mathematical model that analyzes data in the time–frequency domain, and the
wavelet transform to quantify dynamic CA ([75], p-value < 0.003). Myers et al. utilized GP,
logistic regression, and the AR-OR model, which combines elements of the AR model with
ordinal regression to analyze ordinal data with temporal dependencies, for the prediction
of intracranial hypoxia and tissue hypoxia crises in severe TBI patients [76].

Various ensemble machine learning models such as XGBoost, LGBM, AdaBoost, Ex-
traTrees, and random forest were used for comparison in several studies. XGBoost and
LGBM build an ensemble of decision trees through gradient boosting used for regression
and classification tasks [79], AdaBoost combines the predictions of weak classifiers to create
a strong classifier, and ExtraTrees leverages the power of decision trees and randomization
to create efficient and robust predictive models [3]. Additionally, random forest combines
multiple decision trees to improve the accuracy of the model for classification and regres-
sion tasks [61]. Farhadi et al. compared the performance of ARIMA and the ETS model,
which is a time-series forecasting method that uses exponentially decreasing weights to
assign higher weight to the most recent observations; linear regression; Lasso regression,
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which differs from linear regression by the addition of a feature selection mechanism and
regularization to prevent overfitting; SVM; and random forest in forecasting ICP episodes
([61]; NMSE = 0.89 with random forest). Petrov et al. utilized random forest, XGBoost,
and LGBM for onset ICP crisis prediction ([79]; precision = 0.76 and accuracy = 0.86 with
random forest), achieving the highest reported accuracy among the studies included. In an-
other study, Scalzo et al. employed multiple linear regression, AdaBoost, and ExtraTrees for
the temporal prediction of intracranial hypertension ([3]; AUC = 0.87~0.96 with ExtraTrees).

Five studies compared performances of ANN [87,88,97,98] and RNN [91] with non-
machine learning techniques for the prediction of ICP. One study compared the perfor-
mances of ANN, ARX, and Kalman filtering, which is a recursive mathematical algorithm
used for estimating the state of a dynamic system [87]. In a consecutive study by Swiercz
et al., ANN with wavelet decomposition was compared to AR with Kalman filtering [88].
Tsui et al. compared RNN with MDP, which employs the discrete wavelet transform to
calculate wavelet coefficients [91]. Zhang et al. compared an NARX-ANN-based mean
forecast algorithm (ANNNARX-MFA), nonlinear autoregressive ANN algorithm (ANNNAR),
and ARMA [97]. In a consecutive study, Zhang et al. utilized ARIMA based on the partial
autocorrelation function (PACF) and autocorrelation function (ACF), ARIMA based on the
Akaike information criterion (AIC), and ANN models [98].

Schäck et al. proposed a new method, robust time-varying generalized partial directed
coherence with the Kalman filter, for nonlinear causality analysis of multivariate time series
of physiological data and compared the performances with DEKF, which is a recursive
estimation algorithm used for state estimation in dynamic systems [83]. Semenyutin et al.
employed CWT and STFT, which is a model used for analyzing non-stationary signals in
the time–frequency domain, to determine the state of CA [84]. Wijayatunga et al. employed
the probabilistic Markov model, which can analyze the time-dependent behavior of a
system, and six different AR models for the prediction of individual ICU patients’ future
ICP levels [93]. In two separate studies, Zeiler et al. utilized LME, which is a statistical
tool used for analyzing data with dependencies, repeated measurements, and hierarchical
structures [118], with the ARIMA model for the estimation of PRx for TBI patients in a large
dataset [2] and for a small dataset [94].

3.3. Animal Studies

The studies with animal cohorts utilized various animals, including albino mature
outbred male rats [99], Wistar male rats [101], female hooded lister rats [102], and, in
one instance, goats [100]. The studies measured either CBF with a laser Doppler flowme-
try [99,102] or an electromagnetic flow probe [100], or CBFv using a TCD probe [101]. All
studies carried out modeling tasks and reported an effective modeling of CBFv or CBF
signals to assess CA. The animal cohort studies are listed in Table 4 and categorized based
on cerebral physiologic signals and the modeling technique, along with a comment on their
modeling ability.

