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Abstract: In recent years, the application of machine learning for virtual sensing has revolutionized
the monitoring and management of information. In particular, electrochemical sensors generate
large amounts of data, allowing the application of complex machine learning/AI models able to (1)
reproduce the measured data and (2) predict and manage faults in the measuring sensor. In this work,
data-driven models based on an autoregressive model and an artificial neural network have been
identified and used to (i) evaluate sensor redundancy and (ii) predict and manage faults in the context
of electrochemical sensors for the measurement of ethanol. The approach shows encouraging results
in terms of both performance and sensitivity analyses, allowing for the reconstruction of the values
measured by two sensors in a series of six sensors with different dopant levels and to reproduce their
values after a fault.

Keywords: virtual sensing; electrochemical sensors; machine learning

1. Introduction

In recent decades, the literature has focused on the possibility of indirectly reproducing
physical variables through virtual sensors using other correlated measured variables. Thus,
virtual sensors incorporate software to enable the computation of a specific variable’s
value without direct measurement utilizing data from physically or chemically related
measurements [1].

These sensors have proven invaluable in scenarios where placing a physical sensor is
unfeasible due to constraints such as inaccessible locations or high costs. Implementing
virtual sensors can be approached in two ways:

• In the data-driven approach, time series data of input and output variables are gathered
through direct measurements. These data are then utilized to establish a mathematical
approximation of the relationship between the measured variables and the sensors’
output [2–4]. Machine learning is used in data science to facilitate the identification of
patterns and automate the process of data analysis, offering a compelling approach to
tackling virtual sensing challenges by leveraging historical data to predict and estimate
unmeasured variables due to its capacity to discern complex patterns and relationships
within data [5–8]. Through various algorithms like neural networks, support vector
machines, and ensemble methods, machine learning effectively reconstructs and
forecasts missing or inaccessible data points [9]. Moreover, machine learning models
continuously learn and adapt, refining their predictions over time as they acquire new
information. The integration of machine learning into virtual sensing not only enables
the estimation of unmeasured variables, but also empowers decision-making processes
in various sectors, such as healthcare, manufacturing, and environmental monitoring,
resulting in a significant transformation in how we address sensing limitations [10–12];
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• In the deterministic approach, the physical or chemical connections between input and
output variables are leveraged to calculate the unmeasured variable through a virtual
sensor [13]. Usually, virtual sensing based on the deterministic approach is performed
using methodologies based on the Kalman filter due to its ability to combine available
data with system dynamics to estimate unmeasured variables [14–17]. Its widespread
application across various sectors such as autonomous systems, finance, and environ-
mental monitoring highlights its significance in addressing complex problems where
direct measurements are unattainable. The Kalman filter stands as a cornerstone for
enabling virtual sensing, aiding informed decision making and system optimization.

Thus, the deterministic approach relies on a mathematical model that integrates ob-
served data and system dynamics, allowing precise estimations of unmeasured variables.
Data-driven approaches harness an algorithm’s ability to learn from historical data to
predict and estimate missing variables, without solely relying on predefined mathematical
models. While the deterministic approach focuses on merging observed data and sys-
tem dynamics, data-driven models identify complex patterns in historical data to predict
missing variables, offering greater flexibility in handling nonlinear and intricate situa-
tions. Conversely, data-driven modeling requires an initial training phase for existing
data, whereas the deterministic approach can be implemented directly using defined
mathematical models and available measurements.

For these reasons, the deterministic approach to virtual sensing excels in situations
where mathematical models and system dynamics are well understood, offering precise
estimations and real-time adaptability. However, it relies heavily on accurate modeling
assumptions and struggles with non-linear systems, potentially leading to less accurate
estimations in complex scenarios. On the other hand, the advantages of data-driven virtual
sensing lie in its adaptability to various scenarios, as no assumptions are required about
the system dynamics [18,19]. Yet, it demands substantial data amounts for training, can
overfit with insufficient or biased data, and operates as a “black box”, lacking transparency
in explaining its predictions.

Chemical sensors such as MOX-type sensors (semiconductor metal oxide gas sensors)
have demonstrated the clear advantages of the application of this technology in recent
years, and have been used with considerable success in several sectors, ranging from
food safety [20], quality control [21] and environmental monitoring to human health,
particularly due to their high sensitivity, fast response and low costs. For these reasons, this
work investigates the feasibility of integrating electrochemical sensors and virtual sensing
in order to benefit from both approaches.

