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Abstract: In this paper, a novel Multi-Objective Hypergraph Particle Swarm Optimization (MO-
HGPSO) algorithm for structural health monitoring (SHM) systems is considered. This algorithm
autonomously identifies the most relevant sensor placements in a combined fitness function without
artificial intervention. The approach utilizes six established Optimal Sensor Placement (OSP) methods
to generate a Pareto front, which is systematically analyzed and archived through Grey Relational
Analysis (GRA) and Fuzzy Decision Making (FDM). This comprehensive analysis demonstrates
the proposed approach’s superior performance in determining sensor placements, showcasing its
adaptability to structural changes, enhancement of durability, and effective management of the life
cycle of structures. Overall, this paper makes a significant contribution to engineering by leverag-
ing advancements in sensor and information technologies to ensure essential infrastructure safety
through SHM systems.

Keywords: structural health monitoring; Multi-Objective Hypergraph Particle Swarm Optimization;
Optimal Sensor Placement; Grey Relational Analysis; Fuzzy Decision Making

1. Introduction

The introduction section provides an overview of structural health monitoring (SHM)
and its importance in assessing and diagnosing infrastructure health. It highlights the
advancements in sensor and information technologies that have revolutionized SHM. The
section also introduces the novel Multi-Objective Hypergraph Particle Swarm Optimization
(MOHGPSO) algorithm proposed in this paper.

The practice of developing and implementing strategies and procedures for the on-
going assessment and upkeep of an edifice’s structural integrity is termed SHM. The
substantial costs associated with repairing and rehabilitating bridges and high-rise build-
ings underscore the importance of advancing structural reliability and integrity monitoring.
Integrating SHM technologies can significantly prolong the lifespan of a structure, enhance
security, and reduce restoration expenses. While the deterioration of system conduction is
inevitable, it can feasibly be reversed, however, structural failure or loss of functionality
can be prevented.

Non-destructive techniques (NDTs) are employed to detect local deterioration in
Reinforced Cement Concrete (RCC) structures, such as the formation of fractures and
corrosion. RCC is a type of concrete that contains reinforcement materials, such as steel
bars, to enhance its strength and durability in structural applications.

SHM assesses the structure’s oscillations through damage detection schemes. Dam-
aged structures exhibit different mass, stiffness, and damping values, affecting modal
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structure, strain energy, and inherent frequency [1]. The selection of appropriate sensor
types and damage detection techniques is based on these features [2]: considering eco-
nomic, environmental, and operational constraints [3]. SHM allows for the collection of
intermittent or real-time continuous data, enabling the estimation of a building’s current
health and future performance, and facilitating better preventative maintenance [4].

SHM is a multi-stage process reliant on prior stages for progression. Traditional wired
systems use coaxial wires for data transport, ensuring data reliability and security on central
servers. However, their cost-effectiveness is limited to smaller buildings or specific location
studies. The overall cost of a wired network is determined by the size of the data collection
system, leading to increased installation costs for large-scale structures [5]. To address this,
there is a motivation to transition from wired to wireless structural monitoring.

The implementation of Wireless Sensor Nodes (WSNs) in structural health monitoring
introduces various challenges, with each component in Figure 1 of SHM representing
a research area. Effective sensor placement requires an in-depth understanding of the
structure and the qualities gathered by the sensors, potentially involving optimization tech-
niques, or drawing conclusions based on similar structures. Despite increased installation,
maintenance, and weight costs, sensors on a structure can enhance the durability of an
SHM system in case of crucial sensing node failures [6]. The efficiency of data collection
and visualization relies on optimal sensor placement to conserve sensor nodes’ energy.
Therefore, this article focuses on the positioning of sensor nodes as a key objective. The
major contributions of this work, following the outlined motivation, are:

• A novel optimization algorithm with the concept of a hypergraph is developed for the
optimal sensor’s placement in the structure.

• Multiple structural objectives are incorporated to decide the location preference, and
a Pareto front with the non-dominated solutions in the archive is developed.

• A novel relational analysis is developed to determine the new solution’s entry in the
archive of the Multi-Objective Hypergraph Particle Swarm Optimization algorithm.

• Fuzzy decision-making is used to obtain the single optimal solution from the archive.
• A spring–mass system and fixed wing of an airplane are used for the analysis.

The remainder of this paper consists of a study of the relevant literature in Section 2,
followed by a discussion of the methodology being proposed in Section 3. In Section 4, we
dive deeper into the multi-objective HGPSO and the innovative archive solution. Section 5
presents the analysis of the structural items, and Section 6 draws a conclusion based on
this study.
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2. Literature Review

The literature review section discusses previous studies and research related to SHM
systems. It mentions the use of automated sensor-based data-gathering strategies and
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storage module approaches for extracting sensor data and determining the extent of damage.
It also highlights the development of OSP techniques for specific structures.

SHM is an advanced system that employs advanced sensing technology and auto-
mated data collection procedures to help predict the deterioration of a structure at an early
stage. It is possible for businesses and researchers to apply this predictive study to gain a
better understanding of the structure’s nature, standards, and bearing capacity under static
and dynamic load conditions. The dynamic load of a structure can be calculated in addition
to the static load resulting from its design or from the interactions between the structure
and its environment. Dynamic loads can be calculated using a variety of methods, such as
model identification using natural frequencies, time history analysis, or response spectra,
among others. Olivera Lopez et al. [7] carried out a real-time examination of a 14-story
structure in dynamically stressed conditions near the coastal region of Chile. In order
to assess whether or not the structure could sustain a tsunami, Yanet et al. [8] identified
that in order to more evenly distribute the weight and increase the sensor’s lifespan, the
structure should be equipped with more sensors. The researchers conducted an analysis of
the sensor’s lifespan. This strategy is referred to as the “communication technology load”
in the industry.

Roghaei et al. [9] employed a static evaluation with SAP2000 software v17.0.0 and
FEMA356 documentations while analyzing stress and deformation in a steel triple-story
hospital construction. Zhou et al. [10] employed vibration analysis to detect damage,
employing a more precise method known as the “hysteresis loop approach” to achieve their
results (HLA). Using a 12-story reinforced concrete frame building to evaluate stiffness
fluctuations, they discovered that the pinched technique was the most accurate because it
properly predicted changes in cardinal frequencies close to 0.05 Hz.

Pierdicca et al. [11] used an operational model analysis (OMA) approach in conjunc-
tion with a finite element model (FEM) for numerical simulation to analyze the dynamic
behavior of a reinforced concrete school building; their findings were satisfactory in terms
of both cost savings and accuracy, as demonstrated by their one-year monitoring.

Antunes et al. [12] found that the stiffness of an adobe masonry building decreased
when the fundamental frequency dropped. The fundamental frequency of the test was
found to have decreased by 48%. Sajedi et al. [13] conducted an experiment that employed
44 shaking tables. With the aid of OpenSees software (version 3.0.2), a three-story RC
moment frame construction framework model with 180 ground motions and a 5400-time
history analysis was produced. According to the simulation results, the incidence, location,
and severity of damage were all predicted with 96, 87, and 90% accuracy. In the lab,
damage classes could be predicted with a high accuracy of 92%. With the help of piezo
materials, Gao et al. [14] conducted an experiment in which they recorded the time of
arrival, carried out impedance analysis, and performed sweep frequency investigations
through the demonstration of an embeddable tubular smart aggregate (TSA). For 2D
concrete buildings, the outcomes were satisfactory.

Chatzis et al. [15] used an accelerometer to compute the intensity and determine the
site of damage in a laboratory experiment involving shake tables. To determine the extent
and location of damage, they used an improved T-SSID method using an unscented Kalman
filter (UKF). The Bayesian time domain and the n4sid algorithm were used to compare
T-SSID with UKF to determine which was better. Because of its quick approach to damage
prediction, the UKF method was preferred above other damage prediction techniques.

Soltaninejad et al. [16] compared the short-time matrix pencil method (STMPM) with
the discrete wavelet transform to produce a simulation for two neighboring structures
to anticipate thumping under a unary-degree-of-freedom setup considering 36 cases. In
fact, the data showed that STMPM was able to predict less severe damage rather than
being affected by the size of the associated harm. The tool also helped in the prediction of
sensor damage in both low- and high-resolution applications. The results of a one-month
study conducted on the Sciri tower in Italy by Garca-Macas et al. [17] included the use of
12 accelerometers, and integrated ambient noise deconvolution interferometry, i.e., ANDI,
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along with multichannel optical analysis (OMA) to assess three frequency levels, estimated
in the ranges of 200, 1000, and 5000 Hz. It was discovered that temperature fluctuations
cause distortions, and the mode of wave propagation was investigated as a result.