Table 4. Animal cohorts—summary of cerebral physiologic modeling and prediction abilities.

Time–Frequency Domain Modeling Techniques

Cerebral
Physiologic Metric Number of Studies and Technique Temporal Modeling Ability

CBF

Windkessel models—1 study [102]

Successfully modeled.Fourier analysis—1 study [100]

Wavelet analysis—1 study [99]

CBFv Cross-spectral analysis—1 study [101] Successfully modeled.
CBF = cerebral blood flow, CBFv = cerebral blood flow velocity.

Wavelet analysis was employed by Alexandrin to study the myogenic response of pial
arteries [99]. Doblar et al. employed Fourier analysis to examine the effects of hypoxia on
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the dynamic characteristics of cerebrovascular responses [100]. Issam et al. utilized cross-
spectral analysis to investigate the regulation of CBF in response to emotional stress [101].
In a study by Zheng and Mayhew, a comparative analysis between Mandeville’s VM and
EW models, which are mathematical models used in cardiovascular physiology to describe
and simulate the behavior of the circulatory system, for modeling CBF and cerebral blood
volume (CBV) was carried out [102].

4. Discussion

In this systematic scoping review, we comprehensively analyzed the current landscape
of cerebral physiological time-series modeling and forecasting. Our examination of the
selected studies reveals a multifaceted field characterized by diverse methodologies and
approaches ranging from statistical models to machine learning algorithms. In this section,
we aim to elaborate on the current knowledge, identify knowledge gaps, present the
limitations of the literature and our review, and chart a course for future research endeavors.
Overall, we observed that the statistical time-series analysis techniques have been the
most utilized methods for cerebral physiology modeling with an increased utilization
of machine learning algorithms especially for the prediction task. Among the machine
learning algorithms, SVM has been the most employed, whereas Decision Tree has been
shown to outperform even the SVM model. It was also observed that the nonlinear and
multiple-input models, in general, had better performance. The following paragraphs
further detail these findings.

In our comprehensive review of 88 studies, we observed that the majority of these
studies employed statistical time-series analysis techniques, totaling 65 in number. Among
these, several techniques were prominently utilized. Notably, TFA was the focus of investi-
gation in six studies conducted on healthy cohorts [19,26,32,43,47,54] and four studies on
patient cohorts [56,65,78,82]. Wavelet analysis emerged as another prominent technique,
featuring nine studies conducted on healthy cohorts [1,21–23,28,36,50,52,53], four stud-
ies on patient cohorts [64,69,90,92], and one study conducted on an animal cohort [99].
Furthermore, variations in AR models for time-series modeling were explored in six stud-
ies involving healthy cohorts [27,30,31,37,38,46] and five studies focusing on patient co-
horts [59,80,89,95,96]. Another 14 studies of time-series analysis techniques employed a
range of frequency domain analysis methods, including cross-spectral analysis [20,35,101],
DBI [70,71], Fourier analysis [62,100], Granger causality [73,89,95,96], the multiple coher-
ence function [48,50], power spectrum analysis [51], Welch’s method [33], and Windkessel
models [102], as well as various dynamic domain analysis methods, including the moving
correlation coefficient [58] and single pulse analysis [60]. A further 10 studies employed
time-series analysis techniques within the framework of comparative studies. These com-
parative analyses encompassed a range of intriguing investigations, including examinations
between the Laguerre–Wiener method, FFT, and Tiecks model [44]; examinations of ZAMD,
TFA, and ARMA [49] in healthy populations; evaluations contrasting IMPFA, MMPF, and
TFA [66]; and assessments of ARMAX, VAR, and the nonparametric transfer function
estimator [67]. There were also comparisons between ARX with the impulse response
model based on LET [68], in-depth examinations contrasting TFA, GHW, and wavelet
transform [75], and investigations into the distinctions between the robust time-varying
generalized partial directed coherence with the Kalman filter and DEKF [83]. Additionally,
there were comparisons between CWT and STFT [84], and comparisons of Sx_a, Mx_a,
and Dx_a LME models in conjunction with ARIMA [2,94] in patient populations. The
remaining six studies utilizing time-series analysis techniques conducted comparative
analyses of input quantities, including single-input and multiple-input scenarios, as well
as assessments of linearity. These studies encompassed various comparisons, such as
the evaluation of cross-spectral analysis (single-input) versus the ARMAX model (two-
input) [29]; comparisons between one-input and two-input, discrete-time Laguerre function
models [34]; nonlinear and linear, single-input and two-input PDM-based models; nonlin-
ear, two-input, second-order LVN models and nonlinear one-input TFA [39]; examinations
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of three-input and two-input, linear and nonlinear PDMs [40]; as well as LVN models
(one-input and two-input, encompassing linear and nonlinear models of first, second, and
third order) [41,42].

