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Abstract: Hyperspectral imaging (HSI) has become a very compelling technique in different scientific
areas; indeed, many researchers use it in the fields of remote sensing, agriculture, forensics, and
medicine. In the latter, HSI plays a crucial role as a diagnostic support and for surgery guidance.
However, the computational effort in elaborating hyperspectral data is not trivial. Furthermore,
the demand for detecting diseases in a short time is undeniable. In this paper, we take up this
challenge by parallelizing three machine-learning methods among those that are the most intensively
used: Support Vector Machine (SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGB)
algorithms using the Compute Unified Device Architecture (CUDA) to accelerate the classification of
hyperspectral skin cancer images. They all showed a good performance in HS image classification,
in particular when the size of the dataset is limited, as demonstrated in the literature. We illustrate
the parallelization techniques adopted for each approach, highlighting the suitability of Graphical
Processing Units (GPUs) to this aim. Experimental results show that parallel SVM and XGB algorithms
significantly improve the classification times in comparison with their serial counterparts.

Keywords: hyperspectral imaging; machine learning; support vector machine; random forest;
eXtreme gradient boosting; GPU

1. Introduction

Skin cancer represents one of the most predominant tumors [1], and in recent years,
its occurrence has progressively increased. Such lesions are typically categorized into
two main groups: melanoma skin cancer (MSC) and non-melanoma skin cancer (NMSC) [2].
Typically, this cancer type involves three types of cells: squamous, basal, or melanocytic cells.

MSC originates from melanocytes, cells located in the epidermis and responsible for
skin color, thanks to melanin production. MSC can be further subdivided into three sub-
types: superficial extension, lentigo maligna, and nodular tumor [3]. This is the rarest type
of skin cancer, with, if not promptly detected, the highest growth speed and, consequently,
is very difficult to treat [4]. Therefore, doctors and surgeons need fast, reliable diagnostic
systems for this kind of pathology.

The traditional diagnosis procedure is biopsy, which consists in the removal of a
sample of tissue from the living body, followed by histopathological inspection [5,6],
representing an onerous and time-consuming process [5–7].

To face these problems, minimally intrusive techniques have been investigated, in-
cluding hyperspectral imaging (HSI), acquiring information about a scene both in the
spatial and in the spectral domain [8]. In fact, a hyperspectral image is represented by
a so-called hypercube containing the spectral information of every pixel over a specific
wavelength range. HSI allows precise material identification [9] by measuring the fraction
of the incident electromagnetic radiation reflected by the surface (reflectance). This is
due to the characteristic variation in the reflectance over the wavelength typical of each
material, which is called the spectral signature [10]. In contrast with traditional imaging
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techniques, HSI allows the acquisition of images with a large number of spectral bands
both within the visible and non-visible range. This means that the acquired images contain
much more information compared to traditional ones, such as RGB images, and can lead to
better performances [11].

However, although the development of accurate tools in the medical field is funda-
mental, timing requirements should also be taken into consideration when providing a
quick diagnosis is necessary. Indeed, the prompt detection of skin lesions facilitates their
treatment and increases the probability of survival of the patients.

To achieve this goal, many researchers [12–17] have exploited different kinds of devices
suitable for parallel elaboration and computation when the data size is high. Among
these, Graphical Processing Units (GPUs), used in different scientific applications [18,19],
represent a suitable technology in the field of medical image processing. In addition,
compared with other devices such as Field Programmable Gate Arrays (FPGAs), GPUs
usually offer a bigger parallel factor due to their high memory bandwidth [20].

Existing works in the literature have focused on the classification of HSI skin cancer
images by adopting machine-learning (ML) and deep-learning (DL) methods [11,16,21–31].

In [16], a classification chain based on K-means, Spectral Angle Mapper (SAM), and
SVM was considered. The authors also implemented several parallel versions of their
classification system exploiting multicore and many-core technologies.

The research in [31] implemented SVM, RF, and XGB, obtaining a mean classifi-
cation accuracy of 97%, considering only the model’s optimization and not the algor-
ithms’ parallelization.

Several DL models have been adopted in [32], namely, ResNet-18, ResNet-50, ResNet-101,
a ResNet-50 variant, U-Net, and U-Net++ architectures. Since neural networks are time-
consuming and computationally expensive, a parallel version of the U-Net++, resulting in
the best predictive approach, has been implemented using a low-power NVIDIA Jetson GPU.
This parallel version has achieved adequate classification performance satisfying real-time
constraints with a low power consumption.

Some works related to ML method parallelization can be found in [16,33], where
parallel versions of SVM and XGB have been developed for HSI image classification.