Sun et al. [18] used three methods to determine the combined height of two buildings:
system identification, wave propagation analysis using interferometry, and wave-based
damage detection. They used the combined height of the two structures to present a model
of a skyscraper, for example, the Al Harma Tower in Kuwait, which has 86 floors and a
height of about 413 m. The dead weight of the building and the seismic response caused
significant deformations in the structure. Morales-Valdez et al. [19] employed a microelec-
tromechanical system (MEMS)-based accelerometer sensor (model code ADXL203E) to
assess the disfigurement in a five-story building with dimensions of 60 × 50 × 180 cm by
employing a wave propagation method to measure the force applied to the accelerometer
sensor. According to the findings, the wave technique outperformed the modal analysis
method in terms of stiffness reduction when only two factors were used: the minimal shear
wave velocity and the Kelvin damping coefficient.

Valinejadshoubi et al. [20] focused on the purpose of extracting sensor data and
determining the extent of the damage, and created the building information modeling (BIM).
They used an automated sensor-based data-gathering strategy as well as a storage module
approach in order to do this. Pachón et al. [21] developed a fine-tuned element model to
forecast transient characteristics, such as mechanical vibrations and model classification,
for an OSP technique for the Monastery of San Jeronimo de Buenavista in Seville, Spain.

The OSP functions mentioned in the sources are the methods or algorithms used to
calculate and optimize the sensor placements in SHM systems. The MOHGPSO algorithm
introduced in this paper utilizes six established OSP methods to generate a Pareto front
of sensor placements, which is then analyzed using GRA and FDM techniques. The OSP
functions aim to maximize the performance of the SHM system by considering factors such
as modal strain energy, mode shapes, and the spatial relationships of model shapes. These
functions play a crucial role in autonomously determining the relevant sensor placements
without artificial interventions, ensuring the effectiveness and efficiency of the SHM system.

The energy matrix rank optimization techniques (SEMRO, KEMRO) and the con-
structive autonomy of target mode forms (EFIwm and EFI) serve as the foundation for
four methodologies for analyzing the dynamic behavior of buildings: SEMRO, KEMRO,
EFIwm, and EFI. KEMRO had a larger level of error in modal identification, but EFI had a
lower level of error in the natural frequency. For the Italian Consoli Palace, Garca-Macas
and Ubertini [22] used an automated anomaly detection system to foretell harm. Three
models were taken into consideration: PCA, autoregression with an extrinsic input model
(ARX), and multiple linear regression (MLR), in order to analyze local and global damage
depending on the amplitude and resonant frequency.

To summarize, SHM utilizes advanced sensors and automated data collection to pre-
dict early-stage deterioration in structures. These systems aid in comprehending structure
characteristics, standards, and load-bearing capacities under static and dynamic condi-
tions. Dynamic loads are assessed through model identification, time history analysis,
and response spectra. Real-time examination under dynamic stress allows the assessment
of structures’ resilience to events like tsunamis. Increasing sensor deployment enhances
weight distribution and extends sensor lifespan. Nonlinear static evaluation and vibra-
tion analysis detect stress, deformation, and damage. OMA and FEM analyze dynamic
behavior, while piezomaterials and smart aggregates record arrival times and investigate
frequency. Accelerometers and methods like the unscented Kalman filter compute intensity,
locate damage, and predict it swiftly. Techniques such as the short-time matrix pencil
method and discrete wavelet transform simulate impacts and predict damage to nearby
structures. BIM and automated sensor-based data gathering extract sensor data for damage
extent determination.
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3. Methodology

The methodology section describes the proposed MOHGPSO algorithm and OSP. It
explains the concept of a hypergraph and how it is incorporated into the algorithm. This
section also mentions the use of GRA and FDM to analyze and archive the generated
Pareto front.

The study presented in this paper demonstrates the utility of precursory ambient
vibration test outcomes incorporated into material parameter uncertainties, providing a
rigorous framework for comparing various OSP approaches for developing cost-effective,
protracted monitoring systems. Among the FEM-based OSP methodologies examined, the
EfI methods offer a solution that allows for the detection of fundamental frequencies with
lesser inaccuracy while also ensuring a significantly low dispersion in the solutions. The
sensor configurations obtained using the Driving Point Residue (DPR) method provide
more information about the mode shapes, which aids in the prediction of a uniform sensor
distribution throughout the edifice. The procedures in the average driving point residue
(ADPR) and EfI-DPR methods augment this advantage on a larger scale. The Eigenvalue
Vector Product (EVP) approach ensures the identification of invariance principles and
undertakes a least square error analysis of data. The mode shape summation plot (MSSP)
expediently identifies the highest deformation for the quickest assistance of the damage
diagnostics. In our study, the required number of sensors is deduced, deploying the
EfI-DPR method to find the optimal organization in each case. Then, EVP is deployed,
which takes into account both a posited strain energy dispersion template and a surmised
connectivity to form a well-established linear least squares problem involving the elemental
stiffness matrix eigenvalues obtained. For the analysis of the reliance on the OSP solution,
the results of the ambient vibration tests are employed.

3.1. Problem Statement

The limited supply of sensors and the conspicuous complexities of the typical issues in
the contemplation project have extensive mutual incompatibility. Nearly all the proposed
solutions are classifiable into two predominant approaches: one evinces single-objective
optimization, while the other delineates a multi-objective viewpoint. However, single-
objective methods typically do not reflect all performances of mode testing. This provokes
the overlooking of certain potential optimal sensor placement methods in almost all such
cases, and consequently, the respective methods are deemed ineffective in determining
the aspired placement structure. Thus, it transpires as a prominent rationale behind the
preference for multi-objective optimization in SHM over the single-objective approach.
Just to augment this annotation, the subsequently generated respective series of solution
sets, i.e., the Pareto front, require a trade-off of the distinct objectives, which is achieved
to a greater degree by multi-objective optimization algorithms, as compared to single-
objective techniques.

Notwithstanding the multi-objective optimization approaches, perforce presumes high
auxiliary calculation costs. As a result, there are numerous proposals for improving the
practical implications of multi-objective development techniques for OSP situations. The
most promising suggestions propose transforming the multi-objective problem into a suit-
able single-objective conceptualization. Even the most basic mathematical operations, such
as logarithm, product, exponent, or even summation, can realize various congregated OSP
fitness methods with improved results. Nonetheless, such processes have a hidden procliv-
ity to cause order discrepancies among the separate OSP methods. The focal strategies used
to actualize the enhanced multi-objective optimal sensor placement techniques involve
the diametrical transformation of the multiple objectives into a relevant single-objective
format, which is either maneuvered according to determined weight factors (representation
of the significance of each objective from the perspective of a decision maker) or is realized
through the use of Pareto front optimization procedures.

The weight-factor-oriented strategy is simple and does not require algorithm adjust-
ments because, following the aggregation step, a single-objective algorithm is used to
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identify the optimal solutions. In the absence of a decision-making paradigm, a Pareto opti-
mum set can be formed by reiterating the single objective method with different weights.
However, such an artificial setting may disturb the intrinsic characteristics of myriad meth-
ods in integrated optimization. Two noteworthy limitations become inevitable with this
method. The normalization of each aim, first and foremost, demands assignment with a
certain weight factor, or else the priority disparity and computational inaccuracies cannot
be eliminated. Furthermore, in the absence of a supported computation or reference, the
weight factor determinations are deemed arbitrary. In such cases, revising the weight
factors for the combination of the objectives stipulates another function, requiring recal-
culation of the overall optimization and inflicting high computational costs. The pivotal
drawback of this approach is that even symmetrically distributed sets of weight parame-
ters may precipitate an asymmetrically dispersed collection of Pareto optimal solutions.
Additionally, finding non-convex neighborhoods among the Pareto optimal front becomes
unfeasible due to the summation of objectives using positive weights.

On the contrary, an alternative bracket of multi-objective contingent escalation tech-
niques utilizing interactive approaches makes it easier to incorporate decision-making
preferences during optimization. The multi-objective formulation is preserved in this
technique, but the programmed execution is interrupted to retrieve the decision-maker’s
preferences. This strategy aids in avoiding the survey of undesired search space regions
or the Pareto optimal front. Nonetheless, it requires human intervention and is therefore
intrinsically protracted as compared to the aggregation or a posteriori algorithm. Conver-
gence, i.e., the accuracy and speed of an approach in modeling Pareto optimal solutions,
and coverage are two critical goals for ascertaining the Pareto optimal front employing a
posteriori approach. As a result, extra weights or aggregation are rendered obsolete. As
a result, the Pareto optimal solution set is determined in just one run, emphasizing the
typical need for distributing solutions over the objectives to reinforce decision-making with
multiple possibilities.