Among the 88 studies in our review, a subset of 23 studies engaged in the utilization
of machine learning algorithms. In four studies involving healthy populations, machine
learning algorithms were applied in various comparison studies. These comparisons
included assessments of AR SVM versus FIR SVM models [24], as well as evaluations of
TFA, NAR SVM, and NFIR SVM models [13]. Furthermore, investigations involved the
comparison of FIR SVM, NFIR SVM, NARX SVM, and ARX SVM models [25], along with a
comparison encompassing TLRN, the Aaslid–Tieck model, the Laguerre–Wiener method,
TFA, and simple linear regression [45]. For patient population studies, the focus shifted to
both individual machine learning algorithm analyses with eight studies and comparative
analyses with eleven studies. The former involved the application of HMM [55], CCF- and
CD-SVM [57], ANN [72], the TSAM algorithm [74], wavelet-based k-means clustering [77],
k-NN [81], FASSTER time-varying DLM [85], and fractal analysis utilizing box-counting
and Higuchi algorithms [86]. The latter comprised comparisons between ARIMA, ETS
models, linear regression, Lasso regression, SVM, and random forest [61]; comparisons
between the GP algorithm and logistic regression [63], evaluations comparing the GP
algorithm, logistic regression, and AR-OR models [76]; and comparisons between random
forest, XGBoost, and LGBM [79]. Additional comparisons encompassed multiple linear
regression, AdaBoost, and ExtraTrees [3], as well as assessments involving ANN, ARX, and
Kalman filtering [87]. Further, investigations focused on comparisons between ANN with
wavelet decomposition and AR with Kalman filtering [88], comparisons between MDP
and RNN [91], and comparisons between the probabilistic Markov model and six different
AR models [93]. Lastly, the analysis extended to comparisons between ANNNARX-MFA,
ANNNAR, and ARMA [97], as well as comparisons between ARIMA based on PACF and
ACF, and ARIMA based on AIC and ANN [98].

It is worth noting that within our systematic scoping review of 88 papers, a distinct
division was observed in the methodologies applied. While a substantial portion of the
studies, comprising 65 out of the 88, opted for traditional statistical time-series analysis
techniques, a smaller subset of 23 papers utilized machine learning algorithms. The preva-
lence of statistical time-series analysis techniques, particularly variations in AR models,
TFA, and wavelet analysis, highlights their historical significance, reliability, and ease of
interpretation. Researchers have traditionally relied on these well-established methods to
extract meaningful insights from temporal data. Subsequently, in the analysis of the healthy
and patient population data in this review, statistical time-series analysis and modeling
techniques demonstrated their efficacy in capturing cerebral physiologic signal relation-
ships. However, the use of machine learning algorithms in this domain signals a growing
recognition of their ability to uncover intricate patterns, particularly in cases where data
complexities call for more adaptive and data-driven modeling approaches. Through com-
parative studies pitting machine learning algorithms against statistical analysis techniques
for modeling as well as prediction abilities, a distinct advantage was observed in favor
of machine learning algorithms [13,25,45,87,88,93,97] with the exception of one study [98],
where ARIMA based on PACF and ACF with a higher accuracy with a mean R2 of 0.898
outperformed the ANN model with a mean R2 of 0.804. This observation with the exception
of the aforementioned study underscores the superior predictive power and adaptability of
machine learning methods in this context. Furthermore, the comparative analyses consis-
tently favored the use of nonlinear models [24,39,41,42]. This trend was also prevalent with
studies that perform modeling in conjunction with multiple-input signals [29,34,40–42].
The prevalence of multiple-input models exhibiting superior performance underscores
the significance of multivariate modeling and forecasting in this domain. It reinforces the
notion that incorporating information from multiple sources or dimensions enhances our
ability to understand and predict complex dynamic systems effectively.
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Notably, the majority of studies leaned towards nonlinear models, highlighting their
ability to capture the inherent complexities within the data. It is worth noting that this pref-
erence was consistent across various machine learning algorithms and statistical time-series
analysis techniques. However, in the study by Panerai et al., the linear Laguerre–Wiener
method notably outperformed its nonlinear counterpart during thigh cuff tests. This ob-
servation raises an intriguing point regarding the influence of the temporal pattern of
MABP fluctuations on the performance of nonlinear models [44]. This exceptional result
suggests that the specific characteristics of the data, particularly the temporal patterns of
MABP, may serve as crucial factors in determining the choice between linear and nonlinear
modeling approaches. Nonetheless, it is essential to exercise caution when generalizing
from this single instance. To validate this notion, further studies involving comparisons
between linear and nonlinear models should be conducted, specifically with data collection
under thigh cuff test conditions. These investigations are necessary to confirm the potential
impact of temporal patterns on model performance. Additionally, the incorporation of
machine learning methods warrants further scrutiny and validation to comprehensively
assess their efficacy in this context.