In this paper, we propose the optimization and parallelization of three popular ML
methods to accelerate the HSI skin cancer image classification using the Compute Unified
Device Architecture (CUDA), a framework for parallel elaboration developed by NVIDIA.
More specifically, the considered approaches are SVM, RF, and XGB, which offer a good per-
formance in classifying HSI images when the dimensions of the dataset are limited [31,34].
Furthermore, the works in [16,33,35] showed a great reduction in the classification time
developing parallel versions of SVM and XGB, even achieving real-time processing.

This work presents the parallelization techniques implemented on different NVIDIA
GPU devices including a GeForce RTX 2080 GPU, a GeForce RTX 4090 GPU, and a cluster
composed of five nodes of three Tesla A16 GPUs. Performance differences between the
devices in the classification of HSI skin cancer images have also been highlighted. Indeed,
GeForce RTX 2080 and 4090 GPUs are optimized for graphics applications, while the cluster
is designed for scientific calculations. In particular, the GeForce RTX 4090 is characterized
by the latest-generation architecture (Ada Lovelace), while the GeForce RTX 2080 features
an older architecture (Turing) and is cheaper than the previous one. Lastly, each Tesla A16
features an Ampere architecture.

Experimental results show a significant improvement of the parallel version of SVM
and XGB compared to their serial counterparts, with a speed-up of 130x and 1.4x, re-
spectively, confirming that GPUs represent a valid technology in accelerating the medical
diagnosis process.

This manuscript is organized as follows. Section 2 describes the HSI skin cancer
dataset and the adopted ML algorithms. Furthermore, the adopted techniques to perform
the serial and the parallel inference of the algorithms, and the architectures of the adopted
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devices are shown. The obtained results are illustrated in Section 3, while Section 4 presents
the discussions, and Section 5 provides conclusions and future developments.

The main contributions of this paper are the following: description of the paralleliza-
tion of the SVM, RF, and XGB methods targeting GPUs; parallelization on different devices,
considering the most recent architectures developed by NVIDIA; and comparison of the
results with the state of the art, highlighting the improvement of skin cancer diagnosis
through parallel image processing.

2. Materials and Methods
2.1. Hyperspectral Sensors and the Skin Cancer Dataset

The evolution of hyperspectral sensors has resulted in the creation of various platforms,
specialized for particular applications and operational needs. The four main sensor types,
namely pushbroom, whiskbroom, stereoscopic, and snapshot are fundamental to the
hyperspectral imaging landscape [36–38]. Pushbroom sensors function through constant
scanning of the scene using a linear or 2D array of detectors. As the platform moves, the
sensor captures spectral information for every pixel in the scene, resulting in a continuous
spectral image. This technique enhances both spatial and spectral resolution, making
pushbroom sensors highly suitable for applications that demand a thorough analysis of
specific regions [39].

Whiskbroom sensors operate similarly to pushbroom ones, except for their scanning
mechanism. Rather than recording an entire line at once, whiskbroom sensors collect data
one point at a time. The sensor sweeps across the scene, gathering spectral information for
each point sequentially. Whiskbroom sensors are celebrated for their adaptability and are
frequently utilized in airborne and spaceborne reconnaissance [40].

Stereoscopic hyperspectral sensors employ several detectors to capture images from
marginally divergent viewpoints. By leveraging stereoscopic vision, these sensors provide
not only spectral data but also depth information. This facilitates the creation of 3D
models and improves the interpretation of intricate surroundings, such as hilly terrains or
urban landscapes [41].

Snapshot sensors, also referred to as snapshot hyperspectral imaging systems, obtain a
complete spectral image with a single exposure. This is accomplished through cutting-edge
optical designs that record data concurrently for all spectral ranges. Snapshot sensors
enable quick data acquisition and are ideal for dynamic scenarios or situations needing
promptly available spectral information [42].

A thorough knowledge of the peculiar characteristics of each hyperspectral sensor is
crucial to select the most appropriate technology for a particular application. Concerning
skin cancer detection, the snapshot sensor is the best choice since it acquires the whole
images in a single exposure [25,36].

The HSI skin cancer dataset used is the one considered in [16,21,31,43]; it contains
76 images of skin lesions from 61 subjects, 40 of which are benign and 36 are malignant.
They were acquired with a snapshot camera (Cubert UHD, Cubert GmbH, Ulm, Germany)
able to cover the 450–950 nm range, distributed over 125 spectral channels [30]. The images
were collected in two hospitals of the Canary Islands, Spain: the Hospital Universitario de
Gran Canaria Doctor Negrín and the Complejo Hospitalario Universitario Insular-Materno
Infantil. The image labelling was led by experts such as dermatologists and pathologists
according to the taxonomy described in [32].