The ultimate goal of these propositions is to find a precisely explicit Pareto optimal
solution set with as little participation in function evaluation as possible. This entails
assigning Pareto optimum solutions to all objectives. As a result, a constructive algorithm
is predicted to locate a symmetrically dispersed Pareto optimal front from a large number
of different designs. However, the main constraint here is that coverage and convergence
seem to be in contradiction, and so an approach is required to effectively counterbalance
both in order to solve real-world multi-objective problems.

3.2. Proposed Methodology

SHM systems based on Operational Modal Analysis (OMA) and damage diagnostics
are now authorized non-destructive techniques for assessing the real-time integrity of
any architecture. OMA has the capacity to identify a building’s modal qualities. Modal
update approaches aim to reduce disparities between practically inferred modal features
and numerical model estimations, often based on the Finite Element Method (FEM), by
fitting specific modal parameters.

Generally, SHM assemblies aim at controlling the structural performance of a build-
ing while recognizing any disfigurement and facilitating a condition-based conservation
management system. To realize this particular objective, OSP methods provide prolific as-
sistance by furnishing an efficient design of the optimized sensor orientation for an accurate
determination of vibrational properties with fewer measurement points. The minimization
of sensor count is a critical problem in this approach since it suggests protrusive diagnosis
and has no impact on the building’s structural integrity. One of the crucial parameters
of the design in diagnostics is the sensor placement for the efficient identification of the
condition data.
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Using data from sensors placed at the respective optimal configuration in the case of
each of the OSP methods, the respective modal properties are determined, which are then
treated as a vector of decision variables represented as:

x = [x1, x2, . . . , xn]
T (1)

Using this vector, the General Multi-Objective Optimization Problem (MOP) has been
deduced in the form of the following vector function:

f (x) = [ f1(x), f2(x), . . . , f6(x)]T (2)

Here, f1(x) represents the EfI function, f2(x)—the DPR, f3(x)—the ADPR, f4(x)—the
EfI-DPR, f5(x)—EVP, and finally f6(x) demonstrates the MSSP methods. The objective of
this approach is to find the particular vector that can be represented as,

x∗ = [x∗1 , x∗2 , . . . , x∗n]
T (3)

which satisfies the following m inequality constraints:

gi(x) ≥ 0 i = 1, 2, . . . , m (4)

and also complies with the given p equality constraints:

hi(x) = 0 i = 1, 2, . . . , p (5)

and thus, it can effectively optimize the respective deduced vector function f (x), i.e., the
current MOP in consideration.

In the context of evolutionary Multi-objective Optimization (EMO), the focal point lies
in enhancing the efficiency of algorithms and data structures for storing non-dominated
vectors. This involves sustaining diversity, reducing population size, and employing data
structures for navigating unconstrained external archives of particles. The primary purpose
of the external archive is to track non-dominated vectors or optimal position configurations
discovered during the search process. Comprising an archive controller and a grid, the
archive controller evaluates each vector in the primary population, incorporating only
non-dominated ones based on Pareto dominance, while discarding dominated solutions.
The proposed method introduces a novel archive controller utilizing GRA for this data
comparison. When the external population exceeds the permissible capacity, an adaptive
grid technique is invoked, creating space through hyper-cubes or hyper, depending on
objective function range scaling. The objective parameter space in the archive is partitioned
into these regions, uniformly distributed among the hyper-cubes/hyper-parallelepipeds. If
the current insertion surpasses the grid’s constraints, a recalculation is performed, necessi-
tating the relocation of individuals. The adaptive grid’s advantage lies in its significantly
lower operational cost compared to niching, if not equivalent.

Thus, the accumulated position configurations are analyzed using the Pareto dom-
inance tenets and incorporated into an enhanced HGPSO Algorithm that involves the
amalgamation of Multi-Objective Optimization, i.e., MOHGPSO. This approach stands sui
generis through variegation of the search proportions and also circumvents the precipitous
convergence of particles. Here, the fitness eigenvalues of the obtained position orientations
are calculated by a hypergraph. The concerning system has been presupposed to be a single
cluster of all particles, where all particles are mutually interconnected. In a dynamic search
space, each particle is treated as a node of the graph. Additionally, to aid in the realization
of the aforementioned presumptions, a new term, namely, spectral cognition, has been
introduced into the picture.

In Figure 2, the outline of the described methodology has been demonstrated in the
form of a block diagram, which is further assisted by the following Algorithm 1.
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Algorithm 1: Coarser pseudocode for the proposed methodology

Input: structure information from the FEM analysis, number of sensors m
Output: optimal locations of the sensors

1. Get the random binary matrix for the sensor’s placement Xt
iϵ[0,1], t = 1, 2 . . . maxiter

2. Calculate the multi-objective functions Ft from the structural analysis
3. Store the Xt

iϵ[0,1] and Ft in the external archive when t = 1

4. Update the particle’s position using the hypergraphed PSO
5. Repeat the step 2 and 3 for t = 2
6. Use the Grey relation analysis (GRA) on the archived particles to select the

non-dominated solution
7. Update the archive
8. If iterations are finished

a. Stop

9. Else

b. Repeat step 2 and 3

10. End
11. Select the single solution from the final archive using Fuzzy Decision modelling (FDM)

4. Proposed Solution

This section provides a detailed explanation of the proposed MOHGPSO algorithm
and its application in determining the most relevant sensor placements. It discusses the
incorporation of multiple structural objectives and the generation of a Pareto front with
non-dominated solutions. The section also mentions the use of a novel relational analysis
to decide new solutions’ entries in the archive.

4.1. Sensor Nodes’ Placement’s Objective Function

Generally, contrasting objectives are triggered when the rudimentary supply of sensors
is faced with the incompatible complexity of routine multi-objective problems at hand.
This provokes the generation of a series of solution sets, i.e., the Pareto front. These
non-dominated fitness functions delineate a barter of the conflicting objectives, which
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is better obtained through multi-objective optimization algorithms, as compared to the
single-objective ones [23].

Nevertheless, multi-objective optimization problems customarily demand high calcu-
lation costs [24]. Furthermore, choosing one or some of the optimal fitness functions from
any of the optimum solution sets at or around the Pareto front is a diabolical task in and
of itself. As a result, advancement has become a requirement for the practical utility of
multi-objective optimization algorithms in OSP challenges.

The transition of multi-objective problems into single-objective problems is effective,
but two restrictions are unavoidable [23]. To begin, each objective’s normalization must
be assigned a weight factor, otherwise the priority discrepancy and computation errors
cannot be eliminated. Second, if there is no supported analysis or reference, the weight
factor decisions become arbitrary. In such circumstances, altering the weight factors for the
combination of the objectives specifies another function, causing recalibration of the total
optimization, and incurring large operational expenses.

Nominating the analogous high-energy sensor orientations helps refine the ratio of
signals regarding noise. On the other hand, subjugating the consequence of excessive or
insufficient internal energy has been shown to be useful in process optimization. In the
big picture, the traditional goals of optimizing sensor placements focus on three common
perspectives: linear independence, energy, and average energy, and there are certain
Optimal Sensor Placement approaches that show promise in achieving these.

4.2. EfI Method

Effective Independence has been perceived as an iterative approach that ranks candi-
date sensor locations according to their contribution to the linear independence of the target
modal partition. The EfI function strains upon the escalation of linear independence [25]. It
is an adroit approach to u(t), centered on the modal superposition theory, which is obtained
via N mode shapes as:

u(t) = Φq(t) + ω = ∑N
i=1 φiqi(t) (6)

Here,

Φ: n x n matrix of modal shapes
φi: its i-th order
n: candidate sensor positions count
N: order number
q(t): the generic modal coordinates
qi(t): its i-th order
ω: noise vector

Generally, the inverse operation of Equation (7) is used through the modal identifica-
tion process [26] to recover the associated modal responses Φ from the system vibration
signal q. When an efficient neutral interpolation is applied to E, the covariance of the
erroneous outcome J is determined as follows:

J = E
[
(q − q)(q − q)T

]
=

[
1
σ2 ΦTΦ

]−1
= Q−1 (7)

Here, Q is the Fisher Information Matrix (FIM), generally expressed as

Q =
1
σ2 ΦTΦ =

1
σ2 A0 (8)

In order to achieve the optimum estimation, A0 needs to be maximized. Furthermore,
ED is calculated as:

ED = ΦTΨλ−1(ΦΨ)−1 = Φ(ΦTΦ)−1ΦT (9)

Here, Ψ and λ are the analogous eigenvector and eigenvalue of A0, respectively.
Following a reiterative template, the minimal term in ED is rejected after each iteration
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while matching entities are deleted from the mode forms until the desired sensor count, m,
is reached. The contributions of sensor sites to structural mode independence have been
observed to be proportional to the value of ED.