2. Materials and Methods
2.1. Hardware Setup and Measurements

S3, an acronym for Small Sensor System, is an instrument developed by Nano Sensor
Systems Srl (Reggio Emilia, Italy) [22], a start-up affiliated with the University of Brescia. S3
is equipped with an array of chemiresistor MOX-type sensors. The operational mechanisms
of this technology exploit the capacity of some metal oxides to become semiconductors
when heated to high temperatures (250–400 ◦C) or when activated by UV light [23]. When
the sensing element is activated, a change in the electrical conductance occurs in the sensing
material after interaction with the gaseous surrounding environment. The interaction
occurring between the oxygen species adsorbed on the surface of the sensitive element
and the target molecules present in the gas samples leads to the release of electrons.
Subsequently, this electron liberation modulates the electrical properties, including the
electrical conductance and resistance [24].

The roughness of the thin film provides a high surface-to-volume ratio and reactivity
with gaseous species. Furthermore, the presence of such a very rough surface morphology
leads to the high specific area required for high-sensitivity gas sensors [23]. The sensors
used in this work were fabricated by the authors using the C920 screen stencil printing
machine (Aurel S.p.a., Modigliana, Italy). Sensors were fabricated on a 0.35 mm-thick quartz
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substrate with pre-deposited heaters and platinum electrical contacts for reading sensor
values. The three sensing elements were each printed using screen printing techniques
(screen stencil printer C920), employing sensing element pastes previously prepared by the
authors. In particular, the sensing elements were composed of SnO2, SnO2-Au, and SnO2-
Pd, with a dopant concentration of 0.1% in the last two sensing elements. The addition
of the dopants helps to obtain more signal variability and more elasticity regarding the
selectivity and sensitivity of the different materials to the surrounding chemical species
environment. The sensor response is unspecific, which means that the different sensing
elements are affected by different chemical groups in the VOCs present in the environment.
The primary sensing material consistently used is SnO2. However, by incorporating
dopants and adjusting the operating temperature, it is possible to modulate the response
of the different sensing elements, thereby achieving a wider spectrum of selectivity and
sensitivity.

Following the deposition, a 2 h dying process was conducted to stabilize the sens-
ing elements and facilitate the evaporation of the organic vehicles present in the pastes.
Subsequently, the sensors underwent a firing or annealing process, which facilitated the
development of a porous nanostructured internal structure. This structure enhanced the
permeability of various gases through the sensor. In addition, annealing facilitated the
development of a highly durable and resilient crystalline structure, ensuring the long-term
stability of the sensors and preventing any potential sensor malfunction. The sensor’s
long-term reproducibility was enhanced by this characteristic.

In addition to various semiconductor metal oxide gas sensors, the innovative S3 device
is equipped with flow, temperature, and humidity sensors. From the hardware point of
view, S3 is composed of three essential parts:

1. Steel sensor chamber: the chamber hosts three MOX sensors separated from the
external environment, except for an inlet and an outlet path for the passage of volatile
compounds with internal dimensions of 11 cm × 6.5 cm × 1.3 cm.

2. Fluid dynamic circuit: The circuit serves for the distribution of volatile compounds; it
is formed by a pump (Knf, model: NMP05B, Nano Sensor Systems Srl, Reggio Emilia,
Italy), polyurethane pipes, a solenoid valve, and a metal cylinder which contains
activated carbon for filtering any type of odors present outside of the instrument. The
pump flow is set by a needle valve positioned at the chamber inlet.

3. Electronics control system: The system records the resistance variations of the sensors,
controls their heating, maintains their operating temperature, and facilitates the real-
time transmission of the recorded data to the dedicated Web App through an internet
connection. This capability enables the storage and analysis of the collected data in
the cloud, making S3 an IoT device.

Measurements were performed using a gas cylinder containing 300 ppm of ethanol.
Test concentrations were set to 10, 25, and 50 ppm in dry air under varying ambient
conditions. A mass flow controller was employed to introduce the test gases, maintaining a
total flow rate of 250 sccm. During the measurements, the operational temperature was set
to 500 ◦C. Six different sensors were used in the experiments, each exhibiting differences
in the composition of their sensing elements and deposition characteristics, as mentioned
earlier.

2.2. Data-Driven Models for Virtual Sensing

In this work, two different data-driven approaches have been used for the virtualiza-
tion of electrochemical sensors: autoregression with exogenous inputs (ARX) model [25]
and multi-layer perceptron (MLP) artificial neural networks [26]. In this context, the sig-
nificance of deploying ARX (autoregression with exogenous inputs) models and artificial
neural networks stems from their distinctive capabilities. These models not only provide
a means to determine the intricate relationships within electrochemical sensor systems,
but also facilitate the representation of complex dynamics and interactions among diverse
variables. This aids in a more precise comprehension of sensor behavior.
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Furthermore, these models exhibit the ability to capture temporal dependencies and
input–output relationships in sensor data, enabling the assessment of redundancy by
scrutinizing patterns and correlations among multiple sensors and offering insights into
their collective performance and identifying potential overlaps conducive to the creation of
virtual sensors.