The spectral signatures among different patients have been normalized as illustrated
in [32] to mitigate the variations in illumination conditions. At the end of preprocessing,
the spectral signatures contain 116 bands with values in the range [0, 1].

Figure 1 shows the percentage distributions of the skin lesions that include four
possible classes: Benign Epithelial (BE), Benign Melanocytic (BM), Malignant Epithelial
(ME), and Malignant Melanocytic (MM).
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Figure 1. Percentage distribution of each lesion.

Figure 2 shows four images taken from the dataset representing one of the considered
lesions, together with the mean spectral signatures of the hyperspectral pixels.

Figure 2. Synthetic RGB images taken from the database to represent each lesion and the mean
spectra of the pixels.

2.2. Machine-Learning Methods

This section gives a general overview of the SVM, RF, and XGB methods adopted to
classify the HSI skin cancer images. Specifically, theoretical aspects of the three algorithms
will be presented.

2.2.1. Support Vector Machine

SVM is a supervised machine-learning method proposed by Vapnik and extensively
used for classification and regression tasks [44–46]. Originally, SVM performs binary
classifications and aims to find the hyperplane which splits the dataset into discrete classes
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according to the given training samples [46]. The data points with the minimum distance
from the hyperplane are called support vectors (SVs). For multiclass classification, SVM
breaks down the multiclass problem into multiple binary classification ones, solving the
following equation:

min
w,b,ζ

1
2

wTw + C∑n
i=1 ζi

subject to yi

(
wTxi + b

)
≥ 1 − ζi, (1)

ζi ≥ 0 with i = 1, . . . , n

where w is the support vectors, C is the penalty term, ζi is the distance error from the
correct margin, y is the classes, b is the margin, xi is the training vectors, and n is the
number of training samples. Intuitively, the goal is to maximize the margin by minimizing
wTw, while incurring a penalty when a sample is misclassified.

The minimization problem described by Equation (1) can be transformed into a dual
problem given by Equation (2):

min
α

1
2

αTQα − eTα

subject to yTα = 0, (2)

0 ≤ αi ≤ C with i = 1, . . . , n

where e is a vector of all ones, and Q is an n by n positive semidefinite matrix whose
elements are defined in Equation (3):

Qij = yiyjK
(
xixj

)
(3)

K is the kernel function that maps the data from a low-dimensional space to another space
with high dimensions. Once the optimization problem is solved, the output of decision
function for a given sample x becomes:

∑i€SV αiK(wi, x) + b (4)

where αi is the dual coefficients. The sign of Equation (4) gives the binary classification,
while the multiclass classification is achieved according to the “one-vs.-one” strategy by
repeatedly applying Equation (4).

2.2.2. Random Forest

RF was first introduced by Leo Breiman [47]. It is a popular ensemble learning
algorithm used for both classification and regression tasks. It combines the predictions
of multiple decision trees to improve the predictive accuracy and control over-fitting.
Specifically, each tree performs a “partial” prediction, and the class with the most votes
becomes the final prediction. Using a random subset of data and features, each decision
tree in the RF is built recursively by splitting the data according to various criteria (e.g., Gini
impurity or information gain) until a stopping criterion is met. The latter can be a maximum
tree depth, a minimum number of samples required to split a node, or a minimum number
of samples required in a leaf node.

2.2.3. eXtreme Gradient Boosting

XGB is an ensemble learning algorithm similar to RF. It is based on a generalized gra-
dient boosting method, and is used for classification, regression, and ranking tasks [48–50].
It provides highly accurate classifications by combining the predictions of multiple weak
predictive models, typically decision trees. One of the strong points of XGB is the sequential
addition of new models correcting the mistakes made by previous models. Particularly,
it optimizes a specific loss function by computing its gradient compared to the predicted
values. XGB builds N trees per class; the outputs of the trees belonging to the same class
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are summed. The soft-max function is then applied to the outputs to obtain the probability
values of the class. The class with the biggest value is the final prediction.

2.3. CPU and GPU Technologies

This section describes the architectures and the main features of the CPU and GPU
devices employed for the inference implementation of the three algorithms. For the serial
inference, we used an Intel Core i9-13900K with a clock frequency of 3 GHz. It is based
on the Raptor Lake architecture developed adopting an Intel 7 processor (10 nm), with
24 cores, 32 threads, and 32 MB and 36 MB of L2 and L3 cache memory, respectively. The
maximum bandwidth achievable is 89.6 GB/s.