4.3. Driving Point Residue (DPR)

The DPR strategy [27] has promising prospects for determining a specific sensor
position. It can be represented as an equivalence to modal participation factors, which
assess the level of excitation or participation of each mode value in the overall response. The
amplitudes of the resonance spikes in the frequency response function of a driving point
are proportional to the magnitudes of the driving point residues. This is an energy-oriented
OSP approach, and when DPR values increase, sensor placements become more constant.
It has been established that:

DPR = Φ ⊗ ΦΩ−1 (10)

Here, ⊗ is term-by-term matrix multiplication, and Ω denotes the circular frequency
matrix. Each element of the DPR matrix represents the driving point residue contribution
of that degree of freedom in a particular target mode.

4.4. Average Driving Point Residue (ADPR)

The Average Driving Point Residue [28] approach dispenses the measure of a point’s
contribution to global performance. It is effective in reducing the effect of the zero-motion
point. The ADPR in the i-th DOF for all N mode shapes can be determined using the equation:

ADPRi =
1
N ∑N

j=1 DPRij (11)

Here, ADPRi is the measure of participation of i-th DOF, and DPRij determines the
i-th DOF associated with the j-th mode order.

4.5. EfI-DPR Method

The EfI function achieves noteworthy efficiency in maximizing the lineal autonomy of
the delegated modes. Notwithstanding, it does not take into account the energy of the whole
assembly. Suboptimal sensor placements make mode detection harder in circumstances
with a weak signal-to-noise ratio. The EfI-DPR [29] method has been demonstrated to
overcome these shortfalls. The effective independence driving-point residue (EfI-DPR)
method delivers an efficacious approach for optimal sensor placement applications, in
which the EfI metrics are weighed, including the associated DPR, as shown below:

ED DPR = ED ⊗ DPR (12)

Thus, this approach effectively balances both independence attributes and energy.

4.6. Eigenvalue Vector Product (EVP)

The eigenvalue vector product (EVP) [30] is a further energy-oriented OSP function,
based on an empirically obtained flexibility matrix being projected out onto the strain
energy redistribution in regional or local super elements. It takes into account both a
posited link and a presumed strain energy distribution pattern while constructing a well-
established linear least squares problem involving elemental stiffness matrix eigenvalues.
Individual element or super element stiffness is proportional to these eigenvalues. This
methodology incorporates the construction of modal degrees of freedom as derivatives of
recorded sensor degrees of freedom to account for position offsets in practical sensor data.
The following is the implementation:

EVPi = ∏N
j=1

∣∣Φij
∣∣ (13)

Sensors are placed at locations with the largest EVP values to ensure the maximum
vibration energy.
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4.7. Mode Shape Summation Plot (MSSP)

The mode shape summation plot (MSSP) method for OSP can be perceived as an
approach similar to the EVP. As demonstrated in [31], its implementation may involve
the calculation of the sum of a set or subset of (target) modes, and for a given set of
modes and within the selected modes (assembly or component), a user-specified number of
modes with the highest (summed) deformation will be grouped. It is also an energy-based
OSP method. Its customary utility is to select sensors in the initial case by deleting the
low-energy positions, as follows:

MSSPi = ∑N
j=1

∣∣Φij
∣∣ (14)

Here, MSSP values for the i-th case are calculated by considering the mode values Φij
in the target subset for each element from j = 1 to N specified by the user.

4.8. Multi-Objective OSP to Relational Objectives

The whole perception of GRA is pivoted on a specific concept of information. In
this technique, situations with no information are supposed to be defined as black, while
those with perfect information are deemed white. Nevertheless, both scenarios act as the
idealized extrema, and the practical issues at hand are somewhat between them with
partial information and are denominated as grey, hazy, or fuzzy. Thus, it can handle both
quantitative and even qualitative data quite proficiently. This very attribute transpires as
a legitimate advantage of GRA, making it a stark and more flexible and reliable strategy
as compared to the other contemporary approaches that operate through heuristics or
subjective judgements and can work with data given only in a certain format.

The grey relational analysis involves three concise steps for decision-making:

Step 1. Finding the grey relational grade.

A normalized matrix of fitness values is constructed to circumvent distortions caused
by larger sample values of any element. The fitness value fi(xi) of an individual particle,
having six attributes fi∈(xi){ fi1(xi), fi2(xi), . . . , fi6(xi)} as calculated by applying the
objective function to its position vector, is then used in Algorithm 2 and is used to generate
a comparable matrix for relational matrix generation as:

Yik =
fik − min( fik)

max( fik)− min( fik)
(15)

Step 2. Figuring out the grey relational coefficient.

The grey relational coefficient determines the value of closeness between Yik and Y0k,
i.e., the higher the value of the coefficient, the closer the two samples will be. It can be
computed as:

γ(Y0k, Yik) =
∆min + ζ∆max

∆ik + ζ∆max
(16)

Here, γis the grey relational coefficient between Y0k and Yik. ζ is the distinguishing
coefficient, a random value between zero and one, which regulates the expansion and
compression of relational coefficient. Using the values ∆ij = |Y0k − Yik|, ∆min and ∆max
are calculated as:

∆min = min
(
∆ij

)
(17)

∆max = max
(
∆ij

)
(18)

Step 3. Employing the grey relational coefficient in decision making.

Using the equation grey relational coefficient from (16), the grey relational reward is
calculated, which is used to select the higher relational samples. In our case, the between-
ness degree g(v) is calculated to generate a graph. The higher the value of g(v) for a sensor
orientation, the higher its optimality. This concept is used to aid the tenets of the Pareto
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dominance implemented in the methodology and finally figure out the desired sensor
orientation OSP. The process is depicted in the following Algorithm 2.

Algorithm 2: Optimality collation of sensor orientations using Grey Relational Analysis

Input: Fitness value matrix f
(1) Normalize the matrix f using Equation (15)
(2) For i = 1 : n
(3) a. For j = 1 : k
(4) i. Calculate the grey relational coefficient γij using Equation (16)
(5) b. end for
(6) end for
(7) Generate a graph object from γij
(8) Calculate the between g(v) for each element
(9) OSPindx = maxg(v)

4.9. Multi-Objective Hypergraph Particle Swarm Optimization (MOHGPSO) Algorithm

MOHGPSO is a novel algorithm introduced in this paper for OSP in SHM systems.
It combines the concepts of MOO and PSO to address the challenges of sensor placement
effectively. The algorithm employs six established OSP methods to generate a Pareto
front, which represents a set of optimal solutions. The MOHGPSO algorithm utilizes a
hypergraph to calculate the fitness eigenvalues of the obtained position orientations. This
hypergraph represents a single cluster of interconnected particles, where each particle is
treated as a node in the graph. The algorithm incorporates a dynamic search space where each
particle’s fitness value is compared to others, and the difference is considered an edge between
them in the hypergraph. The MOHGPSO algorithm autonomously determines the most
relevant sensor placements in the combined fitness function without artificial interventions,
showcasing its superior performance in optimizing sensor placements for SHM systems.

The following section of this paper includes a detailed overview of the proposed
approach through a brief introduction to all the terminologies and concepts implemented.
A brief synopsis of the PSO is followed by inception of the MOHGPSO algorithm. There-
after, the decision-making methodology has been delineated, and finally, a summarizing
algorithm has been provided to demonstrate the whole process.

PSO is among the stellar examples of bio-inspired evolutionary algorithms. Having
very few hyperparameters makes it a candid approach in searching for an optimal solution
in a given search space. The feature that distinguishes it from other optimization algorithms
is that even the only objective function needed is independent of the gradient or any
differential form of the objective. In spite of these noteworthy edges, PSO faces certain
prominent shortcomings which entail modifications. Firstly, conventional PSOs are prone to
the impulsive convergence of particles, i.e., far from the expected outcome of the objective
function, thus compromising the efficiency and accuracy of the algorithm. Secondly, there is
inadequate diversity, which affects the global search performance due to the large number
of iterations required to find the globally optimal low value of cost function.

In recent years, hypergraphs have been widely used in some fields of computer science,
such as image segmentation [32], data mining [33], and social network analysis [34]. A
hypergraph is a generalization of an ordinary graph model where each hyperedge connects
to an arbitrary number of hypervertices instead of only two. Thus, the hypergraph model
facilitates designing group relations instead of only binary ones, i.e., it is applicable to
problems with more than two variables or objects. The expediency of hypergraphs is
associated with their higher connectivity as compared to their traditional counterparts.

A hypergraph-based particle swarm optimization has been validated to efficiently
solve the problem of premature convergence in traditional PSOs and also to improve the
diversity and global search performance of traditional PSOs through a reduction in the
relevant number of iterations. This could be achieved through the introduction of a new
direction vector to the position update in the exploration process of a vanilla PSO. The
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velocities of PSO in the case of a sequence optimization problem are defined as a series of
swap operations based on a probabilistic update rule for the current position update.