2.2.1. ARX models

Autoregression with exogenous inputs (ARX) models are a mathematical represen-
tation of a dynamic system that encapsulates the relationship between input variables
(exogenous variables) and an output variable (endogenous variable) over time [22]. More
specifically, these models describe a stochastic process through a linear model, where the
output value is linearly dependent on the previous observations. Considering u(t)T ∈ Rnex

and y(t) ∈ R as the input and output of the system at time t, respectively, the model can be
defined by the equation:

y(t) = −α1y(t − 1)− . . . − αna y(t − na) + β0u(t − k) + . . . + βnb u(t − nb − k) (1)

where:

• na is the order of the autoregressive part;
• nb is the order of the exogenous part;
• k is the delay between the input and output;
• αi and βi are the model coefficients (of the autoregressive and exogenous parts, respec-

tively) to be estimated starting from data.

To achieve a more concise representation, the following vectors θ ∈ Rna+nb and
φ(t)T ∈ Rna+nb can be introduced:

θ =
[
α1 . . . αna β0 . . . βnb

]T (2)

φ(t) = [−y(t − 1) . . . − y(t − na) u(t − k) . . . u(t − nb − k)] (3)

Thus, Equation (1) can be written as:

y(t) = φ(t) θ (4)

Assuming that the input and output values of a given system have been recorded in
n tuples over a time interval [t1, . . . tn], the parameter vector θ can be estimated using the
least squares method:

θ =
(

ΦT · Φ−1
)
· ΦT · Y (5)

where:

• Φ

−y(t1 − 1) . . . − y(t1 − na) u(t1 − k) . . . u(t1 − nb − k)
...

. . .
...

−y(tn − 1) . . . − y(tn − na) u(tn − k) . . . u(tn − nb − k)

 is the matrix of all the

model input (including both autoregressive and exogenous parts);

• Y =

y(t1)
...

y(tn)

 is the vector of the measured output of the system.

2.2.2. MLP Artificial Neural Networks

In recent years, multi-layer perceptron (MLP) artificial neural networks have emerged
as a prominent tool in the field of machine learning, widely used in several tasks for
their proficiency in modeling complex data relationships. Therefore, this research project
explores the application of neural-network-based models, emphasizing their efficacy in
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identifying relevant non-linearities within the studied phenomenon, and providing a direct
comparison with the linear models employed for this purpose.

The concept underlying artificial neural networks is lightly inspired by the structure
and functionality of biological neural networks within the human brain; they consist of
interconnected layers of nodes (artificial neurons), where each connection is assigned a
specific weight. Assuming an architecture composed of an input layer, a hidden layer with
nh neurons, and an output layer with no neurons, the mathematical formulation of the
hidden output h(t)T ∈ Rnh is obtained as:

h(t) = f (W1 φ(t) + b1) (6)

where:

• φ(t)T ∈ Rna+nb is the input vector;
• W1 ∈ Rnhx(na+nb) is the weight matrix connecting the input layer to the hidden layer;
• bT

1 ∈ Rnh is the bias vector for the hidden layer;
• f : Rnh → Rnh is the non-linear activation function for the hidden layer.

Similarly, the final output y(t)T ∈ Rno is computed as:

y(t) = g(W2h(t) + b2) (7)

where W2 ∈ Rno x nh is the weight matrix connecting the hidden layer to the output layer,
bT

2 ∈ Rno is the bias vector for the output layer, and g : Rno → Rno is the non-linear
activation function of the output layer.

Therefore, a neural network with the previously defined architecture can be summa-
rized by the equation:

y(t) = g(W2 f (W1 φ(t) + b1) + b2) (8)

In this context, the parameters to be estimated during the identification phase are
the weights and bias of the network. Typically, the training of these parameters involves
executing the backpropagation algorithm on a series of input–output pairs [26].

3. Results
3.1. Available Data

For the considered tests, the dataset under consideration was derived from a number
of measurements obtained from six electrochemical sensors (S1, . . ., S6) under different
conditions. Notably, sensors S1 and S4, S2 and S5, and S3 and S6 are paired and doped
with identical materials (SnO2, SnO2-Au, SnO2-Pd, respectively), but were used in dif-
ferent printing processes. Consequently, there is a potential for correlation between the
measurements of these paired sensors.