The first two GPU devices considered for the parallel inference were an NVIDIA
GeForce RTX 2080 and an NVIDIA GeForce RTX 4090, optimized for graphics applications.

The NVIDIA GeForce RTX 2080 is based on the Turing architecture with 2944 CUDA
cores and a clock frequency of 1.5 GHz. Other components of this device include 184 texture
units, 64 Render Output Units (ROPs), 368 tensor cores, 46 ray tracing (RT) cores, and 8 GB
of GDDR6 modules. The maximum bandwidth achievable is 448 GB/s.

The NVIDIA GeForce RTX 4090 is supported by the Ada Lovelace architecture with
16,384 CUDA cores and a clock frequency of 2.2 GHz. It also contains 512 tensor cores,
176 ROPs, and 128 RT cores. The memory dimension is 24 GB (GDDR6X), and the maximum
bandwidth is 1008 GB/s.

The last GPU device considered is a cluster dedicated to the scientific calculation com-
posed of five nodes of three NVIDIA Tesla A16s. Each GPU of the cluster is equipped with
four chips and features the Ampere architecture. Every chip of the GPU has 1280 CUDA
cores, 40 tensor cores, 16 GB of GDDR6, and a memory bandwidth of 200 GB/s.

2.4. CPU Inference

The inference of the algorithms described in Section 2.2 has been implemented using
the best parameters obtained after the training phase as detailed in [31]. Visual Studio 2022
Integrated Development Environment (IDE) was used, adopting the C language.

The serial implementation has been used as a basis for the parallel inference described
in Section 2.5.

2.4.1. SVM Inference

The SVM inference consisted in the implementation of Equation (4). The dual coeffi-
cients, the margin, the support vectors, and the type of kernel function have been identified
after both the training and the parameters tuning described in [31]. The Radial Basis
Function (RBF) resulted as the most appropriate kernel function, and it is represented by
the following equation:

K(wi, x) = e−γ||wi−x||2 (5)

where γ is the kernel parameter, whose best value obtained after the training was 10.
The steps executed to perform the SVM inference can be summarized as follows:

1. Kernel calculation for the sample to classify according to Equation (5);
2. Multiplication between the obtained kernel and the dual coefficients adding the bias b;
3. Pixel classification through the “one-vs.-one” strategy.

The pseudo-code of the SVM inference is reported in Algorithm 1. Lines 2 to 4 perform
the kernel calculation by evaluating the squared Euclidean distance between the support
vectors and the sample to classify. The second step is executed in lines 6 to 10, where the
distance of the sample from the hyperplane is calculated according to Equation (4). Due to
the nested loops, the distance is calculated nclass ∗ (nclass − 1)/2 times. With nclass = 5,
10 values of the distance are obtained. Lines 12 to 21 show the last step that aims to perform
the final prediction by observing the sign of the 10 values of the distance: if dij is positive
(negative), then class i wins (loses) over class j, and the array scorei (scorej

)
is incremented
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by one. Finally, line 21 finds the index of the maximum value in the array scorei, or rather,
the class obtaining the greatest number of scores.

Algorithm 1 Serial implementation of Support Vector Machine

Input: γ → Kernel parameter
DCij → Dual coefficients matrix
wi → Support vectors matrix
x → Pixel to classify
b → Bias
1: Step 1 : Kernel calculation
2: for i = 0 to nsv − 1
3: K(wi, x) = exp

(
−γ ∗ ∥wi − x∥2

)
;

4: end
5: Step 2 : Distance o f the sample f rom the hyperplane
6: for i = 0 to nclass − 1
7: for j = i + 1 to nclass − 1
8: dij = ∑

i€SV
DCij ∗ K(wi, x) + b;

9: end
10: end
11: Step 3: “One vs. one” strategy
12: for i = 0 to nclass − 1
13: scorei = 0
14: for j = i + 1 to nclass − 1
15: if dij > 0
16: scorei ++;
17: else
18: scorej ++;
19: end
20: end
21: Find imax, index of the scorei maximum
Output: imax

2.4.2. RF Inference

The core of serial RF inference is a recursive function representing the tree structure.
According to the obtained trained values of the features, the thresholds, as well as the
left and right children’s nodes of each parent node, the execution follows a specific path
in the tree. If the execution ends in a non-leaf node, the function is repeated and drives
the execution to the next node depending on the left and right children’s values. The
recursion stops when the execution ends in a leaf containing the output. The output of
this function is an array of 5 elements containing the probability values of the pixel of
belonging to each class. Then, a second function was realized with the goal to execute the
tree structure N times, where N is the number of decision trees. Therefore, each tree makes
its prediction on the pixel, and the class having the greatest number of votes is the final
prediction. The number of decision trees used in this work is 425, obtained after the training
phase. The pseudo-code of RF inference is shown in Algorithm 2. Line 2 corresponds to
the tree_structure function that outputs the probability array (prob_array) exploiting the
features, thresholds, and left and right children’s node ( input_data). Lines 4 to 8 perform
the forest in which, at each iteration, the tree_structure function runs and the index of
prob_array maximum is obtained. At the end of the iterations, the array class contains the
number of votes per each class. The final prediction is the most voted class and is obtained
in line 9.
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Algorithm 2 Serial implementation of Random Forest