Each particle has two attributes: velocity and location, represented as vectors vi and
xi, respectively. The fitness value fi(xi) of a particle is calculated by applying the objective
function to its position vector (location). The computed fitness values are then compared
with their own previous locations or other particles’ locations, in order to obtain their
respective individual personal best position pi and the global best position g. Then, the
individual velocity and position of each particle are updated as follows:

vi,t+1 = ω × vi + c1r1 ×
(

pi,t − xi,t

)
+ c2r2 ×

(
gi,t − xi,t

)
(19)

and, xi,t+1 = xi,t + vi,t+1 (20)

Here, ω, c1 and c2 represent constant weighting factors; the term pi,t is the personal
best location at time t; the term gi,t represents the global best position of all particles,
obtained through comparison of fitness values of particles with each other. The terms r1
and r2 are two independent random variables in the range [0, 1].

Equation (19) represents the exploration step of the PSO and is modified in the hy-
pergraph PSO (HGPSO) approach. A new fourth parameter is added to the equation, as
shown in Equation (21):

vi,t+1 = ω × vi + c1r1 ×
(

pi,t − xi,t

)
+ c2r2 ×

(
gi,t − xi,t

)
+ c3r3 ×

(
hi,t − xi,t

)
(21)

Here, hi,t is the centroid of the particles in the hypergraph generated by the current
fitness values of the particles. The update process of HGPSO is shown in Figure 3.
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Here, the concept of hypergraph generation is inspired by TTM clustering in hyper-
graph theory. An adjacency matrix of m × m is used to obtain the weights of each particle’s
connection to another. The particle’s fitness in any iteration is a vector quantity, and it has
to be converted into an adjacency matrix using the nearest neighbor calculation scheme.

Am×m = Adjacency( fi(x1), . . . , fi(xm)) (22)

where, A is the adjacency matrix of the vector of costs of the particles in the swarm, then a
hypergraph k is calculated for A to obtain an eigenvector using equation (23) as:

Pari∈{1, ... , k} =
1
z!

Trace
(

A ×1 Y(1)r
×2 Y(2)r

. . . ×z Y(z)r)
(23)

Here, ×l is the model-l product and Y(1)r
, Y(2)r

Y(2)r
, . . . , Y(z)r

∈ Rk×z which repre-
sents the number of CMs connected to each node ni for each vertex Yi∈{1, 2, ... , z} as:
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Yi =
1

∑
k

CM(ni)
(24)

The centroid of k is calculated using k-means clustering.
In the proposed methodology, the congregated position orientations are maneuvered

using the Pareto dominance tenets and incorporated into an enhanced Hypergraph Particle
Swarm Optimization Algorithm which involves the coalescence of Multi-Objective Opti-
mization, i.e., MOHGPSO. Certain terminologies, which have been implemented later in
the study, are described briefly:

(i) Global Minimum: For a given function f : Ω ⊆ Rn → R, Ω ̸= ∅, if x ∈ Ω, and,
more importantly, ∀x ∈ Ω : f (x∗) ≤ f (x), the global minimum is estimated to be
given by

f ∗ ≜ f (x∗) > −∞ (25)

Here, x∗ represents the global minimum solution, f —the objective function, and Ω is
the set representing the feasible region (Ω ∈ S), where, S includes the entire search space.

(ii) Pareto Dominance: If two vectors, one represented by u = (u1, u2, . . . , uk) and
the other by v = (v1, v2, . . . , vk), respectively, are mutually related such that the
objective values of u are no worse than those of v, and are strictly better than the latter
for at least one of the obtained solution elements, for any given objective, then vector
u is said to dominate vector v. In a nutshell: u ≼ v, i.e.,

∀i ∈ {1, 2, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, 2, . . . , k}, ui < vi (26)

(iii) General Multi-Objective Optimization Problem (MOP) and Pareto Optimal Set: The
objective of this approach is to find a vector represented by,

x∗ = [x∗1 , x∗2 , . . . , x∗n]
T (27)

such that, it satisfies the following m inequality constraints

gi(x) ≥ 0 i = 1, 2, . . . , m (28)

and also complies with the given p equality constraints

hi(x) = 0 i = 1, 2, . . . , p (29)

and thus, effectively optimizes the vector function

f (x) = [ f1(x), f2(x), . . . , fk(x)]T (30)

Here, x represents the vector of decision variables and is computed as

x = [x1, x2, . . . , xn]
T (31)

For a given MOP f (x), the Pareto optimal set (P∗) is estimated as:

P∗ := {x ∈ Ω : ¬∃x′ ∈ Ω f (x′) ≼ f (x)} (32)

(iv) Pareto Front:

A Pareto front represents a set of optimal solutions that cannot be improved in one
objective without sacrificing performance in another objective. In the context of sensor
placement for SHM systems, achieving a Pareto front is significant because it allows
decision-makers to evaluate and select sensor placements based on multiple criteria simul-
taneously. By generating a Pareto front using the MOHGPSO algorithm, the proposed
approach in this paper enables the identification of sensor placements that offer a balance
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between different objectives, such as maximizing data collection efficiency, conserving
sensor nodes’ energy, and enhancing the durability of the SHM system. The comprehensive
analysis of the Pareto front using GRA and FDM provides insights into the relative perfor-
mance of different sensor placements, allowing decision-makers to make informed choices
without artificial interventions. Ultimately, achieving a Pareto front in sensor placement
optimization helps maximize the effectiveness and efficiency of SHM systems, ensuring the
safety and longevity of critical infrastructure.

Usually, it is non-viable to realize an inquisitive linear or superficial expression con-
taining nondominated values. The routine process of inducing the Pareto front is through
the computation of the workable points Ω with the analogous f (Ω). With a substantial
count, the determination of the aspired points becomes feasible. For a given MOP f (x) and
Pareto optimal set P∗, the Pareto front (PF∗) is defined as:

PF∗ := {u = f = ( f1(x), . . . , fk(x)) : x ∈ P∗} (33)

(v) Pareto Optimality: Conventionally, it is evaluated apropos the whole decision variable
space (unless otherwise specified). For a point represented by x∗ ∈ Ω to be Pareto
optimal, it is imperative that there exists no realizable vector that can decrease some
criterion without causing a simultaneous increase in at least one other criterion. Thus,
for every x ∈ Ω and I = {1, 2, . . . , k}

that either ∀i∈I( fi(x) = fi(x∗)) (34)

or ∃i ∈ Isuch that, fi(x) > fi(x∗) (35)

Pareto optimal solutions are often also referred to as noninferior, admissible, or efficient
solutions, while their analogous vectors are called nondominated.

The optimal placement of WSN depends on several factors. These objectives can be
achieved by optimal placement, either by weighing all problems or by Pareto’s optimal
solution as a multi-objective problem. The MOHGPSO is a novel proposed optimization
algorithm that diversifies the solution search and avoids the premature convergence of
particles. To continue with the MOHGPSO, the velocity update of the conventional PSO
has to be studied first. The velocity in a conventional PSO is updated as:

Vi
j = Vi−1

j + c1 × rand ×
(

pbesti−1
j − prvPosi−1

j

)
+ c3 × rand ×

(
gbesti−1

j − prvPosi−1
j

)
(36)

where, i and j represent the current iteration and j-th particle. The pbest and gbest are
the local and global positions of the particles in the PSO. The first term in the above
Equation (36) adds momentum to the particle. The second term is the cognitive term,
which motivates the particle to move towards the local best position, and the last term
is the collective term, which enhances the search capability nearer to the global best
particle’s position.

To improve the convergence and avoid the local minima problem of MOPSO, we
hereby introduce Hypergraph PSO. In HGPSO, the eigenvalues of the fitness values of all
particles in an iteration are calculated by a hypergraph. Considering a single cluster of all
particles, every particle is connected to another. Considering the arrangement of PSO’s in the
dynamic search space, each particle is considered a node of the graph. The difference in fitness
value between two particles is considered the edge between them, as shown in Figure 4.