In our scoping review, we observed variations in the prediction accuracy of different
studies that focused on forecasting cerebral physiologic signals. Only a limited num-
ber of studies conducted prediction tasks within a healthy population. Liu and Allen
demonstrated the success of the ARX model in predicting step responses under various
conditions [38]. Marmarelis et al. showed significantly reduced prediction errors using
nonlinear two-input PDM models in CBFV prediction [39], while in a consecutive study,
Marmarelis et al. highlighted the importance of including HR and nonlinearities in reduc-
ing prediction errors [40]. In two separate studies, Mitsis et al. emphasized the benefits of
incorporating EtCO2 as an input and leveraging nonlinear models to achieve the lowest
output prediction errors [41,42]. In contrast, a larger number of studies have concentrated
on prediction within patient populations. Asgari et al. explored various regression and
forecasting models, with Lasso regression and random forest demonstrating high accuracy
for ICP forecasting in a patient population [55]. Similarly, Güiza et al. favored the GP
model for predicting ICP episodes in TBI patients [55]. Myers et al. identified the crucial
role of ICP and its changes in predicting elevated ICP and hypoxic events, with the AR-OR
model providing advance warnings [76]. Petrov et al. highlighted the superior performance
of random forest in onset ICP crisis prediction [79], while Scalzo et al. found that Extra-
Trees was effective in temporal ICP prediction, the performance of which was followed by
AdaBoost and multilinear classifiers [3]. In two separate studies, Swiercz et al. showed
that ANN outperformed traditional predictors, especially when combined with wavelet
decomposition [87,88]. Tsui et al. introduced the MDP model as an efficient ICP predictor in
short- and long-term intervals [91]. Wijayatunga et al. developed probabilistic Markov and
AR models for individual patient ICP predictions [93]. Zeiler et al. demonstrated, in two
separate studies, the effectiveness of LME models with ARIMA for PRx estimation [2,94].
Similarly, two separate studies by Zhang et al. favored ARIMA models based on PACF
and ACF for continuous trend prediction [97,98]. These studies collectively provide a
comprehensive overview of the diverse predictive capabilities, especially in the field of ICP
prediction, offering valuable insights for patient care and management.

In the context of cerebral physiology signals, the predominant focus in the majority
of the studies has been on the modeling and prediction of CBFv and ICP signals. In the
healthy population studies, the primary focus of analysis and modeling centered around
CBFv. In contrast, within the patient population, particularly among TBI patients with
varying severity, most studies predominantly concentrated on modeling ICP. This shift
in focus towards ICP is crucial from a clinical perspective, as it aligns with the critical
importance of ICP prediction in clinical practice. However, this concentration has resulted
in a noticeable gap in the exploration of the signal modeling and prediction of HbO with
twelve articles [19,21–23,28,36,43,52,53,64,70,71], rSO2 with one article [1], and SctO2 with
one article [90], leaving significant room for further investigation and research in these
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areas. On the other hand, while the number of animal studies in our review was limited, it
is worth noting that all of these studies were dedicated to modeling CBF. In these animal
studies, a consistent pattern emerged as they exclusively relied on statistical analysis
methods to achieve their modeling objectives.