Input: input_data → Features, thresholds, left and right
children’s nodes
1: Step 1: Development of the tree_structure f unction
2: The single tree outputs prob_array
3: Step 2: Building of the forest
4: for i = 0 to ntrees − 1
5: tree_structure(input_data, prob_array, i);
6: Find max, index of prob_array maximum
7: classmax ++;
8: end
9: Find imax, index of the class maximum
Output: imax

2.4.3. XGB Inference

XGB is based on the same tree_structure function of the RF, but in this case, the output
is a single value. The forest structure function builds N decision trees for each class; each
tree improves the output of the previous tree (belonging to the same class) by considering
its prediction mistakes. The optimal number of decision trees obtained after the training
was 400, so the forest structure function builds 2000 decision trees overall.

The outputs of the decision trees belonging to the same class are summed. In
Algorithm 3, the pseudo-code of the XGB inference is shown. Line 2 is related to the
tree_structure function that outputs the probability value of the single tree. Then, the forest
function is described in lines 4 to 8, where the sums of the outputs of the trees belonging to
the same class are stored in the Zi array of 5 elements. Lines 10 to 18 determine the final
probability array Pi according to the soft-max function reported in Equation (6). The index
of Pi maximum is the final prediction according to line 19.

P[i] =
ZE[i]

∑nclass
j=0 ZE[j]

(6)

Algorithm 3 Serial implementation of eXtreme Gradient Boosting

Input: input_data → Features, thresholds, left and right
children’s nodes
1: Step 1: Development of the tree_structure f unction
2: The single tree outputs the probability value of its class
3: Step 2: Building of the forest
4: for i = 0 to nclass − 1
5: for e = 0 to ntrees − 1
6: Zi+ = tree_structure(input_data, e ∗ nclass + i);
7: end
8: end
9: Step 3 : Final probability array through so f t − max f unction
10: for i = 0 to nclass − 1
11: ZEi = exp(Zi);
12: end
13: for i = 0 to nclass − 1
14: z = ∑i€nclass

ZEi;
15: end
16: for i = 0 to nclass − 1
17: Pi = ZEi/z;
18: end
19: Find imax, index of the Pi maximum
Output: imax
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2.5. GPU Inference

This section describes the parallel inference for the SVM, RF, and XGB algorithms.
We adopted the GPU devices described in Section 2.3 and Visual Studio 2022 with CUDA
C language.

In the following sections, we will explain some essential terms to define the basic
components of the CUDA language. First, we must define the kernel (a CUDA function)
that, when called, is executed in parallel by N different CUDA threads. Another important
component is the thread block containing a group of threads executed concurrently. The
threads belonging to the same block can cooperate through synchronization barriers. A
thread block uses the shared memory for inter-thread communication and the data sharing.
Finally, a grid is an array of thread blocks executing the same kernel; it reads and writes in
the global memory of the GPU. Each thread and block can be identified through the threa-
dIdx = (threadIdx.x, threadIdx.y, threadIdx.z) and blockIdx = (blockIdx.x, blockIdx.y, blockIdx.z)
coordinates, respectively. The dimension of the thread block is defined by the blockDim =
(blockDim.x, blockDim.y, blockDim.z) array.

2.5.1. Parallel SVM

The most computationally expensive operations in SVM are Step 1 and Step 2 of
Algorithm 1 in Section 2.4.1. Step 1 involves the SV matrix (116 × 47,220) and the image
to classify (2500 × 116), while Step 2 performs the product between the obtained kernel
(2500 × 47,220) and the dual coefficients matrix (47,220 × 4).

Step 2 was performed through a CUDA kernel using a number of blocks equal to
(N + nthreads − 1)/nthreads with nthreads = 32 and N being the number of SVs. The choice to
use 32 as the number of threads is because the basic unit of execution in an NVIDIA GPU is
the warp, a collection of 32 threads executed simultaneously by a Streaming Multiprocessor
(SM) of the GPU. Therefore, the resulting number of blocks was 1476. The pseudo-code of
Algorithm 4 below represents the kernel calculation through the CUDA syntax.