The dataset includes 30 tests performed under varied ambient conditions, with a tem-
perature ranging from 28 to 37 and a relative humidity ranging from 30 to 40. Additionally,
the tests involve three levels of ethanol concentration (10 ppm, 25 ppm, and 50 ppm), each
lasting for a duration of 4200 s.

3.2. Test Definitions

In this study, the virtual sensing approach has been used in two different test cases:

1. Virtual substitution: In this case, a study was performed to select which sensors
could be replaced by virtual sensors, using only the measurements produced by the
remaining set of sensors. The objective was to reduce the quantity of physical sensors
integrated into a device, along with the corresponding costs, by virtualizing sensors
with redundant measurements.

2. Virtual switch: In this case, a simulated failure was introduced during the sensor’s
operational life, potentially leading to disruptions in sensor readings and the subse-
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quent loss of crucial information. Subsequently, a virtual sensor was employed to
reconstruct the unrecorded data from that moment onward.

In each test, two different identification datasets were considered: a smaller one,
including only a test performed using the average ethanol concentration under ambi-
ent conditions, and a larger one, comprising additional tests to assess the possibility of
improving the performance in terms of sensitivity and robustness.

3.3. Test Case 1: Virtual Substitution

In this case, the assumption is that the measured value of a sensor Si will be computed
using only the data coming from the other sensors. Thus, this means that the resulting
models will not contain the autoregressive part:

φ(t) = [u(t − k) . . . u(t − nb − k)] = [u(t − k) . . . u(t − nb − k)] (9)

where φ(t) is the vector containing u(t), i.e., the measurements coming from all the other
sensors.

The two models were tested using two main configurations: (i) substitution of only one
sensor with its virtual twin using the data from the other five sensors and (ii) substitution of
two sensors with their virtual twins using the data coming from the remaining four sensors.
In each configuration, different tests were performed to select the value of nb (ranging from
1 to 4), while k was equal to 0 in order to allow the virtual sensor to use the most recent
measured data to compute its output. In the first case, the identification dataset including
the test case was split into two parts: 70% of the data were used for identification and the
remaining 30% were used for validation. For each sensor or couple of sensors, the best
model was selected on the basis of the mean absolute error (MAE) on the validation dataset
(Tables 1 and 2).

Table 1. MAE for the single-sensor substitution case for ARX and MLP (the selected best model for
virtualization is in bold).

Sensor MAE ARX MAE MLP

S1 0.096 0.063
S2 0.153 0.155
S3 0.054 0.046
S4 0.019 0.173
S5 0.075 0.070
S6 0.078 0.049

Table 2. MAE for the double-sensor substitution case for ARX and MLP (the selected best model for
virtualization is in bold).

Sensors Average MAE ARX Average MAE MLP

S1, S2 0.146 0.099
S1, S3 0.071 0.057
S1, S4 0.069 0.103
S1, S5 0.046 0.055
S1, S6 0.096 0.101
S2, S3 0.109 0.156
S2, S4 0.085 0.151
S2, S5 0.068 0.064
S2, S6 0.068 0.063
S3, S4 0.038 0.109
S3, S5 0.055 0.047
S3, S6 0.060 0.024
S4, S5 0.046 0.110
S4, S6 0.049 0.091
S5, S6 0.044 0.045
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In the single substitution case, the two models lead to different selections (S4 for
ARX and S3 for MLP), with a slightly better performances for ARX than MLP, showing
a tendency to better reproduce the dynamical behavior of the data rather than the static
response at the end of the dataset (Figure 1).
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Figure 1. Best sensor selected for virtual substitution by ARX (a) and MLP (b) models—single
substitution.

Table 2 presents the results in terms of the MAE for the double substitution case. In
this case, the results of the two models are again different in terms of the sensors selected
for virtualization. In this case, the couple S3 and S4 is selected by ARX while the couple
S3 and S6 is selected by MLP. This latter result holds significant importance, as S3 and S6,
despite being doped with the same material (SnO2-Pd), originate from distinct printing
processes. Notably, in this scenario, sensors employing diverse doping materials exhibit the
capability to replicate the outcomes of sensors utilizing SnO2-Pd substrates. This suggests
a redundancy in the data derived from SnO2-Pd-based sensors in comparison to those with
alternative materials, highlighting the robustness and consistency of the former in relation
to the latter.

Finally, Figure 2 shows how the performance in this case is even better than in the case
with single substitution, particularly for MLP, where the bias at the end of the dataset is
negligible.
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substitution.