As previously mentioned, machine learning algorithms consistently demonstrated
superior performance when compared to statistical time-series analysis techniques. Specif-
ically, SVM stands out as an extensively employed method [13,24,25,57,61], consistently
exhibiting excellent predictive capabilities. Nevertheless, notable findings from various
studies indicate that ExtraTrees [3] and random forest [61,79], which are ensemble learning
algorithms, have consistently outperformed other machine learning models such as SVM,
linear regression, Lasso regression, and XGBoost. These findings underscore the potential
promise of ensemble learning methods, and they merit further investigation and validation
in comparison with both statistical time-series analysis techniques and additional machine
learning algorithms, including ANN, HMM, and deep learning approaches such as RNN.

Future research endeavors should focus on comprehensive performance assessments
to elucidate the strengths and limitations of these modeling approaches within the con-
text of cerebral physiologic signal analysis. Furthermore, exploring the potential of deep
learning algorithms, such as CNN and long short-term memory (LSTM), which is a type of
RNN known for its ability to capture long-range dependencies, holds significant promise.
LSTM possesses unique capabilities that enable it to effectively learn and leverage tempo-
ral dependencies, which can potentially result in substantial improvements in prediction
accuracy. On the other hand, CNN excels in capturing spatial and hierarchical patterns
in data. By combining the temporal modeling strengths of LSTM with the pattern recog-
nition capabilities of CNN, it could be possible to enhance cerebral physiology modeling
and prediction.

4.1. Limitations of the Literature

We have identified 88 studies with varying study cohorts and cerebral physiologic
data. Among the healthy cohort, the CBFv recorded with TCD probes from the MCA was
the most studied cerebral physiologic signal. In patient cohorts, although the majority of
the studies included ICP signals, several studies assessed CBFv signals recorded with a
TCD probe from the MCA. These studies assumed that the changes in CBFv were indicative
of alterations in CBF which relies on the assumption that the diameter of the insonated
segment of the mid-cerebral artery remains constant. However, this assumption may not
hold true in all situations as the diameter of blood vessels could change as a response
to variations in blood flow [119]. Additionally, TCD ultrasound may encounter various
technical limitations, including technician proficiency, the clarity of the temporal bone
window, and the impact of insonation angles on recorded CBFv measurements [120]. If the
assumption that the diameter of the insonated segment remains constant is not correct, it
can lead to inaccuracies in estimating actual CBF based on CBFv measurements. Another
limitation arises from the use of PRA and CrCP, which are estimated using ABP signals;
hence, the accurate estimation of PRA relies on the accuracy of non-invasive measurements
of ABP [47]. In the studies modeling ABP and CBFv, the variance in measurement positions
may introduce a time lag between CBFv and ABP recordings, potentially leading to an
overestimation of the phase shift at HF ranges [49]. Furthermore, this systematic review
highlights the scarcity of studies and underscores the necessity for further research to
analyze the potential relationship between cerebral pressure–flow and specific neurological
conditions, such as brain tumors, Alzheimer’s disease, and Parkinson’s disease. Finally, it
is important to note that studies focusing on prediction lack a standardized approach for
reporting prediction accuracy or error metrics. This absence of a consistent reporting style
hinders the comparability and cross-validation of results with other studies, potentially
impeding the synthesis of findings within the field.
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4.2. Limitations of This Review