Hypergraphs are greatly pivoted on the dynamic evolution process, substantiating the
exploration of the dynamic analysis of complicated networks. The further advantage of the
hypergraph theory involves ensuring point and edge uniformity. Finally, they aid in clearly
expressing the relationship between the nodes and edges.
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In MOHGPSO, the external repository is maintained at the end of every iteration,
which houses the best particles so far. It comprises the archive controller and the grid. The
archive controller examines each vector, found in an iteration in the primary population of
the algorithm, and compares it to the existing contents of the repository individually on
the basis of Pareto dominance—to append only the nondominated ones. Conversely, if
the archive holds solutions that are dominated by the new element they are canonically
discarded. The unique archive controller in the proposed method deploys Grey Relational
Analysis (GRA) for this collection of data. Eventually, when the external population
surmounts the allowable capacity, the implementation of the adaptive grid procedure is
initiated, which in fact is a space formed by hyper-cubes or hyper-parallelepipes, depending
on whether the ranges of the objective functions are scaled or not, respectively. In the
repository, objective parameter space is partitioned into these regions, which are dispersed
uniformly among the greatest number of hyper-cubes or hyper-parallelepipes possible. The
repository size is defined by the hit-and-trial scheme. We consider here that 10 particles
can be housed in the repository.

This repository’s best fitness value for each objective (since it is a multi-objective
problem) is extracted and subtracted from each population’s fitness value. The adjacency
matrix is thus created, and hyperspectral clustering is performed to obtain the centroid of
the population. This centroid keeps the position of each particle nearer to the best values in
the repository. So, we add a fourth term in Equation (1) as:

Vi
j = Vi−1

j + c1 × rand × (pbesti−1
j − prvPosi−1

j ) + c3 × rand × (gbesti−1
j − prvPosi−1

j )

+c4 × rand × (gCentroidi−1
j − prvPosi−1

j )
(37)

This fourth term is called the spectral-cognition term.
The steps to calculate the spectral-cognitive term in MOHGPSO are as follows:

(a) The particles in the repository that are best so far and the current position of all
particles and their corresponding fitness values are used.

(b) Calculate the best fitness value for each objective in the multi-objective from the repository.
(c) Subtract that best value from each particle’s fitness value.
(d) Generate the adjacency matrix by following the nearest neighbor approach
(e) Use the hypergraph calculation of eigenvalues.
(f) Find the centroid position among all particles by the k-means clustering of eigenvalues

calculated in step 5.

Subtract the centroid position from each of the particle’s current positions with a
weighted value as in Equation (37).
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In the proposed method, GRA is preferred over sorting based on domination level.
One of the pivotal causes behind this is that the latter approach, although it promotes
extrapolation, compromises with the quality of the grade of the non-dominated solu-
tions. However, GRA ensures a noteworthy reduction in the probability of damaging the
non-dominated solutions during optimization. The best non-dominated solutions are main-
tained even while abruptly updating the variables using several operators. This approach
effectively supports superior exploration and convergence.

In the conclusive steps of MOHGPSO optimization, a set of optimal solutions will be
accumulated in the external archive. Each component class has a number of properties that
are deemed important in the decision-making process. Furthermore, there are some critical
properties that are not well understood yet which are essential for the component to operate.
Thus, fuzzy decision-making is used to direct the decision-making workflow towards
finding the desired answer without imposing any required precondition of extensive
understanding of the component type (FDM).

The process involves establishing an understanding of the needs in the respective
decision-making, in our case, the optimality of the solutions. Then, the construction of the
membership functions. Each functional optimization metric is interpolated in the range of
0–1 during the FDM process. As in Equations (38) and (39), the best orientation index is
determined by the min–max of the normalized values.

Fk =


1, ∀ Fk ≤ Fmin

k
(F max

k −Fk)
(Fmax

k −Fmin
k )

∀ Fmin
k < Fk > Fmax

k

0, ∀ Fk ≥ Fmax
k

(38)

OSPindex = max
(
min

(
F1, F2, F3, F4, F5, F6

))
(39)

where, Fk linear fuzzy membership for kth optimality metric where, k ∈ {1, 2, 3, 4, 5, 6},
Fmin

k , and Fmax
k are the minimum and maximum of kth optimality metric. The best optimal

solution index is computed as in Equation (37), and that orientation is returned from the
archive to present as the expected outcome.

Following this, GRA was used to obtain the improved non-dominated set of this
relatively recently established multi-objective model. The key to the desired answer,
however, has been agreement among the analyzed metrics. It could be used to highlight
how far a solution is from the group’s preferred solution. To compensate for uncertainty
in preference, robustness is proposed as a gauge of the capacity to cope with change in
preference. As a result, the suggested approach takes both consensus and robustness
into account.

4.10. Combination of HGPSO with GRA and FDM for Generating a Pareto Front

The MOHGPSO algorithm combines classical algorithms, such as the Hypergraph
Particle Swarm Optimization (HGPSO), with Grey Relational Analysis (GRA) and Fuzzy
Decision Making (FDM) to generate a Pareto front for optimal sensor placement. HGPSO,
as a component algorithm, contributes to the overall performance of the MOHGPSO al-
gorithm by leveraging the concepts of particle swarm optimization to explore the search
space and find optimal solutions. GRA is used to systematically analyze and archive the
Pareto front obtained from the OSP methods, providing insights into the relative perfor-
mance of different sensor placements. FDM is employed to make fuzzy decisions based
on the analyzed Pareto front, allowing decision-makers to determine the most relevant
sensor placements in the combined fitness function without artificial interventions. The
combination of HGPSO, GRA, and FDM enhances the algorithm’s ability to autonomously
determine optimal sensor placements and generate a Pareto front, showcasing its superior
performance in optimizing sensor placement for Structural Health Monitoring systems.

The proposed method has been summarized into certain fundamental steps in the
form of Algorithm 3.
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Algorithm 3: SHM Analysis using MOHGPSO, deploying GRA and FDM

Input: structure information from the FEM analysis, number of sensors m.
Output: optimal locations of the sensors.
(1) Get the random binary matrix for the sensor’s placement Xt

iϵ[0,1], t = 1, 2 . . . maxiter

(2) Calculate the multi − objective functions Ft form the structural analysis
(3) Store the Xt

iϵ[0,1] and Ft in the external archive when t = 1

(4) Update the particle’s position using HGPSO

Input: epoch size, swarm size m, ω, a, a2, a3
Initialize: initial position of the swarm

(a) Calculate q, k, s, f (xi) for the initial positions
(b) do

(i) for each sequence x in the swarm do
(ii) Update the velocity using vi,t = Vi,t+1(x, q, k, s, ω, a1, a2, a3)
(iii) Calculate new position xi,t to update particle’s position
(iv) If f (x) Is better than f (x) then

(1) f (x) = f (x)
(2) x = x

(v) end_if
(vi) If f (x) Is better than f (k) then

(1) f (k) = f (x)

(vii) End_for
(viii) Calculate s for current epoch and particle positions
(ix) If (s Is better than s)

(1) s = s

(x) end_if
(xi) while (number of epochs are not satisfied)

(5) Repeat the steps 2 and 3 for t = 2
(6) Use the Grey relation analysis (GRA) on the archived particles to select the non-dominated

solution

(a) Input: Calculated Fitness value matrix f using Ft

(b) Normalize the matrix f using Equation (15)
(c) For i = 1 : n

(i) For j = 1 : k

(1) Calculate the grey relational coefficient γij using Equation (16)

(ii) end for

(d) end for
(e) Generate a graph object from γij

(f) Calculate the betweenness g(v) for each element
(g) OSPindx = maxg(v)

(7) Update the archive with the obtained value, if needed
(8) If iterations are finished

(a) Stop

(9) Else

(a) Repeat steps 2 and 3

(10) End
(11) Select the single solution from the final archive using Fuzzy Decision modelling (FDM) as

described through Equations (38) and (39)
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5. Results and Discussions

The results and discussions section presents the analysis of structural items using the
proposed algorithm. It discusses the outcomes obtained through different OSP methods
and highlights the superior performance of the proposed approach. This section also
includes figures and tables to support the findings.

5.1. Evaluation Parameters

After obtaining the conclusive results of the sensor orientations through the different
OSP methods, five sensor placement benchmarks were to be verified to check the all-round
performances vis-à-vis the sensor distribution, orthogonality, linear independence, energy,
and redundant configuration.

5.1.1. Determinant (DET) of FIM

The determinant is used as an evaluation approach for the coupling of mode shapes
in OSP methods. The performance of a particular OSP method is directly proportional
to the value of the determinant, which is calculated based on the spatial relationship of
model shapes. The higher the determinant value, the better the performance of the OSP
method in terms of coupling mode shapes and resistance against noise. The determinant is
a measure of structural stiffness and plays a crucial role in assessing the performance and
effectiveness of sensor placements in SHM systems. In a limited set of coordinates, the FIM
determinant represents the trustworthiness of the data. By maximising the determinant,
the EfI technique chooses the OSP configuration. Because it has the same relevance as a
reiterative format, it is also effective to use a determinant to test the accuracy of the sensor
locations as follows:

DET = det(Q) (40)

The performance of the particular OSP is directly proportional to the value of the DET.