In order to evaluate the sensitivity of the identified sensors to varying concentrations
and conditions, the validation of the ARX and MLP model results was performed on the
entire dataset, comprising 30 distinct tests. The NMAE was computed for each of these
tests. Figure 3 shows the NMAE boxplots for ARX and MLP when the single and double
substitutions are performed. The plots show a significant variation in the selected statistical
index based on the test configuration, displaying a median of 0.25 and a 75th percentile of
0.5, even in the optimal scenario.
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Therefore, to enhance the robustness of the sensor’s performance, an alternative ap-
proach was employed: three tests were used for the identification dataset, selected to
encompass the different ranges ethanol concentrations, ambient temperatures, and humidi-
ties, while the remaining ones were used for the validation dataset. In this configuration, as
depicted in Figure 4, the NMAE consistently exhibits a lower variability for each considered
sensor, particularly for the top-performing sensors (S4, median of 0.2 and 75th percentile
of around 0.25) and the best sensor pairs (the S4 and S5 couple for ARX, with a median
of 0.19 and a 75th percentile of 0.5, and the S3 and S4 couple for MLP, with a median of
0.19 and a 75th percentile of 0.2). In this case, the disparity between ARX and MLP is more
pronounced for the couple substitution, with a substantial reduction in result variability.
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3.4. Test Case 2: Sensor Data Recustruction in the Case of Failure

This section shows the results obtained from the reconstruction of missing measure-
ments for the available sensors. The methodology involved the formulation of a virtual
model for each sensor, acting as a twin of the sensor itself. In this context, the autoregressive
part of the model is considered to work with all the possible available data. Thus, in this
context:

φ(t) = [y(t − 1) . . . y(t − na) u(t − k) . . . u(t − nb − k)]φ(t) = [y(t − 1) . . . y(t − na) u(t − k) . . . u(t − nb − k)] (10)

for Equations (4) and (8). The models were constructed by varying both the autoregressive
and exogenous components, denoted as na and nb, spanning orders from 1 to 4, and the
best model for each sensor was selected based on the MAE. After model identification, the
reconstruction of missing measurements was executed for the validation segment, assuming
that a failure occurs from time t = 560 to the end of the dataset. After the reconstruction,
the model’s accuracy was evaluated by analyzing its predictive capacity when missing
measurements are detected. Figure 5 depicts the reconstructions derived from the two
distinct models, ARX and MLP, applied individually to each sensor and compared with the
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previously validated dataset. A visual analysis of the figures reveals the notable efficacy
of both models in accurately predicting the missing data, particularly in scenarios where
interruptions occur in the extrapolated data, often induced by sensor faults. It is imperative
to underscore that, overall, the MLP model exhibits a superior performance in comparison
to the ARX model, with the noteworthy exception observed in the case of sensor S4.
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failure.

Once again, the entire collection of 30 experiments was employed to validate the
ARX and MLP models and to evaluate the sensitivity of the identified sensors to varying
concentrations and conditions. The NMAE was computed for each test, and the corre-
sponding boxplots are displayed in Figure 6. The graphs reveal substantial fluctuations in
the statistical index based on the validation test employed, with certain instances showing
median values exceeding 0.5.
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Thus, to improve the robustness of the sensors, the same approach as in the previous
section has been implemented here. Three tests were utilized for model identification,
and the remaining ones were allocated for validation. Figure 7 presents the obtained
NMAE distribution in terms of a boxplot, showing a limited variability in the sensor
performances and a median value consistently below 0.5. Notably, S4 demonstrates a
superior performance compared to the other sensors, whether the measurements are
reconstructed using the ARX model (median of 0.12 and 75th percentile of approximately
0.2) or the MLP model (median of 0.11 and 75th percentile of approximately 0.25).
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4. Conclusions

In this work, the application of virtual sensing techniques based on machine learning
has been investigated for electrochemical sensors. Different tests have been performed
for ethanol measurements using state-of-the-art sensors developed by NASYS, a start-up
affiliated with the University of Brescia. Two different data-driven models have been used
to evaluate (i) the redundancy among sensors implemented on the same board and (ii)
the possibility of reconstructing the measurement of the sensors in case of a fault. The
selected models are based on an autoregression with exogenous inputs (ARX) model and an
multi-layer perceptron (MLP) artificial neural network. The results are really encouraging,
with both models showing good performances in both situations. Future developments
may involve testing the S3 sensors under wet conditions in order to further enhance
the sensitivity and reproducibility of the entire chain (hardware and virtual sensors).
Additionally, there is potential for a smooth integration between machine learning and
these types of sensors to extend the application to forecasting measurements over an
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extended time horizon. This aims to facilitate the use of electrochemical sensors in more
sophisticated control schemes, such as model predictive control of systems.
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