Algorithm 4 Kernel calculation

Input: γ → Kernel parameter
wi → Support vector matrix
x → Pixel to classify
1: i = blockIdx.x * blockDim.x + threadIdx.x
2: if i < nsv
3: for i = 0 to nbands − 1
4: di = ∥wi − x∥2

5: end
6: K(wi, x) = exp(−γ ∗ di)
Output: K(wi, x)

In line 1, the variables blockIdx.x and threadIdx.x indicate the current block and thread
identifier, while blockDim.x is the block dimension along the x-axis as described in Section 2.5.
In line 4, the squared Euclidean distance di is shown; each thread performs the difference
between an element of the SV matrix wi and an element of the sample to classify x in parallel.
Finally, in line 6, the kernel K(wi, x) is obtained.

Then, Step 2 was implemented by adopting the cublasSgemm and the cublasSaxpy
functions (from the cuBLAS library) explicitly designed for matrix operations: the first has
been used to perform the multiplication between the kernel and the dual coefficients
matrix, the second to sum the obtained result and b. The result of this step was a vector
of 10 elements containing the outputs of the decision function (see Equation (4)). Step 3
was performed employing 1 block of 5 threads (1 per class), whose task was to apply the
“one-vs.-one” strategy. Finally, the cublasIsamax function has been used to determine the
final prediction.
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2.5.2. Parallel RF

For the parallel version of RF, the intrinsic nature of decision trees that is based on
sequences of if–else statements causes threads divergence, representing a challenge that did
not allow the parallelization of the tree_structure function. Therefore, such function has
been declared as a device function using the CUDA keyword __device__, meaning that
the function is called by the GPU.

The forest structure was realized with a CUDA kernel composed of 425 blocks of
1 thread, with one block for each decision tree and every block having only one thread in
order to avoid the potential thread divergence in the tree_structure function.

The pseudo-code in Algorithm 5 represents the parallel RF inference. Line 2 refers to
the serial RF tree_structure with the addition of the __device__ declaration, as mentioned
above. Lines 4 to 6 perform the forest where each block builds a decision tree and outputs
the prediction (max) for that same tree. Furthermore, to prevent race conditions in filling
the class array, line 6 performs the atomicAdd operation to add the value 1 to all the elements
of the array. In line 7, the final prediction imax is obtained through the cublasIsamax function.

Figure 3 shows the flow diagram of the RF classifier and how it is divided between
host and device. The input data, stored in the host, are transferred in the device memory
through the cudaMemcpy function, thus representing the input to the forest structure
device function, where each block implements a decision tree by calling the tree_structure
function. After that, the cublasIsamax function has been used to make the prediction for
each specific pixel. Since the device output vector contains the predictions of every pixel
of the image, its dimension is 2500. At last, the device output vector is transferred to the
host memory.

Figure 3. Flow diagram of parallel RF classifier.

2.5.3. Parallel XGB

To perform the parallelized version of the XGB, the forest structure function has been
designed similarly to the parallelized RF: 2000 blocks have been adopted, each including
1 thread, and launching the tree structure function. The values obtained for each block
have been stored in the vector Z. Then, the reduction technique has been used to sum
the elements of Z related to the same class. To perform this task, the “sequential address-
ing” strategy has been implemented. The code below shows the sequential addressing
reduction technique.

In Code 1, for each class, 400 elements (n_estimators) of Z are transferred to the GPU
shared memory through the array S. Then, the for loop reduces the entire upper portion
of the array S to the entire lower portion of S. With 512 values, the upper 256 values are
reduced into the lower 256 values. Then, the upper 128 values of the lower 256 values
from before are reduced with the lower 128 values. The loop ends when the sum of all the
elements of the array is obtained and stored in the first element of S.

The reduction was executed using a 2D grid composed of 1 block of 512 (512 be-
ing the first power of 2 greater than 400) threads for the x-axis, and 5 blocks of 1 thread
for the y-axis. Each thread of the x-axis transfers one element of Z to the shared mem-
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ory and sums two elements of Z, while the 5 blocks of the y-axis iterate over the classes.
Algorithms 4 and 5, related to SVM and RF, respectively, involve a single index in perform-
ing their kernels; therefore, the use of a 1D grid was considered sufficient. In the reduction
process, XGB involves two independent indexes, e and b, related to the elements of the S
array and to the classes, respectively; as a consequence, a 2D grid has been identified as
more suitable compared to a 1D grid.