5.1.2. Mean Value of Off-Diagonal Entries of MAC

It is an effective evaluation approach for the coupling of mode shapes utilizing the
spatial relationship of model shapes, which is expressed as follows:

MACij =

(
φT

i φj
)2(

φT
i φi

)(
φT

j φj

) (41)

where, φi and φj are the i-th and j-th column in Φ.
Here, MACij demonstrates the cosine of the angle formed by the measured modes’

two vectors. Because a bigger space angle implies more obvious shape vectors, optimal
sensor sites are acquired by lowering the proportions of the maximal off-diagonal MAC,
generally derived by averaging the off-diagonal aspects.

MAC =
1

n(n − 1)∑
N
i = 1
i ̸= j

∑N
j=1 MACij (42)

Optimality of the configuration is inversely proportional to the MAC measure.

5.1.3. Modal Strain Energy (MSE)

The modal strain energy (MSE), i.e., energy associated with sensor arrangement, is
used to augment the weak signal-to-noise ratio in the OSP scenario, which is described
as follows:

MSE =
1
2∑N

i=1 φT
i Kφi (43)

where, K is the matrix accounting for the structural stiffness. The higher the MSE measure,
the higher the resistance against noise.
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5.1.4. SDI

Notwithstanding its widespread use, the EfI approach has several significant flaws,
including cluster orientations that repeatedly arise when the sensor count surpasses that of
the recorded modal shapes, which can lead to spatial correlation and significant resource
waste. As a result, the following SDI is shown to indicate the dispersed sensor placement:

SDI =
µ∑m

i=1 minDij

2A
(44)

where, µ is the mean distance between all the sensors and their center, defining the dis-
persion, min

(
Dij

)
represents the separation of each sensor from its nearest neighbor, and

A represents the structural area diagnosed, and dispersion in the distribution is directly
proportional to the value of SDI, i.e., the higher the value, the lesser the redundancy in-
formation. Nevertheless, the indices particularly deliver the geometry dispersion data,
overlooking any dynamic contributions.

The ratio of similar positions (RSP), achieved through comparison of various OSP functions.
The lack of an evaluation index for the eventual sensor orientation outcomes achieved

through the various OSP approaches necessitates the establishment of this last criterion for
RSP comparison.

RSP =
∑k

i=1 li
mk

(45)

where, li is the number of identical sites attained by one method and another. The more
general the sensor position sets in the similar OSP approaches, the higher the value of
this index.

5.1.5. Analysis

During the course of simulation, a two systems spring–mass system and the fixed
wing of an aeroplane are presented for optimal sensor placement by the proposed multi-
objective methodology.

5.2. Spring–Mass System

The proposed set-up can be perceived to be analogous to a spring–mass system with,
let us say, n = 20 DOFs. As for the case, the parameters are considered to be ki = 1000 N/m
and mi = 1 kg, (i = 1, 2, 3, . . . , 20). Keeping one-side fixed to realise the marginal con-
straints, each node with a DOF can be considered to hold the sensors. A brief overview
can be seen in Figure 5. The first three frequencies and modes can be seen in Table 1 and
are also demonstrated in Figure 6. These were deduced considering the MOHGPSO load,
and a quinary sensor set was planted in the inceptive manifestation. The attribute setup of
the posited MOHGPSO was achieved by deploying GA as follows: the community length
was set to approximately 49 ∼ 501 while constraining the maximal generation count to
99 ∼ 999. Maintaining a stochastically uniform selection procedure and keeping tolerance
near about 10−6 ∼ 10−3, the dispersed crossover method was adjusted to 0.9 ∼ 0.99. The
Gaussian mutation assignment was kept around 0.009 ∼ 0.09. The delineated setup can
be resolved through the forth mentioned entities: the structural DOF count, the sensor
population considered, and most crucially, the intricacy of the OSP scenario.
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Table 1. Frequencies implemented in the demonstrated examples.

1st 2nd 3rd

Spring–mass system 0.387 cycles/s (Hz) 1.14 cycles/s (Hz) 1.93 cycles/s (Hz)

Fixed Wing 24.3 cycles/s (Hz) 84.1 cycles/s (Hz) 141 cycles/s (Hz)
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In the discussed methodology, the iterative process is deployed to pick out the most
optimal sensor placement orientation among the Pareto front solutions obtained from the
analysis of the combined multi-objective problem through the proposed MOHGPSO, as
presented in Figure 7a,b. Six sensor placement functions have been evaluated, focusing
on the single point of significance in the first step of the initial case. Corresponding to the
advancement in the iterative step, each function is assessed consecutively. However, the
combined fitness function is dominated by the OSP methods of EfI, EVP, and MSSP, whereas
the influence of the remanent methods on the MOHGPSO is considerably recessive.

Superiority has been visualised mostly through counterpoised performance and over-
all effectiveness. As a result, the sensor orientations determined by the proposed method
were not always the best in all categories, but they may have been better than those acquired
by other individual generic OSP methods. The proximal convergence of the fitness values
for the groups of functions coplotted, as shown at the top of Figure 7a,b, reinforces the
credibility of the proposed approach in determining the best fitness value. It is noteworthy
that the iterative process required only seven steps, but that is greatly attributed to the fewer
DOFs in the system considered. Thus, the upper hand of this proposed optimization algo-
rithm is divulged in the form of reflexive determination of the most relevant sensor placement
configurations in the combined fitness function without any artificial interruptions.
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The forenamed five OSP criteria in Section 5.1 are employed in the evaluation of
the optimality of the sensor orientations corresponding to their respective metrics. The
resultant placements achieved through the aforementioned OSP functions in the posited
MOHGPSO algorithm are registered in the form of Table 2. Apart from the DPR and its
averaged counterpart, ADPR, the outcomes achieved through remanent OSP functions are
contrasting. The final sensor orientations approved are the result of a synthetic combination
of the output of the previously discussed six classical methods, i.e., the one that projects
maximum concordance. They are further testified through the implementation of GRA
imposed in the external archive, described in Section 3.2. Furthermore, for the sensor
outputs acquired through the sextet of OSP functions, the 5th, 11th, and 20th DOFs are
observed to occur more routinely in cases of the Effective Independence and Mode Shape
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Summation Plot functions, in proportion with the optimization metrics of all the OSP
functions. These three positions have greater relevance to the optimum solution, which is
further reflected in the effect of the combination. The EfI method has been distinguished by
exhibiting the finest performance vis-à-vis the indices of the DET of FIM, along with MAC.
Nevertheless, the results are entirely unalike the remaining sensor positions substantiated
through the RSP. The outcomes of EfI-DPR, along with the MSSP approaches, are the closest
to the others. Nonetheless, the remnant necessities were inadequate. In these criteria, the
remaining classes of sensor orientation outcomes could obtain only superior or inferior.

Table 2. Assessment of the sensor orientations achieved through the set of OSP functions considering
the discussed criteria in the spring–mass setup.

Sensor Positions DET MAC MSE SDI RSP

Effective Independence 5, 6, 12, 13, 20 0.031 0.003 489.814 0.343 0.366

Driving Point Residue 16, 17, 18, 19, 20 0.000 0.786 77.774 0.255 0.568

Average DPR 16, 17, 18, 19, 20 0.000 0.786 77.774 0.255 0.568

EFI-DPR 12, 17, 18, 19, 20 0.000 0.571 254.940 0.481 0.599

Eigenvalue Vector Product 10, 11, 18, 19, 20 0.001 0.437 258.365 0.203 0.534

Mode Shape Summation Plot 5, 11, 18, 19, 20 0.021 0.292 445.806 0.637 0.601

Novel Sensor Placement Algorithm [23] 5, 6, 11, 12, 20 0.030 0.014 490.155 0.332 0.433

MOHGPSO (proposed) 12, 17, 4, 1, 6 0.031 0.013 491.009 0.331 0.431

The phenomenon of primary significance has been that the ADPR, EVP, and MSSP
in collaborative fitness methods, as depicted in Figure 7a, emerge with most of the sensor
counts. Consequently, it is perceived as an outcome of using the distinctive OSP functions. It
partially accentuates the fact that the maximal contribution of the EfI, merged with DPR for
the quinary set of sensors, has been the occurrence of the 5th, 6th, 12th, and 20th positions
in the conclusive outcomes. This particular detection is accredited to the cumulative
aftermath of the varying multiple objectives in combined fitness. The performance of the
DET has been observed to be proportional to the number of sensors involved. A larger
number of sensors demonstrating a denser configuration can induce irrelevant recurrence
in the sensor configuration data. Comparison between the sensor locations achieved
through the OSP functions and distinct sensor counts reveals that the Ratio of Similar
Position pointer manifests a superior collective outcome, as per estimations, approximately
68% of the RSP can be seen as analogous to their respective sensor orientations obtained
through MOHGPSO. This algorithm was augmented through the combination of classical
algorithms, viz., the HGPSO, along with the GRA and some concepts of FDM, to artificially
counterbalance and scrutinize all OSP conduction metrics, as demonstrated in Table 2. Its
performance can be wholly attributed to the collective execution of the aforementioned
OSP methodologies in addition to the component algorithms, collaboratively pivoted over
the achievement of the sensor placement criteria, as discussed in Section 5.1. Relatively
exemplary performance has been registered apropos of the MSE. Thus, from a general
viewpoint, the posited MOHGPSO can be said to perform effectively.