This systematically conducted review aimed to provide a comprehensive scoping
overview of the literature on time-series analysis, modeling, and prediction within the
realm of cerebral physiologic signals. Nevertheless, several inherent limitations should be
acknowledged. Firstly, the inherent heterogeneity in experimental designs, subjects, and
data modalities across the included studies precluded the possibility of conducting a meta-
analysis. The diversity of experimental conditions rendered a meta-analysis neither feasible
nor appropriate, as the studies exhibited substantial variability. Secondly, we excluded EEG
studies from this systematic scoping review to specifically focus on cerebral pressure–flow
dynamics. While EEG represents a significant component of cerebral physiology research,
its extensive representation in the literature of cerebral electrophysiologic signals modeled
warrants a dedicated review of its own. Thirdly, our focus was exclusively on time-
series signals, and as such, we did not include imaging modalities, such as CT, PET, and
MRI, within the scope of this review. Imaging studies, although valuable in cerebral
physiology research, do not typically capture temporally resolved data and, therefore, were
not considered in this analysis. Fourth, while efforts were made to include the most up-to-
date research, it should be noted that some of the latest developments may not have been
covered in this review, due to the database search dateline, which ended in mid-March 2023.
Lastly, it is important to note that this review only includes English-language studies, which
may introduce a potential language bias and potentially limit the comprehensiveness of
our review. These limitations underscore the need for future research endeavors to address
the challenges posed by heterogeneity, explore the rich landscape of EEG studies, and
delve into the distinctive characteristics of imaging modalities in the context of cerebral
physiologic signal analysis. Additionally, efforts to encompass a wider linguistic range of
studies can further enrich our understanding of this complex domain.

4.3. Future Directions

In our systematic review of cerebral physiologic signal time-series analysis, we ob-
served notable research gaps. While machine learning algorithms, particularly SVM and
ensemble learning methods like ExtraTrees and random forest, have consistently demon-
strated superior performance compared to statistical time-series analysis techniques in
terms of prediction, there remains a need for comprehensive assessments, including com-
parisons with additional machine learning models such as ANN, HMM, and deep learning
approaches like RNN. Additionally, the potential of deep learning algorithms, such as
CNN and LSTM, has been underexplored, despite their ability to capture long-range de-
pendencies and spatial patterns, respectively, which could significantly enhance cerebral
physiology modeling and prediction. Moreover, our systematic review highlights the
prevalence of studies leaning towards nonlinear models. To delve deeper into this trend
and fully comprehend its implications, further research should explore the applicability of
nonlinear models across various cerebral physiologic signals and experimental conditions.
Investigating the robustness of these models under diverse scenarios will contribute to a
more nuanced understanding of their performance. Furthermore, our review revealed a
concentration on modeling and predicting CBFv and ICP signals, leaving a considerable
research gap in the exploration of HbO and rSO2 signal modeling and prediction. Ad-
ditionally, there is potential for integrating assessment through the utilization of smart
chip-based sensors to process data directly within the device or through a separate device
that consolidates multiple signals for predictive analysis. Such advancements hold promise
for enhancing diagnostic capabilities and facilitating real-time monitoring, thus warranting
further investigation. Future research endeavors should aim to fill these gaps by conducting
comprehensive assessments of ensemble learning methods, exploring the potential of deep
learning algorithms, and dedicating efforts to the modeling and prediction of oxygenation
signals, ultimately advancing our understanding and applications in cerebral physiologic
signal analysis.
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5. Conclusions

In conclusion, our systematic scoping review of cerebral physiologic signal time-series
analysis aimed to provide a comprehensive understanding of existing methodologies for
the modeling/prediction of continuous cerebral pressure–flow dynamics and to identify
areas for future research. We have observed that machine learning algorithms, notably SVM
and ensemble learning methods like ExtraTrees and random forest, exhibit promising capa-
bilities in modeling and prediction, highlighting the need for comprehensive assessments
against a wider array of machine learning models. Furthermore, the untapped potential
of deep learning algorithms, including CNN and LSTM, offers exciting avenues for im-
proving accuracy in cerebral physiology modeling. We also emphasize the importance
of addressing the research gap in the modeling and prediction of HbO and rSO2 signals,
as this remains a relatively unexplored area with significant clinical implications. By ad-
dressing the identified gaps, substantial contributions could be made for the advancement
of cerebral physiologic signal analysis, ultimately improving real-time interpretation and
prediction for the benefit of life, health, and veterinary sciences.
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