Code 1 Sequential Addressing Reduction

Input: tid, e, b → indexes of the threads and blocks
ncl → number of classes
1: int tid = threadIdx.x;
2: __shared__ f loat S[512];
3: int e = blockIdx.x ∗ blockDim.x + threadIdx.x;
4: int b = blockIdx.y;
5: if (tid < n_estimators)
6: S[tid] = Z[e ∗ ncl + b];
7: __syncthreads();
8: for (s = blockDim.x/2; s > 0; s ≫= 1){
9: if (tid < s)
10: S[tid]+ = S[tid + s];
11: __syncthreads();
12:}
Output: S

Algorithm 5 Parallel Random Forest

Input: input_data → Features, thresholds, left and right
children’s nodes
1: Step 1: Development of the device tree_structure f unction
2: The single tree outputs max, the prob_array maximum index
3: Step 2: Building of the forest
4: i = blockIdx.x;
5: max = tree_structure(input_data, prob_array, i);
6: atomicAdd(&classmax, 1.0);
7: Find imax, index of the class maximum
Output: imax

The sequential addressing approach solves the warp’s divergence and shared memory
bank conflict problems of the interleaved addressing reduction. Figure 4 exemplifies the
concept of sequential addressing reduction.

Figure 4. Example of sequential addressing reduction technique.
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To conclude, the final probability array P of Equation (6) was obtained using a CUDA
kernel composed by 5 blocks of 1 thread.

3. Results

The inference part of SVM, RF, and XGB methods has been implemented in a serial
and a parallelized version using C and CUDA languages, respectively. The programs have
been developed with the Microsoft Visual Studio 2022 IDE and the CUDA 11.7 toolkit for
the NVIDIA GeForce RTX 2080 GPU and the CUDA 12.0 toolkit for the NVIDIA Tesla A16
and NVIDIA GeForce RTX 4090 GPUs. The serial version was compiled with the v143
compiler of Visual Studio, while the parallel code was compiled with the NVCC compiler
included in the toolkit. The compiler configuration has been set to release mode, meaning
that the optimizations are enabled, and that the full debugging information is not included.
Furthermore, we have set the code generation option of the CUDA compiler to 7.5, 8.6,
and 8.9 values corresponding to the compute capability of the NVIDIA GeForce RTX 2080,
NVIDIA Tesla A16, and NVIDIA GeForce RTX 4090 GPUs. This option allowed us to fully
exploit the architectures of the respective GPUs.

The SVM, RF, and XGB inference has been tested using 10 HSI skin cancer images, all
having dimensions of 50 × 50 pixels and 116 bands; this dataset contains all the possible
skin lesions.

Specifically, the average classification time of such images has been measured for each
algorithm and for all the adopted technologies. All the average classification times with the
standard deviations and the speed-up (in brackets) are reported in Table 1.

Table 1. Average classification times for SVM, RF, and XGB for all the CPU and GPU devices.

SVM [s] RF [s] XGB [s]

i9-13900K 445.90 ± 105.72 0.51 ± 0.01 1.17 ± 0.02

RTX 2080 14.10 ± 0.09 (32x) 0.77 ± 0.00 (0.66x) 0.98 ± 0.00 (1.19x)

Tesla A16 40.80 ± 0.00 (11x) 1.07 ± 0.00 (0.48x) 1.43 ± 0.00 (0.82x)

RTX 4090 3.44 ± 0.00 (130x) 0.76 ± 0.00 (0.67x) 0.84 ± 0.00 (1.39x)

It is worth noting that the parallel SVM features the greatest speed-up. In fact, all
GPU devices have obtained valid results for this algorithm: a speed-up of 32x, 11x, and
130x turned out for the GeForce RTX 2080, Tesla A16, and GeForce RTX 4090, respectively.
This confirms that parallelizing SVM is an appropriate solution for the acceleration of skin
lesions’ detection.

Parallel XGB has outperformed its serial counterpart when using both the GeForce
RTX 2080 and GeForce RTX 4090 GPUs, achieving a speed-up of 1.19x for the first and
1.39x for the second device conversely. The cluster has not accelerated the serial version,
its average execution time being 1.17 s, whereas 1.43 s is the average execution time of the
parallelized version.

Finally, RF is the only algorithm that has not shown improvements; however, some
observations should be made: the intrinsic nature of RF did not allow the tree structure
to be parallelized since it is based on if–else sequences. Hence, this algorithm is not fully
parallelizable. Moreover, the number of decision trees used in this work was 425, which is
not as big as it should be to adequately exploit the benefits of parallel computing.

NVIDIA GeForce RTX 4090 GPU resulted as the most performant among the GPUs,
due to its high number of CUDA cores (16,384) and to its latest-generation architecture, the
Ada Lovelace.