Based on the data in Tables 2 and 3, it appears that the proposed method in this paper
may have limited advantages compared to the EFI method and the Novel Sensor Placement
Algorithm method. The proposed method’s performance, as indicated by the evaluation
criteria in Table 2, is similar to or slightly better than the EFI method in terms of DET, MAC,
MSE, and SDI. However, it is important to note that the results achieved by the proposed
method are inferior to those of the Novel Sensor Placement Algorithm method in terms of
DET, SDI, and RSP.
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Table 3. Assessment of the sensor orientations achieved through the set of OSP methods based on the
discussed criteria in the fixed wing.

Features DET (×108) SDI RSP

Effective Independence 1.301 0.684 0.432

Driving Point Residue 0 0.144 0.784

Average DPR 0 0.144 0.784

EFI-DPR 0 0.143 0.784

Eigenvalue Vector Product 0 0.144 0.784

Mode Shape Summation Plot 0 0.144 0.784

Novel Sensor Placement Algorithm 1.268 0.144 0.784

(Proposed) MOHGPSO 1.266 0.143 0.786

The reason for this discrepancy in performance could be attributed to several factors.
It is possible that the proposed method may not fully capture the complexities and nuances
of the sensor placement problem, leading to suboptimal results compared to the Novel
Sensor Placement Algorithm method. Additionally, the proposed method may have
limitations in terms of its optimization approach, or the specific criteria used for evaluating
sensor orientations.

Further analysis and explanation from this paper would be required to fully under-
stand the reasons behind the observed performance differences and to provide a more
comprehensive assessment of the proposed method’s advantages and disadvantages com-
pared to other methods.

5.3. Fixed Wing

An aeroplane is undoubtedly an intricate complex of numerous integrated systemic
constituents, each meticulously designed to manoeuvre a predetermined section as its
purpose. These structural subsystems are vulnerable to the risk facets involved in the
flight undertakings, particularly the wings, which are subjected to severe circumstances
encompassing myriad reverberations and vibratory jolts. For the examination of the
robustness and structural coherence of the wings, a specified wing of precisely two and one-
half meters in gauge, comprising ribs, skins, and spars, was selected as a further paradigm
to evaluate the posited MOHGPSO. The marginally constrained FE model, i.e., with a
riveted pinion at the core, has been exemplified in Figure 8. Expecting an expedient
evaluation, specifically the out-of-plane DOF directions were considered as nominal sensor
positions in Particle Swarm. Additionally, the modes and frequencies in Table 2, and also
demonstrated in Figure 9, were used as the HGPSO load, while placing the ten considered
sensors within the depicted wing framework. During MOHGPSO’s convergence at the 9th
step, the contributions of the EfI and EVP are perceived to have an overall dominance.

The evaluation parameters in the fixed-wing aircraft experiment may be inconsistent
with the spring–mass system due to the differences in the nature and complexity of the
two systems. The fixed-wing aircraft is a complex system with numerous integrated
components, such as wings, ribs, skins, and spars, designed to withstand various flight
conditions and vibrations. The evaluation parameters for the fixed-wing aircraft experiment
may focus on factors specific to aircraft structures, such as robustness, structural coherence,
and the ability to withstand reverberations and vibratory jolts. On the other hand, the
spring–mass system is a simplified model used to study the dynamics of a mass attached
to a spring, which may have different evaluation parameters, such as natural frequency,
damping ratio, and mode shapes. The inconsistency in evaluation parameters between the
fixed-wing aircraft experiment and the spring–mass system may be due to the different
objectives and requirements of the two systems.
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The fitness function cumulatively approaches estimations of 0.79 with advancements
in step. A sensor orientation computed through the conglomeration of all the OSP methods
is seen to be collectively focused mostly on terminal sections of the wing. Regarding the
quantification procedure of these methods, this finding ensures a considerable MSE influence.

5.4. Optimized Sensor Positions in Fixed Wing Aircraft Experiments

Optimized sensor positions in fixed-wing aircraft experiments can be determined
using advanced optimization techniques and algorithms. One approach is to use the
MOHGPSO algorithm, which considers multiple objectives and constraints to find the
optimal sensor positions. OSP methods can also be employed to identify the most effective
locations for sensors on the aircraft structure. These methods take into account factors
such as the structure’s vulnerability to risk factors, the efficiency of data collection, and the
conservation of sensor nodes’ energy. The optimized sensor positions can be determined
by analyzing the results of the optimization algorithms and selecting the positions that
provide the best performance in terms of structural health monitoring and the durability of
the aircraft.

Sensor orientation determined by all OSP techniques is primarily focused on wing
terminals. This indicates a significant MSE effect on these approaches’ quantification. The
MOHGPSO has six visible sensor orientations at the wing’s front and back. Three neighbor-
ing sensors acquired using EfI functions have totally distributed locations, demonstrating
the hypothesized combined processes’ effectiveness and the possibility of recurrence im-
provement. This supports the consideration of Table 3’s criteria. Even slight decreases in the
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DET of the FIM index of the proposed algorithm increase SDI performance by improving
sensor orientations, proving its practicality.

Using data from sensors placed at the respective optimal configuration in the case of
each OSP method, the respective modal properties are deduced and then treated as a vector
of decision variables. During the course of the simulation, two systems, the spring–mass
system and the fixed-wing of the airplane, are presented for optimal sensor placement by
the proposed multi-objective methodology. It shows the frequency of the three vibrational
modes calculated for the system’s spring–mass and fixed wing. These modes are calculated
for 20 degrees of freedom. These values were deduced by considering a MOHGPSO load
and a sensor set considered for inspection. After this, at the various sensor positions, the
MOHGPSO dispenses six visibly dispersed sensor orientations placed at the frontal and
rear extremities of the wing framework. Through the EfI functions, the three neighbouring
sensors obtained have thoroughly scattered positions, projecting the efficacy of the posited
combined functions while indicating the feasibility of recurrence improvement. This finding
can account for the evaluation of the aforementioned criteria as listed in Table 3. Even
trivial reductions in the DET of the FIM index of the proposed algorithm improved the
performance of SDI by enhancing the sensor orientations, indicating the feasibility of the
presented method.

6. Conclusions and Future Work

This paper addresses the challenges of a novel MOHGPSO algorithm for optimal sen-
sor placement in SHM systems. It employs six established OSP methods to generate a Pareto
front, which is systematically analyzed and archived through GRA and FDM. The proposed
approach autonomously determines the most relevant sensor placements in the combined
fitness function without artificial interventions, highlighting its superior performance. The
study’s findings have implications for decision-makers in the engineering domain, pro-
viding comprehensive insights into the operation, design, and management of structures
throughout their lifetimes. By achieving a Pareto front, the study enables decision-makers
to evaluate and select sensor placements based on multiple criteria simultaneously, maxi-
mizing the effectiveness and efficiency of SHM systems. It also contributes to the preference
of multi-objective optimization in SHM over the single-objective approach, as it allows for
a trade-off of distinct objectives and avoids overlooking potential optimal sensor placement
methods. The MOHGPSO algorithm’s convergence and coverage in modelling Pareto
optimal solutions contribute to the efficient determination of the Pareto optimal solution
set without the need for extra weights or aggregation. The method requires the assignment
of weight factors to each aim, which can be arbitrary in the absence of supported computa-
tion or reference. Revising the weight factors for a combination of objectives incurs high
computational costs. The proposed method aims to find a precisely explicit Pareto optimal
solution set with minimal function evaluation. However, there is a trade-off between
coverage and convergence, requiring an effective approach to counterbalance these factors.
Results from assessments on a spring–mass system and fixed-wing subsystem highlight
MOHGPSO’s superiority over generic methods, demonstrating reflexive determination of
relevant sensor configurations. Future suggestions include synchronized recombination
of OSP functions and leveraging Artificial Intelligence and Big Data analytics for optimal
solutions, enhancing efficiency and accuracy. Multi-objective optimization algorithms, like
MOHGPSO, are acknowledged for achieving a superior trade-off in addressing distinct
objectives compared to single-objective methods.
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