As already said, the university cluster achieved the worst performance for all algo-
rithms, probably because the code developed for the parallel inference has not exploited
the full computational power of the cluster. Indeed, the cluster is composed of five nodes of
three Tesla A16 GPUs, while our code employed the use of one out of four chips equipped
on each single GPU.
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4. Discussion

To compare the results of our methods with the state of the art, the works proposed
in [16,33] can be considered. The authors of [16] have developed a hybrid classification
system based on K-means, SAM, and SVM using the same dataset here described. In partic-
ular, they implemented several parallel versions of their system using an NVIDIA GeForce
RTX 2080 GPU (the same employed in this work) and an NVIDIA Tesla K40 GPU. The best
performance was achieved through the version performing the K-means in CUDA using
the NVIDIA GeForce RTX 2080 GPU and the SVM in OpenMP. To evaluate the performance,
the authors considered nine images and measured the classification times of each image
as the mean of five executions. They reported a diagram showing that the classification
times of their system were approximately 1 s. However, the SVM implementation in [16]
had to classify only a limited number of pixels of the images; namely, the pixels clustered
as pigmented skin lesions from the K-means stage. In contrast, this work’s SVM classified
all the 2500 pixels of the images, discriminating between five different classes. Indeed, the
computational complexity of the SVM adopted in [16] is lower than the one described in this
work. Not only the number of elements to classify is lower, but also the hyperparameters
are different, since a higher number of support vectors is needed by the SVM adopted in
this paper.

In [33], a parallel XGB version was developed using an NVIDIA Quadro P4000 to
classify the Pavia University (PU), GRSS-DFC2013 Houston (GH13), and GRSS-DFC2018
Houston (GH18) datasets. All three datasets are based on a single HSI image. The PU image
features a dimension of 610 × 340 pixels and 103 channels, while the GH13 image is a cube
of dimensions 349 × 1905 × 144. Finally, the GH18 Houston image has 4172 × 1202 pixels
and 48 bands. The times taken to classify these images were 6.67 s, 31.05 s, and 347.30 s
for the PU, GH13, and GH18 datasets, respectively. Given the big difference between
the number of samples and features considered in the datasets of [33] and the one of
this work, a quasi-linear relation between the images size and the processing times is
observed. Indeed, the structure of XGB is poorly parallelizable, and the performances
are strictly related to the number of features and trees. In the proposed work, since the
data dimensionality is lower than that of [33], the number of features and trees is small.
Moreover, as described in Section 2.5.3, the parallelization is based on assigning each tree
to a block, whilst instead, [33] uses a standard approach.

To the best of the authors’ knowledge, no prior parallel version of RF has been devel-
oped in the HSI field.

Table 2 summarizes the prediction times of this work and the results obtained in
the literature.

Table 2. Comparison between classification times of our work with the state of the art.

K-Means +
SAM + SVM [16]

SVM
(This Work)

XGB PU
[33]

XGB GH13
[33]

XGB GH18
[33]

XGB
(This Work)

Time [s] ~1 3.44 6.67 31.05 347.30 0.84

# pixels From 300 to
1700 2500 207,400 664,845 5,014,744 2500

# channels 116 116 103 144 48 116

5. Conclusions

In this work, a serial and a parallel inference of the SVM, RF, and XGB algorithms to
classify a dataset of HS skin cancer images have been proposed. The serial inference has
been implemented employing the CPU Intel Core i9-13900K, and to accelerate the serial
classification, three different GPUs have been employed: the NVIDIA GeForce RTX 2080,
the NVIDIA Tesla A16, and the NVIDIA GeForce RTX 4090.

The results show that our work can significantly accelerate medical diagnosis through
image processing techniques. In fact, the parallel versions of both SVM and XGB lead
to an acceleration very significant in the case of the most complex SVM and minor but
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not neglectable in the case of the less challenging XGB. In any case, this experimentation
confirms the validity of the approach used in [16] and in [38] even in case of a problem
featuring a low parallelizable algorithm applied to a small dataset with a low number of
trees. Again, it is possible to say that hyperspectral image processing can support doctors
in timely detecting skin lesions, planning an opportune therapy, and helping surgeons
during interventions.

Future works will focus on multi-GPU programming to exploit the full computational
power of the cluster, since we only used one out of four GPUs of one NVIDIA Tesla
A16. Furthermore, integrated GPU solutions will be explored, such as the NVIDIA Jetson,
that is a System on Module (SoM) that features small dimensions, high performance, and
embedded CPU, GPU, and memory in a single board. Lastly, datasets with a higher number
of patients will be considered to better validate the proposed approach.
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